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Maternal cafeteria diet exposure primes
depression-like behavior in the offspring evoking
lower brain volume related to changes in synaptic
terminals and gliosis
Luis A. Trujillo-Villarreal1,2, Viktor J. Romero-Díaz3, Iván Alberto Marino-Martínez3, Lizeth Fuentes-Mera1,
Marco Antonio Ponce-Camacho4, Gabriel A. Devenyi5, M. Mallar Chakravarty5,6,7, Alberto Camacho-Morales 1,2 and
Eduardo E. Garza-Villarreal 8

Abstract
Maternal nutritional programming by caloric exposure during pregnancy and lactation results in long-term behavioral
modification in the offspring. Here, we characterized the effect of maternal caloric exposure on synaptic and brain
morphological organization and its effects on depression-like behavior susceptibility in rats’ offspring. Female Wistar
rats were exposed to chow or cafeteria (CAF) diet for 9 weeks (pre-pregnancy, pregnancy, and lactation) and then
switched to chow diet after weaning. By postnatal day 60, the male Wistar rat offspring were tested for depressive-like
behavior using operational conditioning, novelty suppressed feeding, sucrose preference, and open-field test. Brain
macro and microstructural morphology were analyzed using magnetic resonance imaging deformation-based
morphometry (DBM) and western blot, immunohistochemistry for NMDA and AMPA receptor, synaptophysin and
myelin, respectively. We found that the offspring of mothers exposed to CAF diet displayed deficient motivation
showing decrease in the operant conditioning, sucrose preference, and suppressed feeding test. Macrostructural DBM
analysis showed reduction in the frontomesocorticolimbic circuit volume including the nucleus accumbens (NAc),
hippocampus, and prefrontal cortex. Microstructural analysis revealed reduced synaptic terminals in hippocampus and
NAc, whereas increased glial fibrillary acidic protein in hippocampus and lateral hypothalamus, as well as a decrease in
the hippocampal cell number and myelin reduction in the dentate gyrus and hilus, respectively. Also, offspring
exhibited increase of the GluR1 and GLUR2 subunits of AMPA receptor, whereas a decrease in the mGluR2 expression
in hippocampus. Our findings reveal that maternal programming might prime depression-like behavior in the
offspring by modulating macro and micro brain organization of the frontomesocorticolimbic circuit.

Introduction
Depression is one of the leading causes of disability

worldwide affecting >300 million people of all ages1,2.
Depressive subjects show anhedonia or low motivation for
natural or social stimuli, which become resistant to brain
therapy and classical pharmacology approaches3.
Major depressive disorder (MDD) is characterized by an

age-dependent brain dysfunction and structural altera-
tions in selective regions of the reward circuit4–9. The
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reward circuit integrates dopaminergic neurons located in
the ventral tegmental area (VTA) that innervate the
nucleus accumbens (NAc), the prefrontal cortex (PFC),
central, and basolateral amygdala (BLA) and the hippo-
campus and dorsal striatum10. Glutamate neurons also
originating in the VTA and substantia nigra (SN) of the
midbrain innervate limbic sites, including the NAc and
dorsal striatum11–13. Major volume brain changes in adult
and adolescence in MDD subjects have been documented,
including hippocampus atrophy7,14 thinner cortical gray
matter in the orbitofrontal and medial cortex (OFC),
anterior and posterior cingulate, insula, and temporal
lobes9,15–17. Of note, genome-wide association studies
(GWAS) of MDD and schizophrenia cohorts have iden-
tified genetic variants linked to brain volume alterations
during development18, supporting the notion that brain
macrostructural changes might potentially lead to MDD.
Aberrant brain morphological organization has also

been observed in murine models of depression-like
behavior. For instance, depression-like behavior models
in rats show microstructural alterations linked to a
decrease in hippocampal synaptophysin and NR2A sub-
unit19, and dendritic atrophy in the CA1 and CA3 regions
of the hippocampus6,10,20–23. Also, GWAS analysis of
MDD and schizophrenia cohorts identified single-
nucleotide polymorphisms in genes that encode synaptic
plasticity and myelin repair proteins18. In addition to
macrostructural and microstructural alterations of the
reward system identified in MDD subjects or murine
models, neurobiological causes underlying aberrant brain
plasticity are unknown.
Epidemiological data and basic research studies in

humans and animal models, respectively, have identified
that maternal obesity24,25 and/or hypercaloric diet expo-
sure during embryonic development26–29, a physiological
process known as maternal programming, modulates
establishment of functional and structural neuronal con-
nectome of the reward system27,28,30, potentially leading
to depression susceptibility in the offspring26–29. For
example, maternal nutritional programming by exposure
to a hypercaloric diet during pregnancy primed an altered
glutamatergic neurotransmission in the reward sys-
tem28,30,31, disruption in structural and functional integ-
rity of the hippocampus32,33 and reduction in dendritic
complexity in BLA of the offspring33. In humans, pro-
longed consumption of caloric diets during adolescence
favors defective emotional behaviors11,34, which correlates
with failure in hippocampal neurogenesis in murine
models32,35. In this study, we hypothesized that maternal
programming by hypercaloric diet exposure would pro-
duce macro- and microstructural alterations linked to
brain volume changes and aberrant glutamatergic synap-
tic plasticity of the reward circuit in the offspring, leading
to depression-like behavior early in life. For this, we

studied behavior and global structural changes using
magnetic resonance imaging (MRI), coupled with selec-
tive molecular and histological characterization of gluta-
matergic synaptic markers.

Materials and methods
A full description of all experimental procedures is

provided in the Supplemental Materials.

Animals and housing
Programing and mating experiments were performed

using males and virgin females from 10 to 12 weeks old
Wistar rats, respectively. Animals were handled according
to the NOM-062-ZOO-1999 guide for the care and use of
laboratory animals, with approval of the Universidad
Autónoma de Nuevo León Animal Care Committee
(BI0002) (Supplemental information).

Maternal nutritional programming model in offspring by
cafeteria (CAF) diet exposure
Female Wistar rats were fed with chow (Control) or

CAF diets for 9 weeks (pre-pregnancy, pregnancy, and
lactation) as reported24. CTRL-CTRL and CAF-CTRL
offspring were fed with control diet and CAF-CAF off-
spring were fed with CAF diet after weaning at postnatal
day 21 (Fig. S1). Control chow and CAF diet formulas and
caloric density are found in Table S1. At 2 months of age,
we performed behavioral tests to characterize motivation.
We registered body weight of all offspring at birth (~15
rats/litter) and at the age of 3 weeks, we killed female
offspring. Body weight were quantified in offspring from
3rd to 7th week.

Depression-like behavioral phenotyping
Individual animal behavior analysis was conducted on

two cohorts, the first one for MRI, immunohistochem-
istry, and histology, and the second one for western blot
analysis of synaptic markers (Fig. S2). For behavioral
phenotyping we used the Skinner box for operational
conditioning, as previously reported28,36, the preference to
sucrose test, novelty suppressed feeding and open-field
test as described in Supplemental information

Ex-vivo fixation and MRI analysis by deformation-based
morphometry (DBM)
Rats were anesthetized with 1 mL pentobarbital (PiSA

Agropecuaria) i.p. overdose and transcardially perfused
following standardized methods as described in Sup-
plemental information. For MRI acquisition, the skulls
were submerged and fixed inside plastic tubes filled with
Fomblin (a chemically inert perfluoropolyether fluor-
ocarbon; Solvay Solexis, Inc.) and imaging was per-
formed in a 16 cm bore 7 T Bruker scanner, T1w
sequence name: UANL_Camacho_FatRat, resolution
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1.25 mm (Pharmascan 70/16), Bruker FLASH, slice
thickness= 0.0853 mm, TR/TE= 30.76/8.64 ms, flip
angle= 20 degrees, averages= 1, matrix= 376 × 376,
spacing= 0.0853 mm, Pixel bandwidth= 74 Hz, FOV=
300 × 300 mm, no. of slices= 376. Morphological ana-
lysis was performed by converting DICOM to MINC
format, and then preprocessed using an in-house pipe-
line based on MINC-Tools and the pydpiper pipeline
(https://github.com/Mouse-Imaging-Centre/pydpiper)
(see Supplemental information). All analyses were per-
formed using pydpiper37, R statistics38, R studio39, and
the RMINC40 and tidyverse41 packages.

Histological analysis
Following MRI analysis, coronal sections from the

brains were cut in a cryostat and stained with Hematox-
ilyn & Eosin, Kluver–Barrera stain, and synaptic markers
were also evaluated through immunohistochemistry
(Supplemental information).

Membrane and cytoplasmic fractions isolation from the
brain samples
Brains from the second cohort of subjects were dis-

sected from the skull and the NAc, the PFC and the
hippocampus were isolated using the Paxinos and Watson
atlas (AP 1, 3, and 3.8 mm from bregma, respectively) as
we reported previously32 (Supplemental information).

Western blot analysis
Samples were subjected to sodium dodecyl sulfate

polyacrylamide gel electrophoresis to identify changes in
synaptic markers including NMDA, AMPA, synaptophy-
sin, mGlur2, and Glur5 (see Supplemental information for
details).

Quantification and statistical analysis
Data are presented as mean ± SEM for all data. All

statistical analyses including testing the normality of data
distribution were performed using GraphPad Prism 7.01
and IBM SPSS statistics version 22 software and a cor-
rected p value <0.05 was considered as significant. All
results were tested for normality using Shapiro–Wilk test.
For differences between three groups in the behavioral
tests and protein concentration one-way Analysis of var-
iance (ANOVA) followed by Tukey’s multiple comparison
test was used and effect size was calculated in R language
with the pwr package. For significant differences in high
vs low responders during operant conditioning we used
Chi-square per sample test. The data are shown as the
mean ± SEM and significant differences p < 0.05. The
statistical analysis on MBD was performed using the log-
transformed Jacobian determinants as the dependent
variable, “group” as the independent variable (between
subjects) and as covariate we included “batch order” (rats

were trained in batches). We compared the three groups
using a GLM and analyses were corrected for multiple
comparisons using the false-discovery rate (FDR) at 5%42.
Furthermore, we extracted the t alues from significant
peaks at NAc and hippocampus to create scatterplots and
correlation with the immunohistochemistry data. Details
about the statistical analysis are available in the open-
access R script (see above).

Results
Individual behavioral phenotyping was performed in two

cohorts of subjects to determine the effect of nutritional
programming on motivation for rewards in offspring.
Initially, we found that nutritional programming by CAF
diet decreased offspring weight (Fig. S3; F2,49= 20.88,
p= 0.0005). only if the offspring continues the CAF diet
after weaning (Fig. S3, p ≤ 0.0001). Motivation for natural
rewards in rats displayed low and high responder subjects
(Fig. 1A; F2,46= 112.2, p= 0.0001), similarly as we reported
recently23. In contrast to control subjects, fetal program-
ming by CAF diet exposure decreases the motivation of
high responder subjects (Fig. 1A; CTRL-CTRL vs. CAF-
CTRL*p= 0.0190, effect size result was 0.96). In fact, fetal
programming and CAF exposure after weaning reproduces
low motivation for rewards in the offspring (Fig. 1A; CTRL-
CTRL vs. CAF-CAF *p= 0.0170, effect size result was 0.94).
In addition, offspring exposed to CAF experiences a delay in
the lever presses performance (Fig. 1B; F2,30= 3.652,
p= 0.0381) compared with the CTRL-CTRL (Fig. 1B;
*p= 0.0316, effect size result was 0.87), showed only sig-
nificant in offspring exposed to CAF after weaning (Fig. 1A;
CTRL-CTRL vs CAF-CAF *p= 0.0316). Analysis of the
total high and low responder subjects show no significant
difference 53% high responder and 47% low responder
CAF-CTRL (X2;; p= 0.8185), and 65% high responder and
35% low responder CAF-CAF (X2; p= 0.2253), on the other
hand, control group show more high responder (81%) than
low responder (19%)(X2;; *p= 0.01242) (Table S2). Differ-
ences in motivation behavior in the offspring were
also identified during the sucrose preference test (Fig. 1C;
F2,46= 4.784 p= 0.0130), showing a significant decrease in
the percentage of sucrose intake in the CAF-CTRL and
CAF-CAF groups compared with their baseline (Fig. 1C,
ANOVA post hoc Tukey ****p ≤ 0.0001) and a significant
decrease in the CAF-CTRL and CAF-CAF compared with
the CTRL-CTRL in the test day (Fig. 1C, p= 0.0015 and
p= 0.0074, respectively). Next, we examined hyponeopha-
gia by NSFT (Fig. 1D; F2,24= 5.833, p= 0.0086) pro-
grammed offspring displays longer time to reach the pellet
in the center of the arena (Fig. 1D; CAF-CTRL and CAF-
CAF vs. CTRL-CTRL, *p= 0.0234 and **p= 0.0088), and
also show a decrease in individual food consumption
following 18 h fasting (Fig. 1E; F2,26= 11.55, p= 0.0003)
CAF-CTRL and CAF-CAF vs. CTRL-CTRL (*p= 0169,
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***p= 0.0002, respectively). Finally, offspring exposed to
CAF increased their locomotor activity (Fig. 1F; F2,27=
4.551, p= 0.0198) in contrast with the CTRL-CTRL group
(Fig. 1F CTRL-CTRL vs CAF-CAF *p= 0.0280 and CTRL-
CTRL vs CAF-CTRL *p= 0.0288), less inactive (Fig. 1G;
F2,27= 4.551, p= 0.0198; CAF-CAF *p= 0.0235, CAF-
CTRL *p= 0.0431 vs CTRL-CTRL) and only the pro-
gramed offspring fed with chow diet after weaning, exhib-
ited longer time in the center of the arena when compared
with edges and control subjects (Fig. 1H, I; F2,24= 5.815,
p= 0.0087, F2,24= 5.797, p= 0.0088, CAF-CTRL and

CAF-CAF vs CTRL-CTRL **0.0063 and **p= 0.0069
respectively). These data propose that fetal programming
decreases motivation for natural rewards and increases
latency to feed in the offspring.

Programmed offspring show brain macrostructural
alterations
We found significant differences in local volume across

all groups. The pairwise analysis showed significant
whole-brain local volume differences in the CAF-CTRL
group compared with the CTRL-CTRL group (Fig. S4).

Fig. 1 Behavioral testing of depression-like behavior in the offspring. A Offspring was nutritionally programmed as described, and subjects
were trained using the operational conditioning protocol. The number of events (action of the lever) were obtained during the PR protocol (1 h ×
5 days). Graph shows response to reinforcers of two subject groups, high responders (>10 lever presses) and low responders (<10 lever presses) per
training session. Results are expressed as mean ± SEM, following by ANOVA two ways, Post hoc Tukey. *p < 0.05 vs the control. n= 16–19/group).
B Latency to PR. Graph shows the time the subject invests to reach the threshold of 10 events during the PR schedule. Results are expressed as mean
± SEM, following by ANOVA two ways, Post hoc Tukey. *p < 0.05 vs the control. n= 16–19/group). C Basal sucrose intake was measure for 72 h under
ad libitum food and water exposure. Sucrose preference was performed by quantifying water and 2% w/v sucrose intake for 20 min after food and
water deprivation for 16 h. The percentage of preference for sucrose in the offspring was quantified according to % PS= [IS ÷ (SI+WI)] × 100.
Results are expressed as mean ± SEM, following by ANOVA post hoc Tukey. ****p < 0.0001 vs the control. n= 6–12/group. D Latency to feed was
determine comparing time required to reach the food of the center of the arena in the Control, CAF-CTRL and CAF-CAF groups. Results are expressed
as mean ± SEM, following by ANOVA post hoc Tukey. *p < 0.05 **p ≤ 0.01 vs the control. n= 6–12/group. E Food intake in cage after fasting in the
CAF-CTRL, CAF-CAF, and control groups. Results are expressed as mean ± SEM, following by ANOVA post hoc Tukey ***p < 0.05 vs the control. n=
6–12/group. F–I Comparison of total distance traveled, inactivity and time spend in on the edges and in the center of the open-field test. Results are
expressed as mean ± SE following by ANOVA post hoc Tukey. *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 0.0001 vs the control group, n= 6–16/
group.
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The most consistent difference was lower local volume,
however, there were localized clusters with higher volume
(Table S3 and Table S4). The CAF-CAF group showed
lower local volume compared with the CTRL-CTRL
group in more localized clusters but only at FDR 10% and
not 5%. There were no significant differences between
CAF-CAF and CAF- CTRL groups. By using Fischer-344
rat anatomical atlas43, we identified that the left thalamus,
left hippocampal CA1 and the right NAc core displayed
the lowest volumes in the CAF-CTRL group. Notably, the
peak volume of right NAc was proportionally correlated
to synaptophysin expression (Fig. 2) (see data from
immunohistochemistry below).

Brain microstructural defects in offspring linked to fetal
programming
We tested if maternal nutritional programming sets

histological and synaptic protein expression defects in
offspring. We specifically selected brain regions showing
macrostructural alterations in the MRI analysis (Fig. S3,
Table S3, and Table S4). First, hippocampal H-E staining
identified a decrease in the total number of cell nucleus in
the dentate gyrus (DG) of the offspring programmed by
CAF diet (Fig. 3A–G; F2,9= 5.978, p= 0.0223), showing
only significant difference in CAF-CTRL compared to the
CTRL-CTRL Fig. 3G *p= 0.0184), it also indicated
pyknotic cells, chromatin condensation and cellular dis-
organization (Fig. 3A–G). Likewise, the Klüver–Barrera
staining for myelin displayed that the offspring pro-
grammed by CAF diet and exposed to CAF diet after
weaning showed a decrease in the area of corpus callosum
at level of CA1 of hippocampus (Fig. 3H–K; F2,9= 5.993,
p= 0.0221, *p= 0.0267). Histological and myelin char-
acterization of NAc does not show significant changes
following maternal programming by CAF diet (Fig. 3L–S).
Defects in synaptic markers in the offspring of

mothers exposed to CAF diet were also determined
using the subjects identified in the MRI analysis.
Immunohistochemical imaging of brain regions show-
ing macrostructural alterations revealed significant
increase in the glial fibrillary acidic protein (GFAP) in
the DG (Fig. 4A–D; F2,6 = 44.82, p= 0.0002), CA1 (Fig.
4E–H; H(2)= 7.318, p= 0.0043, *p= 0.0206) and CA3
(Fig. 4I–L; H(2) = 7.2, p= 0.0036, *p= 0.0219) regions
of the hippocampus in subjects exposed to fetal pro-
gramming by CAF diet (CAF-CTRL group,
***p= 0.0004, *p= 0.0206, and **p= 0.0036, respec-
tively) and in the offspring exposed to CAF after
weaning (CAF-CAF group, ***p= 0.0004, p= 0.5326
and **p= 0.0448, respectively)). Notably, a significant
decrease in the synaptic marker synaptophysin in the
DG (Fig. 4M–P; F2,6 = 5.606, p= 0.0424, CTRL-CTRL
vs CAF-CAF p= 0.0497), and a substantial decrease in
the CA1 (Fig. 4Q–T; F2,4= 35.81, p= 0.0028, CTRL-

CTRL vs CAF-CAF and CAF-CTRL p= 0.0027,
p= 0.0074, respectively) and CA3 (Fig. 4U–X; F2,4=
44.98, p= 0.0018, CTRL-CTRL vs CAF-CAF, and CAF-
CTRL p= 0.0021, p= 0.0032, respectively) regions of
hippocampus was identified in offspring of mothers
exposed to CAF diet and in subjects exposed to CAF
after weaning compared with the control. Also, there
were no significant changes in the immunohistochem-
ical stain of synaptophysin and no changes in the
expression of GFAP marker in NAc when compared
with the control group (Fig. S5A–H). Finally, the lateral
hypothalamus showed a profound decrease in synap-
tophysin and GFAP immune signal in subjects exposed
to fetal programming (Fig. S5I-P; F2,7= 57.35,
p= 0.0001, CTRL-CTRL vs CAF-CAF and CAF-CTRL,
****p= 0.0001 and ***p= 0.0001, respectively).
Synaptic defects of selective brain regions showing

major structural changes evidenced by MRI analysis
including hippocampus, PFC, and NAc in the offspring
were detected by western blot analysis in the second
batch of offspring subjects exposed to maternal pro-
gramming. We focused our analysis on the glutama-
tergic neurotransmission markers including the NR1
and NR2A subunits (NMDA receptor), the GluR1 and
GluR2 subunits (AMPA receptor), the mGluR2 and
mGluR5 (metabotropic receptors) and synaptophysin
for synaptic terminals (Fig. 5). Hippocampal analysis in
the offspring of programmed mothers showed a sig-
nificant increase in the GluR1 (Fig. 5E; F2,9= 4.098,
p= 0.0543, CAF-CTRL vs CTRL-CTRL *p= 0.0484)
subunit protein expression, and an increase in the
GluR2 (Fig. 5D; F2,18= 4.626, p= 0.0239, CAF-CAF vs
CTRL-CTRL *p= 0.0268) subunit as well as a decrease
in the mGluR2 (Fig. 5D; F2,16= 3.566, p= 0.0524, CAF-
CAF vs CTRL-CTRL *p= 0.0428) expression in the
offspring exposed to CAF after weaning. No changes
were found in NR1, NR2A subunits, and mGluR5 and
synaptophysin protein expression (Fig. 5B, C, G, H). PFC
shows NR2A subunit upregulation in the offspring
exposed to CAF after weaning (Fig. 5K; F2,13= 4.477,
p= 0.0332, CAF-CAF vs CAF-CTRL *p= 0.0310). Also,
we did not find protein expression changes in NR1,
GluR1, GluR2, mGluR2, mGluR5, or synaptophysin
protein expression in PFC (Fig. 5J, L–P). Finally, NAc of
programmed offspring subjects integrated a down-
regulation of synaptophysin in the offspring of mothers
exposed to CAF diet (Fig. 5X; F2,12= 7.408, p= 0.0080;
CTRL-CTRL vs CAF-CTRL *p= 0.0407)), and an
upregulation of mGluR2 and synaptophysin protein
levels in the offspring exposed to CAF after weaning
(Fig. 5V, X; *0.04901 and *p= 0.0144, respectively)
(Fig. 5V, X). No changes were identified in the protein
expression of NR1, NR2A, GluR1, GluR2, and mGluR5
(Fig. 5R, S, T, U, W). These results propose that caloric
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Fig. 2 DBM of brain volume in the offspring. Boxplots show the relative volume (y axis = Jacobians) in each group (x axis) in several significant
peaks. The peaks are shown in the crosshairs. a ROI= left thalamus, b left hippocampus CA1, c right NAc, d scatter plot between
immunohistochemistry results in the right nucleus accumbens (y axis) and right nucleus accumbens peak volume (x axis). No significant correlation
was found in d. Blue-light blue = lower volume; red-yellow = higher volume. Results are significant at FDR 5%.
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exposure during fetal development negatively regulates
synaptic terminals expression in selective brain regions
of the offspring.

Discussion
Maternal overnutrition during pregnancy leads to sev-

eral alterations in the offspring’s behavior such anxiety44,
and addiction28,30, however, neurobiological causes of
programmed offspring behavior induced by caloric
exposure are not completely understood. Initially, we
identified that maternal programming CAF-CAF diet
exposure decreased body weight from week 4 to week 7
of age and the rats did not recover to control values
(Fig. 1A), corresponding with our previous report29. We
identified that maternal programming by CAF diet
exposure led to depression-like behavior in the offspring,
showing lower volume in many regions, among which the

thalamus, hippocampus, NAc core, and hypothalamus,
important regions in the frontostriatomesolimbic system,
were correlated with their own alterations in SYP and
GFAP expressions. Also, maternal programming led to a
cell number and myelin reduction in the DG and hilus of
hippocampus, respectively, and an increase in the GLUR1
receptor expression. This evidence proposes that maternal
exposure to high-fat diet formula primes lower brain
volume and changes in synaptic markers of glutamatergic
neurotransmission which associates to depression-like
phenotype in the offspring.
In accordance with a previous study45, our results show

that fetal programming by CAF diet exposure during
pregnancy contributes to hyperactivity in male offspring
measured by distance traveled46. Following behavioral
phenotyping of depression-like behavior for rats47, our
results show for the first time that, despite no anxiolytic

Fig. 3 Histological analysis of hippocampus in the offspring. A–G Representative H&E stain of brain coronal slices comparing DG cellularity of the
Control, CAF-CTRL, and CAF-CAF groups (400 and 1000 magnification). Results are expressed as mean ± SEM. following by ANOVA post hoc Tukey
*p < 0.05 vs the control group, n= 4 per group). H–K Representative Luxol fast blue stain of brain coronal slices comparing corpus callosum of the
CTRL-CTRL, CAF-CAF, and control groups (500 magnification). L–O Representative H&E stain of brain coronal slices of the NAc cellularity of the
Control, CAF-CTRL, and CAF-CAF groups (400 magnification). P–S Representative histological image (coronal plane) of anterior commissure at NAc of
the CTRL-CTRL, CAF-CAF, and control groups treated with luxol fast blue and cresyl-violet for myelin stain. Results are expressed as mean ± SEM.
following by ANOVA post hoc Tukey. *P < 0.05, **P < 0.005, ***P < 0.001, ****P < 0.0001 vs the control group, (n= 4 per group). Scale bar= 50 μm.
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effect by fetal programming, the offspring experienced
defects in motivation for natural rewards during the operant
conditioning test, and a reduced preference for hedonic
sucrose intake and latency to eat following fasting. In fact,
defective motivation for natural rewards and anhedonia-like
behavior have been reported in rats expose to chronic mild

stress20,48–53, after chronic consumption of a high-fat food11

or even followed by exposure to sweet beverages26,54. In
order to explain the effect of maternal programing of CAF
diet exposure on depression-like behavior phenotype, we
initially focused our analysis on aberrant brain micro-
structural alterations by MRI technology. Structural defects

Fig. 4 Maternal programming activates gliosis and decreases synaptophysin expression in depression-like behavior subjects. Coordinates
for hippocampus was obtained from brain previously scanned by MRI. Brain slices were obtained as described in Methods. Immunostaining of
sections using anti-GFAP antibody from dentate gyrus A–D, CA1 E–H, and CA3 I–L of hippocampal regions were tested for GFAP immunostaining.
Immunostaining for synaptophysin was performed in hippocampus using an anti-SYP antibody of the Control, CAF-CTRL and CAF-CAF.M–P Dentate
gyrus, Q–T CA1, U–X CA3 region. Results are expressed as mean ± SEM. following by ANOVA post hoc Tukey. *P < 0.05, **P < 0.005, ***P < 0.001,
****P < 0.0001 vs the control group (n= 4 per group). Scale bar= 50 μm.
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Fig. 5 Characterization of the glutamatergic neurotransmission markers in depression-like behavior subjects. The second cohort of subjects
was diagnosed as depression-like behavior and PFC, NAc, and hippocampus were isolated to perform western blot analysis for glutamatergic
receptors markers including the NR1 and NR2A subunits (NMDA receptor), GluR2 and GluR1 subunits (AMPA receptor), mGluR2 and mGluR5
(metabotropic receptors) and synaptophysin (SYP). A–H hippocampus (HPP), I–P prefrontal cortex (PFC), and Q–X Nucleus accumbens (NAC). The
graphs show normalized data of the mean ± SEM following by Tukey multiple comparation test. *p < 0.05 vs the control group. n= 5–8/group.
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of selective brain regions are a hallmark of neuropsychiatric
disorders including depression55,56, showing lower brain
volume within the corticolimbic circuit diagnosed in the
MDD subjects57. We found that maternal programming
(CAF-CTRL group) led to dramatic brain volume loss in the
left thalamus, left hippocampal CA1 and in the right NAc
core. Also, the occipital cortex and the frontal association
cortex displayed the major volume decrease of CAF diet
programed offspring (CAF-CTRL group). Despite caloric
exposure after weaning (CAF-CAF group), there were fewer
brain volume changes when compared with the maternal
programming group (CAF-CTRL), at least at this age.
Depression-like behavior has been identified to show a
time-dependent atrophy of CA1, CA3, and DG brain
regions50, such as, reduced cortical thickness in prefrontal
cortex and orbitofrontal, and smaller hippocampal volume
and larger pallidal volume in children and adolescence
diagnosed with MDD9. Conversely, increased cortical
thickness in the bilateral posterior dorsolateral prefrontal
cortex and right superior parietal cortex were found in
MDD adult patients15. This evidence suggests a detrimental
effect of caloric fetal programming on lower brain volume
leading to depression-like behavior priming in the offspring.
To identify potential molecular or cellular causes of the

lower brain volume measured with MRI in programmed
subjects showing depression-like behavior, we initially
focused our analysis in the lateral hypothalamus, based on
its major brain volume loss. We found a direct decrease in
GFAP levels and atrophy in the lateral hypothalamus of
subjects exposed to CAF diet during pregnancy and lacta-
tion (CAF-CTRL group) and after weaning (CAF-CAF
group). However, we did not find a significant correlation
with MRI brain volume, potentially owing to low sample
analyzed by immunohistochemistry. Our results agree with
recent evidence showing a decrease in GFAP levels in
hypothalamus following maternal high-fat diet expo-
sure58,59, and also, deficient GFAP expression after immune
activation by LPS inoculation59–61. We identified a corre-
lation between the lower volume in the right NAc core and
a decrease in synaptophysin immunosignal. However, in
contrast to the lateral hypothalamus, we observed a pro-
minent increase in the GFAP expression in the left hippo-
campal CA1 and the right NAc core. Selective increase in
GFAP immunoreactivity was reported in layer I of the
dorsolateral prefrontal cortex of brain post mortem biopsies
of depressed subjects62. Conversely, studies in depressed
post mortem patients63 and animal models of chronic stress
reported a time-dependent reduction in glial cell number in
the CA1 of hippocampus, potentially owing to a selective
neuroadaptive response to stress20. Also, glial alterations in
MDD might presumably be related to active release of
S100B by astrocytes64 or microglia activation during pro-
gramming65. Hippocampal shrinkage may be explained by a

decrease in glial cells number and/or loss in the number of
neurons due to a neurotoxic effect of glucocorticoids66,
which are increased in depressed patients4,67, and have been
found in murine models exposed to perinatal high-fat
diet68. Similarly, we show that the hippocampus of offspring
programmed by CAF diet displayed a decrease in cellular
number in the DG coupled to pyknotic cells, chromatin
condensation, cellular disorganization and a postweaning
CAF diet intake decrease in the width of the body of the
corpus callosum, which have also been implicated in MDD
in humans69–71. Depression induced by chronic mild stress
in murine models reported decrease cellular number and
size in the CA1, thinner layers of cells in hippocampus50

and a decreased number of apical dendrites in CA1 and
CA320, which is also reported for mice or rats programming
by a high-fat diet33,35. We conceive that an increase in the
glial cells number found in our study potentially may
compensate the synaptic loss and myelin decreases in the
offspring showing anhedonia included in depression-like
behavior.
Finally, we characterized microstructural changes of

selected brain regions identified by MRI in subjects
diagnosed with depression-like behavior by analyzing
glutamatergic transmission markers which have been
reported in both murine models and postmortem brains
of depressive patients12,28,48,72–74. We found a substantial
increase of the GluR1 and GLUR2 subunits of AMPA
receptor in the hippocampus, which correlated with a low
cell number at DG only in subjects programmed by CAF
diet (CAF-CTRL group). Also, we found a decrease in the
mGluR2 expression in hippocampus of subjects pro-
grammed by CAF diet and upregulation in NAc of sub-
jects exposed to CAF diet after weaning (CAF-CAF
group). Clinical observations in post mortem hippo-
campal samples from depressed subjects showed
decreased expression of genes that encode AMPARs
subunits75. A low expression of the subunit GluR1 and a
high expression of the subunit GluR2, seem to be related
to psychiatric disorders76. We speculate that a decrease
of synaptic terminals evidenced by synaptophysin immu-
nosignal following caloric exposure in offspring was
compensated by upregulation of AMPA subunits
expression. We have reported that glutamatergic receptor
expression such as NMDA subunits become regulated by
modifying in vivo glycolytic metabolism in hippo-
campus77, which also regulates neuronal death78. As
reported, the offspring of mothers exposed to CAF diet
integrates changes in the metabolic and hormonal plasma
profile29, which correlates with metabolic defects found in
a fetal programming model by high-fat diet exposure79–81,
suggesting metabolic and hormonal molecular priming
during embryonic development. In fact, we have recently
reported that the offspring programmed by CAF diet
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show increased DNA methylation into the NAc36. This
evidence supports “the fetal origins hypothesis” of chronic
psychiatric diseases during development and its effects on
major behavioral and brain abnormalities82. Our results
also suggest that when the offspring was exposed to a
“second-hit” stressor (postweaning CAF diet), behavior
and brain volume might contrast from the fetal pro-
gramming subjects, confirming a postnatal regulation of
metabolic and behavioral traits by external stimuli. In this
context, plasma lipidomic analysis of the offspring of
mothers exposed to CAF diet showed a plasma decrease
in the 22:6 lipid specie (n-3 PUFA), whereas an increase in
the 20:4 specie (n-6 PUFA) (data unpublished). Some
reports have identified lower levels of the n-3 poly-
unsaturated fatty acids (PUFA), eicosapentaenoic acid and
docosahexaenoic acid whereas higher levels of the n-6
PUFA and araquidonic acid in the blood of subjects
showing depressive or anxiety symptoms83. Notably, low
levels of 22:6 lipid specie has been reported in the post
mortem orbitofrontal cortex of patients with major
depressive subjects84. Again, these evidence confirm the
effect of fetal programming by high-fat diet on metabolic
and behavioral traits in the offspring.
Our findings suggest that caloric diet programming

reduces motivation for natural rewards, which relates with
lower brain volume in the lateral hypothalamus and in the
right NAc core showing defects in synaptophysin
expression. This supports the role of CAF diet during
gestation and lactation on setting a depression-like phe-
notype in young offspring.
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