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A cortical immune network map identifies distinct
microglial transcriptional programs associated with
β-amyloid and Tau pathologies
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Abstract
Microglial dysfunction has been proposed as one of the many cellular mechanisms that can contribute to the
development of Alzheimer’s disease (AD). Here, using a transcriptional network map of the human frontal cortex, we
identify five modules of co-expressed genes related to microglia and assess their role in the neuropathologic features
of AD in 540 subjects from two cohort studies of brain aging. Two of these transcriptional programs—modules 113
and 114—relate to the accumulation of β-amyloid, while module 5 relates to tau pathology. We replicate these
associations in brain epigenomic data and in two independent datasets. In terms of tau, we propose that module 5, a
marker of activated microglia, may lead to tau accumulation and subsequent cognitive decline. We validate our model
further by showing that three representative module 5 genes (ACADVL, TRABD, and VASP) encode proteins that are
upregulated in activated microglia in AD.

Introduction
Alzheimer’s disease (AD) is characterized pathologically

by the accumulation of both β-amyloid and Tau pathol-
ogies which lead to the gradual loss of cognitive function
and, ultimately, dementia1. The amount of these two
pathologies that are present in the older brain is strongly
but only partially correlated2, enabling us to distinguish
molecular pathways that are involved in one or the other
process of protein aggregation. While genome-wide
association studies (GWAS) have unequivocally pointed
to the innate immune system and particularly myeloid
cells as major contributors to AD pathophysiology3–5, our

current understanding of the mechanistic involvement of
microglia and infiltrating macrophages in human AD
pathology is rudimentary. Much of what shaped our
understanding of the role of innate immune cells in AD
pathogenesis is based on studies performed in animal
models of AD which imperfectly capture the many dif-
ferent aspects of the human disease6. In addition, sig-
nificant differences have been reported between mouse
and human innate immune responses in aging7 and AD8.
Human genetic, translational, and imaging studies have
implicated myeloid cells in all aspects of AD, from the
asymptomatic phase of amyloid accumulation9,10 to the
progression of dementia11,12, but there is little clarity on
how disparate observations can be assembled into a
coherent picture. Therefore, to identify the different
components of human myeloid responses that exist in the
neocortex and to examine how each component con-
tributes to the continuum of AD-related pathological and
clinical traits in the aging brain, we evaluated a recently
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derived Molecular Network Map of the aging human
frontal cortex using tissue level RNA sequence (RNA-seq)
data obtained from the frozen dorsolateral prefrontal
cortex of participants in two prospective studies of cog-
nitive aging, the Religious Order Study (ROS) and the
Memory Aging Project (MAP)13–15. From the RNA-seq
data, we derive groups of co-expressed genes—that we
term “modules”—and build the network from these
modules as well as outcome measures available from each
of the 540 participants that were profiled. As these indi-
viduals are non-demented at study entry, they represent a
sampling of the older, aging population. At the time of
death, they display a full spectrum of clinicopathologic
features related to AD that are found in older people
including cognitive decline, dementia, extracellular
β-amyloid deposition, hyperphosphorylation of Tau, and
microglial activation13,16.
Here, using our recently established gene expression

signature of aged human microglia (HuMi_Aged gene-
set)17, we identify five microglia-related modules of co-
expressed cortical genes that capture different transcrip-
tional programs of microglia. We focus on dissecting the
role of these modules in AD; in mapping the conditional
relationship between modules and cognitive and neuro-
pathologic outcomes, we focus on the identification and
histologic validation of a microglial module that con-
tributes to the accumulation of Tau pathology. Two other
modules relate to β-amyloid, and a fourth—enriched for
AD susceptibility genes—appears to be primarily related
to aging. Thus, we provide an initial immune network
perspective of the divergent sets of co-expressed genes
that govern microglial identity in the aging human brain
and identify the relationship of these components to
specific pathologies and clinical symptoms.

Materials and methods
ROSMAP cohort
The subjects profiled in this study are participants in

one of two prospective cohort studies of aging, the Reli-
gious Orders Study (ROS)13 and the Memory and Aging
Project (MAP)14 which are designed to be merged for
joint analyses. These studies enroll non-demented indi-
viduals and include detailed, annual antemortem char-
acterization of each subject’s cognitive status as well as
prospective brain collection and a structured neuro-
pathologic examination at the time of death. The study
design of ROS and MAP yields an autopsy sample that
includes a range of syndromic diagnoses and neuro-
pathologic findings that are common in the older popu-
lation. All brain autopsies, experiments, and data analysis
were done in compliance with protocols approved by the
Partners Human Research Committee or the Rush Uni-
versity Institutional Review Board. The subjects in the
study have an average age of 88, 61% meet criteria for

pathologic AD by NIA-Reagan criteria18 and 64% are
female.

Description of RNA-Seq from ROSMAP
RNA was sequenced from the gray matter of dorsal

lateral prefrontal cortex (DLPFC) of 542 samples, corre-
sponding to 540 unique brains. These samples were
extracted using Qiagen’s miRNeasey mini kit (cat. no.
217004) and the RNase free DNase Set (cat. no. 79254).
RNA was quantified using Nanodrop. Quality of RNA was
evaluated by the Agilent Bioanalyzer. All samples were
chosen to pass two initial quality filters: RNA integrity
(RIN) score >5 and quantity threshold of 5 µg (and were
selected from a larger set of 724 samples). RNA-Seq
library preparation was performed using the strand-
specific dUTP method19 with poly-A selection20.
Sequencing was performed on the Illumina HiSeq with
101 bp paired-end reads and achieved coverage of 150M
reads of the first 12 samples. These 12 samples will serve
as a deep coverage reference and included 2 males and 2
females of non-impaired, mild cognitive impaired, and
Alzheimer’s cases. The remaining samples were
sequenced with a target coverage of 50M reads. The
libraries were constructed and pooled according to the
RIN scores such that similar RIN scores would be pooled
together. Varying RIN scores result in a larger spread of
insert sizes during library construction and lead to uneven
coverage distribution throughout the pool.
The RNA-Seq data were processed by our parallelized

pipeline. This pipeline includes trimming the beginning
and ending bases from each read, identifying and trim-
ming adapter sequences from reads, detecting and
removing rRNA reads, and aligning reads to reference
genome. The non-gapped aligner Bowtie was used to align
reads to the transcriptome reference21, and RSEM was
used to estimate expression levels for all transcripts22. The
FPKM values were the outcome of our data RNA-Seq
pipeline. Data are available on https://www.synapse.org/#!
Synapse:syn3388564.
For normalization, we first applied quantile normal-

ization to the FPKM values and then used the combat
algorithm23 to remove potential batch effects. Expression
levels were quantified for 55,889 unique genes. We placed
a threshold for expression, only keeping 13,153 genes with
average FPKM greater than one. For the creation of the
modules as previously reported15, we used linear regres-
sion (on log2 expression data) to remove the effect of
major biological and technical confounding factors on a
per-gene basis. Biological confounding factors include
three genotyping PCs (to represent ancestry), age at death,
and sex. Technical confounding factors include RIN,
number of ribosomal bases, number of aligned reads,
study index (ROS or MAP), and postmortem interval. For
the module, pathological association analysis and
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comparisons between microglia profiles and bulk
expression, GC, and length bias effects were first removed
using a smoothed trimmed means of M-values before
genes were averaged within each module.

Description of Alzheimer’s disease-related traits
Β-amyloid and Tau
To quantify β-amyloid and tau levels present in the

brain, tissue was dissected from eight regions of the brain:
the hippocampus, entorhinal cortex, anterior cingulate
cortex, midfrontal cortex, superior frontal cortex, inferior
temporal cortex, angular gyrus, and calcarine cortex. In
total, 20-µm sections from each region were stained with
antibodies to the β-amyloid beta protein and the tau
protein, and quantified with image analysis and stereol-
ogy, as previously described2,14,16,24. Briefly, β-amyloid
was labeled with an N-terminus-directed monoclonal
antibody (10D5; Elan, Dublin, Ireland; 1:1000). Immu-
nohistochemistry was performed using diaminobenzidine
as the reporter, with 2.5% nickel sulfate to enhance
immunoreaction product contrast. Between 20 and 90,
video images of stained sections were sampled and pro-
cessed to determine the average percent area positive for
β-amyloid (Supplementary Fig. 1a). PHFtau was labeled
with an antibody specific for phosphorylated tau (AT8;
Innogenetics, San Ramon, CA; 1:1000). Between 120 and
700, grid interactions were sampled and processed, using
the stereological mapping station, to determine the
average density (per mm2) of PHFtau tangles (Supple-
mentary Fig. 1b). The scores across the eight regions were
averaged, for β-amyloid and tau separately, to create a
single summary measure for each protein. To create
approximately normal distributions and facilitate statis-
tical comparisons, we analyzed the square root of these
two summary measures.

Neuritic plaques, neurofibrillary tangles, and diffuse plaques
Neuritic plaque burden (Supplementary Fig. 1c) and

Neurofibrillary tangle burden (Supplementary Fig. 1d) and
diffuse plaque burden (Supplementary Fig. 1e) was
determined by microscopic examination of silver-stained
slides from five regions: midfrontal cortex, midtemporal
cortex, inferior parietal cortex, entorhinal cortex, and
hippocampus. The count of each region is scaled by
dividing by the corresponding standard deviation. The five
scaled regional measures are then averaged to obtain a
summary measure for both neuritic plaque and Neurofi-
brillary tangle burden.

Cognitive decline
The ROS and MAP methods of assessing cognition have

been extensively summarized in previous publica-
tions2,13,25–27. Uniform structured clinical evaluations,
including a comprehensive cognitive assessment, are

administered annually to the ROS and MAP participants.
Scores from 17 cognitive performance tests common in
both studies were used to obtain a summary measure for
global cognition as well as measures for five cognitive
domains of episodic memory, visuospatial ability, per-
ceptual speed, semantic memory, and working memory.
The summary measure for global cognition is calculated
by averaging the standardized scores of the 17 tests, and
the summary measure for each domain is calculated
similarly by averaging the standardized scores of the tests
specific to that domain. To obtain a measurement of
cognitive decline, the annual global cognitive scores are
modeled longitudinally with a mixed-effects model,
adjusting for age, sex and education, providing person-
specific random slopes of decline. The random slope of
each subject captures the individual rate of cognitive
decline after adjusting for age, sex, and education. Further
details of the statistical methodology have been previously
described28.

Microglia morphology
Microglia morphologies had previously been measured

with immunohistochemistry for 105 ROSMAP subjects in
our study29. Immunohistochemistry for microglia was
performed using an Automated Leica Bond immunostai-
ner (Leica Microsystems Inc., Bannockburn, IL) and anti-
human HLA-DP, DQ, DR antibodies (clone CR3/43;
DakoCytomation, Carpinteria CA; 1:100) using standard
Bond epitope retrieval and detection. An investigator
blinded to the clinical and pathologic data, outlined the
cortical gray matter region of interest on each slide using
a Microbrightfield Stereology System. The Stereo Inves-
tigator 8.0 software program was used to place a 1000 ×
750-μm sampling grid over the region and the program
was engaged to sample 4.0% of the region with a 200 ×
150-μm counting frame at ×400 magnification at interval
grid intersection points. Using separate tags for stages 1,
2, and 3 microglia, the operator marked the microglia at
each intersection point. These counts were then
upweighted by the stereology software to estimate a total
number of microglia (stages 1, 2, and 3) in the defined
area. This approach relies on the fact that different stages
of microglia activation from least (stage 1) to most (stage
3) activated can be defined based on their cellular mor-
phology; when microglia become activated, their long fine
processes contract and thicken and the cell body adopts a
larger more rounded cellular conformation.

Activated microglia validation
For six subjects from the clinical core at The Rush

Alzheimer’s Disease Center, 6-μm sections of formalin-
fixed paraffin-embedded tissue from the DLPFC were
used to stain TMEM119 (Sigma Aldrich) and VASP (Santa
Cruz Biotech). The sections were blocked with a blocking
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medium (8% of horse serum and 3% of BSA) and incu-
bated overnight at 4 °C with primary antibodies. Sections
were washed with PBS and incubated with fluorochrome-
conjugated secondary antibodies (Thermo Fisher) and
coverslipped with an anti-fading reagent containing Dapi
(P36931, Life technology). Photomicrographs were cap-
tured at X20 magnification using Zeiss Axio Observer.Z1
fluorescence microscope and exported to Image J ima-
ging software (NIH, Maryland, USA). For each subject, 30
images were taken in a zigzag sequence along the cortical
ribbon to ensure that all cortical layers were represented
in the quantification. This analysis was repeated for eight
subjects from New York Brain Bank at Columbia Uni-
versity where 10-μm sections of frozen tissue from the
DLPFC were used to co-stain CD45 (Fisher) with TRABD
(Sigma) or ACADVL (Sigma). Phosphorylated tau protein
(pTau) (AT8; Fisher) were stained in sister sections. After
fixation with methanol or ethanol for 15 min at −20 °C,
tissues were blocked with blocking medium for one hour
then incubated with primary antibodies overnight at 4 °C.
After washing with PBS, tissues are incubated with
fluorochrome-conjugated secondary antibodies and
mounted with mounting media containing DAPI.
Between sister sections, images from the same region
have been captured with the same approaches as pre-
viously described. Levels of pTau were measured as the
proportion (%) of the stained area related to the total are
of the images.

Definition of microglia genes
As previously reported17, an aged human microglia

signature (HuMi_Aged geneset) of 1030 microglia-
enriched genes were defined by comparing the expres-
sion of genes in DLPFC isolated microglia to their
expression level in the bulk DLPFC tissue. The identified
genes had fourfold larger expression in the microglia
samples relative to the tissue level samples and average
FPKM greater than one in the microglia samples.

Definition of modules from ROSMAP
As previously reported15, the SpeakEasy algorithm30

was used to derive gene modules from normalized gene
expression data. Consensus clustering results from 100
initializations of the SE algorithm yielded 257 modules,
47 of which contained at least 20 gene members
(meaning modules are assigned for 98% of genes) and
were examined in downstream analyses. Pseudo-
expression values for each module were calculated by
taking the mean expression level of all genes assigned to
that module after the expression data have been stan-
dardized for each gene. The gene modules that we used in
this paper are the same as those defined in our prior
manuscript15 which focused on discovering driver genes
relating to module 109.

Modules enriched for microglia genes
Hypergeometric tests were used to test whether mod-

ules contained more microglia-related genes than expec-
ted by chance. All 13,153 genes that had an FPKM value
greater than 1 in the DLPFC ROSMAP data were used as
the background for the tests. The HuMI_Aged geneset
was used as the primary reference for these analyses.
Reference sets derived from two other manuscripts were
also used for validation31,32. For both datasets, gene
counts were TMM normalized and voom33 was used to
detect microglia-specific genes relative to all other cell
types using a Bonferroni adjusted P value of 0.05. Our
isolated microglia profiles were also compared to our
reference RNA-seq profiles of human iPSC-derived neu-
rons and primary human astrocytes (https://www.synapse.
org/#!Synapse:syn2580853/wiki/409844) to identify genes
whose expression was enriched in microglia, astrocytes or
neurons. The microglia-enriched genes were genes that
had at least a fourfold increase in expression relative to
both the astrocyte profile and the neuron profile. The
astrocyte and neuron enriched genes were defined in the
same way. We also confirmed cell-type enrichment using
cell-type-specific profiles from the mouse cortex tissue34

dataset. Using these cell-type-specific gene sets, we then
explored the relative expression of the genes within each
module in the microglia-astrocyte-neuron gene expres-
sion space using ternary plots.

Pathway analysis of modules
Hypergeometric tests were used to test which Gene

Ontology biological process demonstrated an excess in
overlap, over what is expected by chance, with each of the
five microglial modules35. Only biological processes with
more than 20 annotated genes or less than 500 genes were
tested. Only genes that were assigned to a module and in
at least one biological process were included in the
hypergeometric tests.

Transcription factor target analysis of modules
Hypergeometric tests were used to test if the targets of

any transcription factors demonstrated an excess in
overlap, over what is expected by chance, with each of the
five microglial modules. Transcription factor target genes
were downloaded from MSigDB from the C3:regulatory
target gene sets:TFT: transcription factor targets. Only
genes that were assigned to a module and targeted by at
least one transcription factor were included in the
hypergeometric tests.

Enrichment of Alzheimer’s disease susceptibility genes
Hypergeometric tests were used to test whether mod-

ules contained more genes associated with Alzheimer’s
disease than expected by chance. A gene was said to be
associated with Alzheimer’s disease if it had at least one
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probe that was 50 KB up or downstream of the gene that
was nominally significant (P < 0.05) in IGAP36. Only genes
that were assigned to a module and contained at least one
IGAP probe were included in the tests. The INRICH37

GUI v1.0 was also used with default settings to perform
enrichment analysis.

Associations with Alzheimer’s-related traits
Testing association with traits
Linear regression analysis was used to associate either

single gene expression or average module expression to
neuropathologic variables and cognitive decline for all 540
ROSMAP participants. These included the rate of cogni-
tive decline (cogDec) and the square root of the numbers
of neuritic plaques (NP), neurofibrillary tangles (NFT), the
amount of β-amyloid or tau and. All the associations were
adjusted for age, sex, study (ROS or MAP), RIN, and
postmortem interval (PMI). A similar analysis was per-
formed including the average expression of neuronal
(m21), astrocyte (m107), oligodendrocytes (m110), and
endothelial cell (m112) modules in the model to account
for major shifts in cell-type proportions.

Replication of association in Zhang et al.
We replicated the association of the immune modules

with Alzheimer’s disease pathology in an independent
microarray gene expression data from the cortex (DLPFC)
from a previous study by Zhang et al.4. Data were
downloaded from GEO with accession number
GSE44772. The expression data were quantile normalized.
For each module, we created a meta-feature consisting of
the average standardized expression of all genes within
the module. Linear models including age, sex, post-
mortem interval, pH, RIN, and the batch was then used to
test for association of each module with a diagnosis of
Alzheimer’s disease.

Replication of association in Allen et al.
We replicated the association of the immune modules

with Alzheimer’s disease pathology in an independent
microarray gene expression data from the cortex (DLPFC)
from a previous study by Allen et al.38. Data were
downloaded from https://www.synapse.org/#!Synapse:
syn5550404. We TMM normalized the expression data.
For each module, we created a meta-feature consisting of
the average standardized expression of all genes within
the module. Linear models including sex, age, and RIN as
covariates were then used to test for association of each
module with a diagnosis of Alzheimer’s disease.

Partial correlation analysis
Partial correlations calculate with the glasso package39

in R were used to further disentangle the highly correlated
modules and traits. A partial correlation between a trait

and a module is the correlation between the trait and
module after accounting for the behavior of all other traits
and modules. RIN and PMI were included in the partial
correlation matrix but removed for visualization. The
graphical lasso39 was used to set small partial correlations
to zero and was tuned using repeated tenfold cross-
validation to estimate the penalty parameter.

Module 116 association with age in H3K9Ac ChIP-seq data
We tested the association of the immune modules with

age in an H3K9Ac ChIP-seq dataset generated on the
same ROSMAP cohort. For each module, we created a
meta-feature consisting of the average peak heights within
10Kb of all genes within the module. Linear models
including sex, postmortem interval, RIN, and batch were
then used to test for association of module 116 with age.

Mediation analysis
Mediation analysis was performed by performing linear

regression and including or excluding the variables dis-
played in each of the relevant figures. If the coefficient
between two variables A and B has a small P value (P <
0.05), which then rises above 0.05 when a third variable C
is included in the regression, the relationship between A
and B is said to be mediated through C. Mediation ana-
lysis was performed on the whole cohort and the ROS and
MAP cohorts separately.

Validation in mouse models of AD
Data for two mouse studies were downloaded from

GEO with accession numbers GSE6439840 and
GSE9896941. In both datasets, module expression was
calculated by calculating the average expression of genes
within each module. Only gene homologs that share the
same name in human and mouse were included. Both
datasets were only explored visually across time and
between conditions40 and between cell types41.

Validation of activated microglia association via snRNA-seq
A single nuclei sequencing dataset that was generated

from 48 subjects from the ROSMAP cohort42 was
downloaded from https://www.synapse.org/#!Synapse:
syn18485175. The authors provided both the raw gene
counts and the results from their cell-type clustering. We
transformed the counts into cpm, and for each cell cal-
culated the average cpm expression for each of our gene
modules. A t-SNE plot of all cells was generated using the
average expression of each of the five microglia modules.
Four of the authors’ 20 transcriptionally distinct clusters
were enriched with microglia markers. We assessed which
cluster of microglia cells had the highest m5 expression
using a boxplot. For each subject, we calculated the pro-
portion of cells in each of these four clusters relative to
the sum of the four clusters. Robust linear regression,
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using the robust base package in R, was then used to
assess the association between the proportions and tau
pathology with sex and PMI as covariates.

Validation of activated microglia association via
microscopy
The images were analyzed with the Broad Institute’s

Imaging platform, using CellProfiler and CellProfiler
Analyst systems to measure and classify cells according to
cell morphology43. In short, the system provides a semi-
automated approach in which an image is automatically
segmented into discrete cells from which summary mea-
sures of expression per cell are obtained and used in
downstream analyses. For the VASP+ validation,
TMEM119+ and VASP+ cells were first identified using
the default thresholding. Overlap of the positive signals
was then considered to identify TMEM119+/VASP+ cells
and the lack of co-localization identified the TMEM119
+/VASP− cells. The level of spread or ramification was
characterized by the compactness parameter, the variance
of the radial distance of the object’s pixels from the cen-
troid divided by the surface area of the object. This
measure was then compared between TMEM119+/VASP
− cells and TMEM119+/VASP+ cells. A random-effects
model accounting for between-subject variability was
used to assess the significance of differing compactness
between the TMEM119+/VASP− cells and TMEM119
+/VASP+ cells. A similar analysis was performed for both
TRABD and ACADVL.

Results
A molecular network map derived from RNA sequence
data
ROS and MAP are two large longitudinal studies of

aging that were designed and are managed by the same
group of investigators so that their data can be merged in
joint analyses13,44. Participants are non-demented at study
entry, agree to brain donation at the time of death, and are
evaluated annually with a battery of 21 neuropsychologic
tests. A person-specific slope of cognitive decline is cal-
culated for each participant based on 17 tests that are
common to the two studies13. The demographic and
clinical characteristics of the 540 participants used in
these analyses are presented in Supplementary Table 1.
The RNA sequence data used in our analyses come

from a previously reported dataset15 with an average of 95
million paired-end reads of 101 base pairs per participant.
To reduce the dimensionality of the RNA-seq data gen-
erated from the DLPFC (Dorsolateral Prefrontal Cortex)
of each subject, we previously defined modules of co-
expressed genes using the Speakeasy algorithm30: there
are 47 such modules that contain a minimum of 20 genes
and a median of 331 genes. Thus, each module contains a
group of genes that have a shared regulatory architecture,

and the 47 modules represent the nodes of our network15.
The properties of our modules were tested extensively
and discussed in our prior manuscript. Module definitions
are fairly similar when compared to those derived from
other methods, such as WCGNA, to derive groups of co-
expressed genes15.

Identifying microglia-related modules
In this paper, we take a deeper look at the subset of

these modules that capture the role of microglia in Alz-
heimer’s disease and aging. We identified modules enri-
ched for microglial genes as defined in a new reference
RNA-seq dataset derived from live, purified human
microglia/macrophages extracted from fresh autopsy
samples of DLPFC from 10 ROSMAP participants of
advanced age: the HuMi_Aged geneset consists of 1,030
microglia enriched genes that were identified based on a
fourfold increase in expression in microglia vs. DLPFC
expression17.
Of the 47 modules, five are enriched (P < 0.0011, Bon-

ferroni threshold) for the HuMi_Aged geneset: modules
m5, m113, m114, m115, and m116 (Table 1, Fig. 1, and
Supplementary Fig. 2). Results are similar if we use other
human or murine microglial profiles31,32 (Supplementary
Table 2). To determine whether these enriched modules
are specific to microglia, we performed a second set of
enrichment analysis using reference RNA-seq profiles of
human iPSC-derived neurons and primary human astro-
cytes (https://www.synapse.org/#!Synapse:syn2580853/
wiki/409840). Of the five modules enriched for micro-
glial genes, none are enriched for neuronal genes, but two
modules (m113 and m115) are also enriched for astrocyte
genes (Supplementary Table 3). The latter modules may
relate to immune responses shared with astrocytes, which
are well-known to contribute to central nervous system
inflammatory responses45. By contrast, m5, m114, and
m116 appear to be unique to microglia, with m116 dis-
playing, by far, the greatest microglial enrichment: 67% of
its 224 genes are present in our list of 1030 microglial
genes (Hu_Mi Aged geneset). It contains many well-
known myeloid/microglial genes, such as TREM2 and
TYROBP. This result is emphasized in a third enrichment
analysis of microglial, neuronal, and astrocytic profiles
generated from mouse brain34 where we observe that
m116 is the most cell-type-specific of all tested modules
(Supplementary Fig. 3). Given the strength of its enrich-
ment for genes that are reported to be microglial, m116
probably represents a set of genes expressed by all
microglia. We note that m116 captures the same set of co-
expressed genes that led to the report on the role of
TYROBP in AD4.
In our original evaluation of cortical modules15, these

five microglial modules were all robust: the component
genes of each module (see Supplementary Table 4) are (1)
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co-expressed in an independent, publicly available frontal
cortex RNA expression dataset4 and (2) correlated in
histone 3 lysine 9 acetylation (H3K9Ac, a histone mark of
actively transcribed genes) ChIP-seq data from an over-
lapping set of 669 ROSMAP individuals, suggesting that
the co-expression structure is epigenetically driven15. To
obtain an initial perspective on their function, we anno-
tated each module by identifying both known pathways
enriched in each module (Table 1 and Supplementary
Table 5) and transcription factors whose binding sites are
enriched in the promoters of each module’s genes (Sup-
plementary Table 6). We found m5 to be enriched for
genes found in gene sets related to c-JUN N-terminal
kinase (JNK) activity, which is consistent with an
enrichment of AP1-binding sites in the promoters of m5
genes. This enrichment appears to be specific to m5.
Similarly, signatures of phagocytosis are found only in
m116, while m113 appears to be specifically enriched for
gene sets involved in cell adherence and vascular devel-
opment. Thus, m113 may reflect a transcriptional pro-
gram active in perivascular astrocytes and myeloid cells

since it is found in both cell types. By contrast, NFκB-
related pathways (enriched in m114 and m115) and
responses to type I interferons or interferon γ (enriched in
m114 and m116) are split between different modules. The
transcription factor binding site analysis is consistent with
these results, with enrichment in interferon response
factor (IRF) binding sites in m116 and in signal transducer
and activator of transcription (STAT) binding sites in
m115. Notably, the binding site for the SP1/PU.1 tran-
scription factor implicated in AD susceptibility46 is enri-
ched in m116 and also, more marginally, in m5. We
observe that each module is enriched for unique subsets
of transcription factors (Supplementary Fig. 4), suggesting
that each module may be maintained by an exclusive set
of regulatory mechanisms.
We previously reported that m116 is enriched in AD

susceptibility genes (P= 0.0002) (Supplementary Table 7),
including TREM2 and INPP5D (Table 1)47. While not
significantly enriched over the background when
accounting for the testing of 47 modules using a Bon-
ferroni correction, m5 (P= 0.003) also has some evidence
of enrichment, with well-validated AD genes such as
BIN1, being present in m5. These enrichment analyses
emphasize the notion that AD susceptibility genes might
exert their effect through participating in divergent tran-
scriptional programs of microglia in AD, affecting differ-
ent aspects of their phenotype and function.

Modules diverge in their association with AD pathologies
To resolve the relative roles of the different modules in

different aspects of AD, we determined their relation to
the rich clinicopathologic phenotypes available in ROS-
MAP participants using a meta-feature calculated for each
of the five modules. For our primary univariate analyses,
we focused on evaluating two quantitative outcome
measures: the amount of amyloid and phosphorylated Tau
present in each subject’s brain, as measured by immu-
nofluorescence. These are the two defining pathologic
features of AD. Table 2 summarizes all of these results,
and we find that, after Bonferroni correction for testing 10
hypotheses (threshold P < 0.005), m5 displays a significant
association with the burden of Tau (P= 0.0028) and a
suggestive association with amyloid (P= 0.0064), while
both m113 (P= 0.0043) and m114 (P= 0.00015) are
associated with amyloid pathology. These two associa-
tions are present in both the ROS and MAP subsets of our
discovery dataset (Supplementary Table 8). Remarkably,
m116, which is the module most strongly enriched for AD
susceptibility genes, is positively associated with age but is
not strongly associated with cognitive or pathologic
measures of AD. Age is the strongest risk factor for AD,
so it suggests that AD variants in m116 may primarily
have a role in accelerating microglial aging and may
not have strong, direct effects on β-amyloid and Tau

Fig. 1 Enrichment analysis identifies m116 as the most microglia-
related cortical gene co-expression module. The normalized
expression (FPKM) of genes in bulk DLPFC tissue (Y axis) are compared
to their expression (FPKM) in isolated microglia (X axis). A
hypergeometric test was used to assess for the extent of enrichment
of m116 genes among the 1030 human microglial genes. Each dot
represents one gene. Microglia-enriched genes (blue dots) were
identified based on a fourfold higher expression in isolated microglia
compared to bulk tissue. The microglia-enriched genes are likely
involved in processes that are relatively specific to microglia. The
genes in m116 are displayed in dark gray. Module 116 genes are more
highly expressed in isolated microglia when compared to bulk tissue.
FPKM fragments per kilobase of transcript per million mapped reads,
DLPFC dorsolateral prefrontal cortex.
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pathologies or cognitive decline beyond what is accounted
for by advancing age.
To address concerns that these associations may be

purely driven by changes in proportions of the major
cortical cell types, we repeated them after accounting for
the proportion of each cell type (Supplementary Table 8);
all three associations persist. Further, to test whether the
alterations in the expression of m5, m113, or m114 are a
late feature of the disease process, we repeated our ana-
lyses in the subset of ROSMAP individuals who are cog-
nitively non-impaired at the time of death and find that
the associations persist (Supplementary Table 8). This
result suggests that these associations are not a feature of
terminal AD dementia: they occur earlier in the cascade of
events leading to AD, prior to the appearance of cognitive
impairment.
To assess whether we can generalize our results, we

attempted replication in two additional datasets. We used
an existing dataset of frontal cortex data from subjects
with AD and subjects without AD and imposed our
module definitions on their data4; since our quantitative
measures of AD neuropathology are not available in these
subjects, we attempt replication of the association of
modules m5, m113, and m114 with a pathologic diagnosis
of AD (which is based on the burden of amyloid and Tau
pathologies). The associations of modules m5 (P= 1.83 ×
10−5, β= 0.2), m114 (P= 1.25 × 10−5, β= 0.23), and
m113 (P= 2.7 × 10−4, β= 0.18) replicate in this repur-
posed case/control dataset (MSSM1) derived from the
same brain region in brain bank samples. Further, we
repurposed an RNA-seq dataset from the temporal cortex
and the cerebellum of subjects in different diagnostic
groups selected from the Mayo Clinic brain bank38. Here
again, we imposed our module definitions on this third
dataset, and we find that m5, m113, and m114 are upre-
gulated in the temporal cortex but not the cerebellum of
subjects classified as AD relative to control subjects
(Supplementary Fig. 5). Thus, our associations are not
limited to the frontal cortex: they are present in another
region affected by AD. We also note that this upregulation
is not seen in the temporal cortex of subjects classified as
having amyloid pathology without cognitive impairment
or as having progressive supranuclear palsy, another form
of Tauopathy with Parkinsonian features (Supplementary
Fig. 5). Given the moderate sample sizes, we cannot
definitively say that these two groups do not have upre-
gulation of these microglial modules, but the magnitude
of the effect is certainly stronger in AD.
Having replicated the association of our three modules

with AD-related traits, we returned to the ROSMAP data
to address the specificity of the associations of these
modules, we evaluated whether these three modules are
associated with Lewy bodies, hippocampal sclerosis, TDP-
43, or neurovascular disease. None of these pathologiesTa
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found in older brains are associated with m5, m113, or
m114 (Supplementary Table 8). Thus, we have firmly
established the specific association of m5 with Tau
pathology as well as m113 and m114 with amyloid
pathology.

Untangling the relationships between age, sex, microglial
modules, and AD-related pathologies and traits
AD-related traits are correlated to one another (Sup-

plementary Fig. 6), as are the five microglial modules, and
this makes the interpretation of simple univariate analyses
challenging, particularly in teasing apart associations with
β-amyloid and Tau pathologies. Simply stated through an
example, a modest association with β-amyloid in the
context of a strong association with Tau could merely
reflect the fact that individuals with more Tau pathology
tend to have more β-amyloid pathology, leading to a
spurious association with β-amyloid for features involved
in Tau pathology. However, some molecular features are
associated independently with both pathologies. To
resolve the most likely set of direct associations between
modules and traits, we assessed the conditional depen-
dence between the modules and traits by simultaneously
considering all five modules and all pertinent traits to
identify the subset of direct module-trait associations that
will guide further work. We summarize this statistically
rigorous multivariate analysis in Fig. 2a, b, which explores
how different modules of the innate immune system may
be related to the different components of AD. As expected

from our univariate results (Table 2), m114 is still sig-
nificantly associated with β-amyloid in the multivariate
model (the two features are connected by a solid line in
Fig. 2b). Likewise, m5 remains significantly associated
with Tau. As in the univariate analysis, m113 is also
associated with β-amyloid. m113 will not be discussed in
detail further due to its high expression in astrocytes
which creates ambiguity as to which of the two cell types
(or both) may be involved.
Sex has an important but still poorly understood role in

AD and microglial function, so we included it explicitly in
our model. In our ROSMAP data, sex explains 0.49% of
the variance in β-amyloid accumulation and 2.5% of the
variance in Tau pathology, which is substantial since
APOEε4 explains 2.9% and 0.52% of the variance in these
traits, respectively. In Fig. 2a, b, we see that, in our mul-
tivariate model that includes age as a covariate, sex
influences both m5 (P= 0.00015, β=−0.16) and m114
(P= 0.00016, β=−0.15), but not the other three mod-
ules. We observe that women have higher levels of both
m5 and m114, which is replicated in the repurposed
MSSM1 case/control dataset with m5 (P= 1.1 × 10−7,
β=−0.39) and m114 (P= 1.9 × 10−9, β=−0.49). To
assess whether changes in the expression level of these
modules may contribute to the effect of sex on AD and
AD endophenotypes, we included the module information
in a regression model and found that m114 explains 39%
of the variance in amyloid pathology that is explained by
sex, and m5 explains 13% of the variance in Tau pathology

Fig. 2 Relationships between gene modules and Alzheimer’s disease traits. The conditional dependencies between the expression level of
modules and Alzheimer’s disease traits in the 540 ROSMAP participants are illustrated in (a) a heatmap and (b) a network diagram. In (b), a module or
a trait is considered to be a node in the network, and these nodes are connected by lines (edges) if there is evidence that they are associated, after
accounting for the behavior of all other modules and traits using partial correlation analysis. c Graphical summary of mediation analyses which
propose that m5 increased expression precedes the accumulation of Tau which then leads to cognitive decline. All three factors are correlated to one
another. On the inner aspect of each edge, we report the P value and effect size of the direct association of two traits, which are listed. The outer
aspect of each edge presents the results of the model with the third variable included. The dotted edge denotes the fact that the association
of m5 and cognitive decline is no longer significant once we adjust for the burden of Tau pathology. This suggests the order of events as being
m5→Tau→cognitive decline. All regression models also include RIN and PMI. mod module, CogDec cognitive decline, NP neuritic plaques, DP diffuse
plaques, NFT neurofibrillary tangles, RIN RNA integrity number.
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that is explained by sex (Supplementary Fig. 7a, b). In
terms of syndromic diagnoses of AD, m5, and m114
together explain 2.2% of the variance in a pathologic
diagnosis of AD and 3.1% of the variance in AD dementia
that is explained by sex. Thus, an important proportion of
the effect of sex on the accumulation of amyloid appears
to involve m114, while m5 plays a significant but smaller
role in the effect of sex on Tau pathology.
Advancing age is only associated with higher expression

of m116 (P= 1.7 × 10−30, β= 1.3). This result suggests
that either the number or proportion of microglia in the
neocortex (best captured by m116) is higher with age or
that the expression of this set of genes is higher with age.
The latter of these two hypotheses seems to be most likely
as this m116:age association did not replicate in the
H3K9Ac ChIP-seq epigenomic data (P= 0.58, β= 0.38)
or in an evaluation of microglia counts based on histology
in relation to m11610 (P= 0.13, β= 19.1), despite its
strong effect size in the RNA data. These results suggest
that (1) the effect of age is not explained by alterations in
chromatin structure, and (2) there is no significant change
in the proportion of microglia in the tissue. Thus greater
RNA transcription of m116 genes from the same number
of microglial cells is the most likely explanation for the
association with age. This is consistent with our report
that the total number of microglia derived from histolo-
gical data is not increased in AD29. While m116 is not
directly related to the pathology measures or to cognitive
decline, the overexpression of these genes in microglia of
older individuals could contribute to the mechanisms
behind aging, which is the single greatest risk factor
for AD.
Our multivariate modeling prunes the modest associa-

tions (Fig. 2a, b) that may be driven by correlations
amongst modules and traits and prioritizes the strongest
associations in our data: we clearly see that m113 and
m114 are associated with β-amyloid pathology which
typically accumulates early in the asymptomatic and early
symptomatic phase of AD, and they are not directly
associated with tau pathology. On the other hand, m5 is
associated with the burden of tau pathology in an
β-amyloid-independent manner.

Mediation analyses
To explore the magnitude of the effect of m5 and m114

on AD traits and to infer the most likely direction of the
associations based on our cross-sectional data, we per-
formed mediation analyses using rigorous statistical
methods. The results of these analyses must be inter-
preted cautiously as we do not have a replication dataset
large enough to independently confirm our results;
nonetheless, these results are useful in prioritizing
hypotheses that will be explored in future studies. Cog-
nitive decline, m114, and β-amyloid burden are all

associated with one another (Fig. 2), and, after testing
each possible mediation model, we find that the best-
fitting model is the one in which m114 is upstream of
β-amyloid in the sequence of events: in this model, m114
appears to influence cognitive decline through the accu-
mulation of β-amyloid pathology (Supplementary Fig. 7c).
A separate analysis suggests that sex may be upstream of
m114 (Supplementary Fig. 7a), yielding the following
proposed sequence of events: female sex→more m114
expression→more β-amyloid→greater cognitive decline.
This is consistent with the observation that the asymp-
tomatic accumulation of β-amyloid pathology occurs for
many years before the presentation of symptoms, and our
result suggests that one aspect of microglial function
(m114) may therefore contribute to β-amyloid accumu-
lation, consistent with functional studies of the CD33 AD
risk allele10 which affects the same trait; this effect on
amyloid, in turn, contributes to cognitive decline. We
note that these results should be interpreted with caution
as the results are not powerful enough to be seen con-
sistently in the ROS or MAP cohorts when they are
analyzed separately (Supplementary Fig. 7d, e). The
separate studies are much smaller than the combined
study, so their individual results are less robust. Thus,
while the analyses limited to one of the two-component
studies contributes to our interpretation of the data, we
focus on the results from the larger, combined analysis
that considers data from both studies and has the most
statistical power.
In parallel, we evaluated the association between m5

and tau. To explore the possible sequence of events
among m5 expression, cognitive decline, and tau pathol-
ogy, we performed a second set of mediation analyses
which suggest that the most likely model is that m5
expression precedes tau accumulation and that its effect
on cognitive decline may thus be mediated through the
accumulation of tau pathology (Fig. 2c). These results are
consistent with the previously described putative role of
microglia in a mouse model of tau pathology48. When we
add m5 to a model assessing the effect of sex on Tau
burden, we see that the effect of sex is diminished by 13%
(Supplementary Fig. 7b), suggesting that m5 may mediate
part of the effect of sex on tau accumulation since sex
determination occurs before the accumulation of late-life
pathologies. However, we highlight that m5 remains sig-
nificantly associated with Tau pathology after accounting
for the effect of sex (P= 0.0013, β= 0.36) (Supplementary
Fig. 7b); thus, the effect of m5 on Tau pathology appears
to be influenced both by sex and by other, as yet
unknown, factors.

m5 and m114 in mouse models of AD
While we appreciate that murine models that mimic

aspects of amyloid and tau pathology have limited
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relevance to human disease6, we repurposed gene
expression data from several mouse models40 to assess
whether modules m5 and m114 are present in the mouse
and whether they are altered in models of CNS amyloi-
dosis and Tau proteinopathy. As seen in Supplementary
Fig. 8, we find that both modules are present in the mouse
brain and that they increase in expression in two of the
five mouse models as the mice age and pathology accu-
mulates. Specifically, mice expressing frontotemporal
dementia associated with Leucine instead of the Proline
allele at position 301 of human MAPT demonstrate a
large increase in module expression between months 8
and 18, consistent with its accumulation of tau aggregates.
Further, while individual amyloidosis-related models—the
TAS line expressing an amyloid precursor protein con-
taining two familial AD mutations and the TPM line
expressing a presenilin 1 gene containing a familial AD
mutation—do not show meaningful change in module
expression over time, their combination in the homo-
zygous state (HO-TASTPM) does show an elevation of
both modules that is apparent at 8 months and enhanced
at 18 months as pathology accumulates. However, these
mouse models also display similar changes in the other
microglial modules (m113, m115, and m116), suggesting
that these models have an overall, generalized activation
of microglial transcriptional programs that do not reca-
pitulate the more discrete changes that are occurring in
the human brain. Further, in a single-cell analysis of the
5× FAD mouse model41 of amyloid proteinopathy, all five

modules are highly expressed in their homeostatic
microglia cell cluster (Supplementary Fig. 9). Relative to
all other cell types, none of our pathology associated
modules (m5, m113, or m114) are most highly expressed
in their two murine microglia clusters that are associated
with amyloid proteinopathy. Thus, as noted previously
by many investigators, this assessment highlights the
fundamental (and increasingly recognized7,8) differences
that exist between mouse and human microglia in the
context of aging, proteinopathy models, and human
AD pathology.

Role of m5 in the aging neocortex
Since m5 is distinct from m116 in the correlation

structure of our RNA-seq data but still very much enri-
ched for genes found in aged human microglia, we
hypothesized that it may capture a subset of microglia
with a particular function. We, therefore, turned to a
phenotype that we had previously captured in our sub-
jects10: the proportion of microglia with an activated stage
III morphology based on immunohistochemical studies
(Supplementary Fig. 10). This neuropathologic measure is
available in 104 subjects who also have RNA-seq data. We
observe a strong association between the expression
of m5 and the proportion of microglia which are cate-
gorized morphologically as stage III, activated microglia
(P value= 0.00042, β= 4, Fig. 3a, Supplementary Fig. 11,
and Table 2); in fact, out of all 47 cortical modules, m5 is
the one most strongly associated with this trait. Module

Fig. 3 Association of genes and modules with microglia morphology. a Scatter plot displaying on the Y axis, the t-statistics for associations
between module expression in our DLPFC bulk RNA-seq data and the proportion of activated (stage III) microglia and on the X axis t-statistics for
module expression and cognitive decline. Each circle represents one module, and the number of the module is listed in each circle. m5 is the module
most positively associated with the number of stage III microglia. To illustrate the extent of a module’s enrichment for the HuMiAged microglia
signature genes, we have both colored the modules (red being more enriched, blue less enriched) and made the size of the circle proportional to the
enrichment (the larger circles such as m116 are more enriched for microglial genes). The t-statistics are derived from linear models adjusted for age,
sex, study (ROS or MAP), RNA integrity number (RIN), and postmortem interval. b Scatter plot displaying on the Y axis, the t-statistics for the
association of a gene’s expression level and the proportion of activated (stage III) microglia and on the X axis t-statistics for the association of the
gene’s expression level and cognitive decline. A subset of genes in module 5 which has extreme results are labeled. All genes belonging to module 5
are in blue with VASP highlighted in red. The t-statistics are derived from linear models adjusted for age, sex, study (ROS or MAP), RIN, and
postmortem interval.
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m5 is thus likely to be a transcriptional program related to
microglial activation, as defined by morphology-based
neuropathological criteria.
To further investigate whether m5 might be indicative

of a distinct transcriptional program specific to a subset of
microglia, we turned our attention to a single nucleus
sequencing (snRNA-seq) experiment42. We downloaded
these snRNA-seq data and cell clusters that had been
generated from the prefrontal cortex of ROSMAP parti-
cipants. Focusing on the four distinct microglial clusters
that were identified by their Louvain graph clustering
algorithm (Supplementary Fig. 12a), we observed that the
Mic1 cluster had the highest average level of m5 expres-
sion (Supplementary Fig. 12b). Furthermore, the propor-
tion of Mic1 cells relative to all microglia cells had a
positive association with tau pathology (P= 0.043, β=
2.2, Supplementary Fig. 12c). These observations provide
evidence that there may be a distinct subset of microglia
enriched for m5 genes and that the frequency of this
subset increases in the context of Tau pathology.
To take these analytic results to the next stage and

confirm our results in situ, we selected a representative
m5 gene, VASP, that (1) had antibodies available for
immunofluorescence studies and (2) statistically captured
the effect of m5 on tau pathology and cognitive decline.
At the single gene level, VASP RNA expression in cortical
tissue is also strongly associated with activated microglial
counts and cognitive decline (Table 3 and Fig. 3b), as well
as Tau (P= 0.0007, β= 0.052). Our modeling suggests
that VASP should be expressed in microglia and should be
expressed at a higher level in microglia that have a mor-
phology consistent with activation according to standard

neuropathologic assessment (i.e., have a more globular,
stage III morphology).
While VASP may be a representative gene for immune

module m5, it has not been explicitly reported to be
expressed in microglia previously. We first demonstrated
that VASP is expressed in cells labeled with TMEM119, a
protein proposed as a pan-microglial marker not expres-
sed on infiltrating macrophages49 (Fig. 4a). Further, only a
subset of TMEM119+ microglia is VASP+. While VASP
is expressed in human microglia34, it is also found to be
expressed in fetal human astrocytes and to a much lesser
extent in other cells of the CNS parenchyma. In our
histological data, we find it to be present in GFAP+
astrocytes as well as TMEM119+ microglia.
To evaluate whether, m5 and its single gene proxy

VASP are truly markers of activated microglia, we used
automated image analysis43 to assess whether the subset
of TMEM119+ cells that were also VASP+ had an acti-
vated morphology. To minimize bias, we used CellProfiler
to identify individual TMEM119+ cells and then captured
(1) the level of VASP expression in each cell and (2)
several different morphologic features of each cell. Sur-
veying the 4158 TMEM119+ cells captured from cortical
tissue sections of six subjects obtained from Rush Alz-
heimer’s Disease Center, we find that TMEM119+VASP
+microglia are less ramified than TMEM119+VASP−
cells (P= 3 × 10-8, β=−0.26) (Fig. 4b). This association
with morphology confirms that VASP may be an appro-
priate surrogate marker for m5 since we found a strong
positive association between m5 expression and stage III-
activated microglia (Fig. 3a and Supplementary Fig. 11).
We examined the relation of VASP expression to tau

Table 3 Top ten genes in module 5 that are most associated with a combined score for association with activated
microglia and cognitive decline.

Gene Microglia expression Bulk expression P value activated microglia P value cognitive decline Combined score

NBEAL2 6.1 9.2 3.90E-06 0.00015 8.72

ARRDC2 61.5 25.5 0.021 1.90E-08 8.06

DDX39A 99.4 28.7 0.027 3.10E-07 7.43

CC2D1B 15.4 20 3.60E-05 0.0029 7.32

VASP 23.6 12.2 0.0029 2.60E-05 7.3

S100A6 14.5 283 0.042 2.60E-07 7.28

LZTS2 16.2 34.4 0.0018 0.00011 7.09

MAP3K3 22.1 25.2 0.0038 5.90E-05 7.02

TRABD 78 13.1 0.0059 3.70E-05 6.98

TBC1D1 33.3 78.7 0.00085 0.00046 6.97

Linear regression analysis was used to associate gene expression to activated microglia for 105 ROSMAP subjects and cognitive decline for the genes in module 5 for
all 540 ROSMAP subjects. All the associations were adjusted for age, sex, study (ROS or MAP), RIN, and postmortem interval (PMI). Reported are the average expression
in microglia and bulk tissue (FPKM), P value of the associations and the score that was used to combine the P values and rank the genes.
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Fig. 4 Immunofluorescence reveals VASP+ TMEM119+ cells have activated morphology. a Representative micrograph showing co-
immunostaining of VASP (red) and TMEM119 (green) in DLPFC. Please note the less ramified morphology of TMEM119+/VASP+ cells (inset “i”) when
compared to TMEM119+/VASP− cells (inset “ii”). b Comparison of cellular morphology (“compactness” is used to quantify the level spread or
ramification) between VASP+ and VASP− microglia cells (TMEM119+) for each of the six tested subjects that were analyzed. Overall, a random-
effects model integrating data from all six subjects and a total of 4,158 TMEM119+ cells measured demonstrates that VASP-positive microglia are
significantly less ramified when compared to VASP-negative microglia (P= 3 × 10−8, β=−0.26). c The proportion of TMEM119+/VASP+ to
TMEM119+/VASP− relative to Braak, CERAD, and NIA-Reagan scores in six subjects. Linear regression provides evidence that the proportion of VASP-
positive microglia increases with Braak score (P= 0.012, β=−26.17). DLPFC dorsolateral prefrontal cortex, VASP vasodilator-stimulated
phosphoprotein, TMEM119 transmembrane protein 119, a pan-microglia marker.
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pathology by (1) showing that, in these six subjects, the
proportion of VASP+microglia cells is greater with
increasing Braak score (P= 0.012, β=−26.17) (Fig. 4c), a
measure of Tau propagation, and (2) measuring the
amount of tau immunofluorescence in a sister section of
the section used to measure VASP expression, which
shows that the proportion of VASP+ cells increases with
increasing Tau burden (Supplementary Fig. 13). To fur-
ther validate these results, we selected two additional m5
marker genes, TRABD and ACADVL, and we found
consistent results when we repeated the VASP analyses
with these two other m5 marker genes (Supplementary
Fig. 14) in the DLPFC of eight subjects with AD from the
New York Brain Bank. Thus, we have robust evidence
both that m5 genes are expressed at the protein level in
microglial cells that have a more rounded morphology
consistent with stage III-activated microglia and that the
abundance of microglia expressing m5 genes increases in
relation to the local burden of tau pathology. Finally, we
can now prioritize VASP, TRABD, and ACADVL for
further evaluation as a proxy for the morphological sta-
ging of microglia, which is difficult to standardize across
individual raters.

Discussion
We performed a detailed in silico dissection of five

cortical transcriptional modules enriched for genes found
in aging human microglia and differentiated the role of
m116 as a module reflecting microglial aging from those
of m113 and m114 that may be involved in promoting the
accumulation of β-amyloid and of m5 that captures a
morphologically activated microglial state that may con-
tribute to the accumulation of Tau. Thus, we begin to
empirically differentiate groups of microglial genes that
work together to accomplish specific, distinct functions.
This regulatory architecture is present at the chromatin
level: our H3K9Ac data both confirm the correlation of
genes within RNA-seq-defined modules and validates
their association with AD-related traits. It is also reflected
by largely-non-overlapping patterns of transcription fac-
tor binding site enrichment for each module (Supple-
mentary Table 6).
Importantly, given our large sample size, we can identify

different modules involved in β-amyloid and Tau
pathology. Our analyses suggest the existence of multiple
microglial functional modules active in parallel within the
same brain: these transcriptional programs are working in
parallel. In the case of m5, we pushed validation efforts
further to confirm, in situ, the hypothesis that it reflects
the presence of a subset of microglia that are more
activated and found in greater numbers as Tau accumu-
lation increases in the tissue, a result consistent
with immunohistochemistry-based observations on this
cohort29. Our data, therefore, implicate microglia in both

β-amyloid and Tau accumulation, and the three distinct
transcriptional modules (m5, m113, and m114) are all
present in the brain of aged individuals. This observation
highlights the complexity that we face in developing
immunomodulatory therapies for AD: they will have to
be tuned to specifically engage or shut down a given
transcriptional module while not exacerbating the
ongoing perturbation of others. In the case of Tau, we
propose the hypothesis that increased expression of m5
by microglia contributes to the accumulation of Tau
aggregates; this is the most likely scenario based on our
cross-sectional data and robust methods for modeling
mediation statistically. However, we cannot determine
formal causality with cross-sectional data, and long-
itudinal studies using appropriate combinations of PET
tracers or other biomarkers for Tau and microglial
function are needed to validate this putative causal chain.
We note that this hypothesis is consistent with the results
of our modeling of histological measures of microglial
activation29 which proposes that morphologically acti-
vated microglia contribute to the accumulation of Tau
pathology. Thus, transcriptional and histological data
converge to suggest that increased prevalence of activated
microglia leads to more Tau accumulation, suggesting
that downregulation of m5 may be a therapeutic option.
The relatively specific enrichment of the JUN kinase
pathway in m5 suggests that it may be regulated in a
manner that is somewhat distinct from the other four
modules and could provide a relatively specific target for
drug development.
A surprising result is the lack of strong association

between m116 and β-amyloid or Tau pathology: it is
contrary to a simple narrative that this module, enriched
for AD susceptibility genes from GWAS, exerts its effect
primarily through the increased accumulation of the
neuropathologies that define AD. β-amyloid and Tau
burden only explain some of the variance of cognitive
decline and AD dementia16, and our m116 results suggest
that microglia may be involved in AD through mechan-
isms that remain elusive today. We clearly demonstrate
the presence of an effect of aging on microglia, but this
effect does not translate directly into pathology in our
analysis. One thing to appreciate is that many AD GWAS
often use samples of convenience as control subjects:
these subjects are only coarsely characterized. Further,
since AD incidence increases with advancing age, the
majority of control subjects are likely to develop AD if
they live long enough. Thus, the AD GWAS may have
uncovered genes that have a strong effect on advancing
the age of onset of AD and emerge as susceptibility
genes because of the study design. Such an effect would
tie in with our results where TREM2, INPP5D, and other
genes found in m116 are associated primarily with
microglial aging7.
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One possibility is that the different transcriptional
modules described here correspond to different microglia
subpopulations. Given their sentinel and effector nature,
the diversification of microglia phenotypes in specialized
niches in the aged brain parenchyma burdened with
β-amyloid and Tau deposits is a possible scenario. A
longstanding observation is the morphological transfor-
mation of parenchymal microglial cells in and around
amyloid plaques in AD50. Nonetheless, until now the
molecular identity of the plaque-associated (ameboid or
stage III) activated microglia was obscure. This study
takes the first steps to assign, though in an indirect way, a
transcriptomic signature to the morphologically defined
stage III subpopulation of microglia. VASP, TRABD,
and ACADVL may be surrogate markers for stage III
microglia.
Nonetheless, our study has certain limitations; fore-

most amongst these is the fact that our pathologic
measures are cross-sectional since they are obtained at
autopsy. We therefore cannot comment formally on
causality or on the exact sequence of events that is
occurring in the living human brain. Our analysis of
mouse data from the TAU, TAS, and TPM models
suggest that their utility in dissecting human microglial
responses to Tau and amyloid aggregation may be lim-
ited: they do not recapitulate the observations that we
report in the ROSMAP samples and validate in two
independent collections of human samples. Further, this
neuroimmune network map should be seen as a first
draft: microglia represent a minority of the cells found in
the human cortex and have a relatively low quantity of
mRNA in their cytoplasm. Thus, the level of expression
of microglial genes, particularly those present only in a
subset of microglia is likely to be underestimated or
even absent from the tissue level data (e.g., CD33).
Further, these microglial modules are likely to contain
genes expressed in peripheral monocytes. However,
given that monocytes represent such a small minority of
the myeloid cells found in the brain, their effect on the
cortical transcriptome is likely completely diluted and
unlikely to explain the associations that we have
uncovered. Second generation maps derived from iso-
lated microglia and transcriptional profiles of single
microglia will be essential to better understand the
involvement of microglia in the pathophysiology of AD
and the complex architecture of microglial subsets in
the aged and AD brain.
Overall, we have generated an initial framework on

which we and others can assemble additional data from
in vivo and in vitro experimental models: when perturbing
a particular gene of interest, we have to be cognizant of its
membership to a given module of co-expressed genes and
to the effect of such perturbations on different tran-
scriptional programs found in microglia that may not be

directly measured in an experimental system. The
immune system is exquisitely modulated by a complex set
of checks and balances in which AD genes such as CD33,
TREM1, and TREM2 are contributing to regulate the level
of activation9, and, as seen in other immune functional
programs, small differences in the level of receptor
engagement or the presence of co-stimulatory molecules
can result in dramatically different responses that can
sometimes be the opposite of an anticipated response. By
refining the set of microglial genes implicated in
β-amyloid vs. Tau pathology, we mark a step forward in
better targeting drug development programs both by
proposing new targets and by defining novel outcome
measures that can be used to assess the functional con-
sequences of lead compounds.
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