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Abstract
Major depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and affects individuals of all
ages. It causes significant psychosocial impairments and is a major cause of disability. A recent consortium study
identified 102 genetic variants and 269 genes associated with depression. To provide targets for future depression
research, we prioritized these recently identified genes using expression data. We examined the differential expression
of these genes in three studies that profiled gene expression of MDD cases and controls across multiple brain regions.
In addition, we integrated anatomical expression information to determine which brain regions and transcriptomic cell
types highly express the candidate genes. We highlight 12 of the 269 genes with the most consistent differential
expression: MANEA, UBE2M, CKB, ITPR3, SPRY2, SAMD5, TMEM106B, ZC3H7B, LST1, ASXL3, ZNF184 and HSPA1A. The
majority of these top genes were found to have sex-specific differential expression. We place greater emphasis on
ZNF184 as it is the top gene in a more conservative analysis of the 269. Specifically, the differential expression of
ZNF184 was strongest in subcortical regions in males and females. Anatomically, our results suggest the importance of
the dorsal lateral geniculate nucleus, cholinergic, monoaminergic and enteric neurons. These findings provide a guide
for targeted experiments to advance our understanding of the genetic underpinnings of depression.

Introduction
Major depressive disorder (MDD) is a leading cause of

disability and a large contributor to morbidity and mor-
tality, with an estimated annual prevalence affecting over
4.4% of the world’s population1. MDD is clinically diag-
nosed and characterized by prolonged periods of low
mood or anhedonia in addition to physical and cognitive
symptoms making it a complex and heterogeneous dis-
order2. The heritability of MDD, estimated through twin
studies, is 31–42%, which is considered modest3,4.
Genome-wide association studies (GWAS) are performed
to identify the common variants that increase the risk of a
genetic disease. However, due to the complex nature of
MDD, initial GWAS were unable to identify reproducible

genetic loci, potentially suggesting that many genetic
factors of small-effect contribute to the overall disease
manifestation5–8. Moreover, genes and pathways affected
differ between males and females9–14, which may explain
some variability observed in depression phenotypes. To
identify genetic variants of smaller effect, a consortium
effort acquired higher power by profiling larger sample
sizes. This increase was achieved by including individuals
that displayed broader phenotypes of depression. Cohorts
that include individuals with MDD and broader depres-
sion phenotypes were defined in the recent GWAS as
depression15.
Howard et al. conducted the largest GWAS of depres-

sion to date (total n= 807,553) by meta-analyzing data
from three previous studies of depression: Hyde et al.16,
Howard et al.17 and Wray et al.18. This large sample size
resulted in the identification of 102 independent variants
and 269 genes associated with depression15. Additionally,
they found that the genes near the identified variants were
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expressed at higher levels in the frontal cortex and within
neuronal cell types of the brain through a partitioned
heritability approach using transcriptomic resources.
Their results provided significant insights into the etiol-
ogy of depression. However, few of the 269 genes have
been studied in the context of the disorder. Furthermore,
their enrichment results were based on 13 brain regions
and three brain cell types. To provide additional context,
we examined these genes in studies that have profiled
gene expression in postmortem brain samples of MDD
cases. We hypothesized that genes with greater genetic
associations would be differentially expressed in these
transcriptomic studies of MDD. We performed a differ-
ential expression meta-analysis to prioritize the 269 genes
and tested for evidence of opposing molecular signals
between males and females. In addition, we used large
transcriptomic atlases to obtain a finer perspective on the
specific anatomy associated with the genetic findings. Our
hypothesis for this analysis was that the prefrontal cortex

and neuronal cell types are more enriched for the
expression of the 269 genes. Figure 1 provides an overview
of these analyses. Ultimately, we sought to provide gui-
dance for future studies of depression by narrowing
genetic and anatomical targets.

Methods
Depression GWAS data
The latest GWAS of depression included 246,363 cases

and identified 102 genetic variants. The included cohorts
measured a broad range of phenotypes that included
nerves, tension, self-reported depression and impairment,
and clinically diagnosed depression. For example, the UK
Biobank cohort included broad depression phenotypes
and the 23andMe cohort assessed phenotypic status based
on the responses provided in online surveys and that self-
reported being diagnosed with depression by a profes-
sional. As the majority of the included participants did not
have MDD, this was defined as a study of depression15. To
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Fig. 1 Overview of this study. The 269 genes implicated with depression (top) are characterized by several transcriptomic studies (middle).
Highlighted are the different brain regions sampled within each study (middle) that will help prioritize the genes (bottom). Other transcriptomic
resources that were used (middle) will identify anatomical targets associated with the disease (bottom). Images are from the cited publications, Dr.
David M Howard, and Wikimedia Commons (Gray’s Anatomy by Henry Vandyke Carter).
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summarize the variant to gene associations, Howard et al.
used the MAGMA (Multi-marker Analysis of GenoMic
Annotation) tool19. Genome-wide, MAGMA aggregated
the genetic variants associated with depression to reveal
the 269 of 17,842 tested genes that passed the multiple
test correction threshold. Our analyses focused on these
269 depression risk genes.

MDD transcriptomic studies
MDD transcriptomic studies were selected based on the

following criteria: transcriptomic profiles were obtained
from human postmortem brain tissues, cases were diag-
nosed with MDD, results of the study included data from
each sex, and the study was published within the past five
years. A summary of the transcriptomic datasets used in
our meta-analysis is presented in Table 1. The cases in
each dataset were diagnosed with MDD through psy-
chological autopsies that included interviews with family
or individuals best-acquainted with the deceased. More
information is outlined in the respective studies13,20,21.

Ding et al. transcriptomic analyses
Using microarray expression profiling, Ding et al. ana-

lyzed 101 human postmortem subjects (Table 1)20. Eight
studies were conducted between the two sexes in three
corticolimbic regions: four studies were performed in the
subgenual anterior cingulate cortex, two in the amygdala
and two in the dorsolateral prefrontal cortex. Initially,
16,689 unique genes were assayed across all studies but
were further reduced. Firstly, genes were ranked based on
expression level, and the lowest 20% of genes were con-
sidered non-expressed and filtered out. Then, genes were
ranked based on the variation of expression and the
lowest 20% were filtered out. This left Ding and colleagues

with 10,680 genes. For each gene, they provided eight
single-study p-values and effect sizes (one from each sex-
specific study) that we used in our analyses. These sta-
tistics were calculated with a random intercept model
combined with Bayesian information criterion for para-
meter selection by Ding and colleagues20.

Labonté et al. transcriptomic analyses
Labonté et al. examined gene expression profiles of 48

human postmortem brains (Table 1) and reported sex-
specific transcriptional signatures of MDD using RNA
sequencing. They sampled from six corticolimbic struc-
tures: the subgenual prefrontal cortex (BA25), orbito-
frontal cortex (BA11), dorsolateral prefrontal cortex
(BA8/9), anterior insula, nucleus accumbens and ventral
subiculum13. Genome-wide results were provided by
Labonté and colleagues and are available in our GitHub
repository (24,943 genes). Of those genes, 20,386 had p-
values, and the associated log fold change values for both
sexes in each brain region (12 p-values per gene), which
were used in our analyses.

Ramaker et al. transcriptomic analyses
Samples from the anterior cingulate cortex, dorsolateral

prefrontal cortex and the nucleus accumbens were pro-
filed by Ramaker et al. using RNA sequencing. We used
data from the controls and those with MDD for a total of
48 subjects21. We re-processed the metadata and raw
count files obtained from GSE80655 using the BioJupies R
package referencing the methods in their paper22. For the
differential expression analysis, we included the same
covariates as outlined in their paper: age, brain pH (pH),
disorder (MDD), postmortem interval (PMI) and per-
centage of reads uniquely aligned (PRUA). Unlike the

Table 1 Characteristics of the MDD transcriptomic datasets.

Reference Assay type Brain regions Sample size MDD: CTRL Female %

Ding et al.20 Microarray 1. Dorsolateral prefrontal cortexa

2. Subgenual anterior cingulate cortexa

3. Rostral amygdala

51: 50 49

Labonté et al.13 RNA Sequencing 1. Orbitofrontal cortex (BA11)

2. Dorsolateral prefrontal cortex (BA8/9)a

3. Subgenual prefrontal cortex (BA25)a

4. Anterior Insula

5. Ventral Subiculum

6. Nucleus Accumbensb

26: 22 40

Ramaker et al.21 RNA Sequencing 1. Dorsolateral prefrontal cortexa

2. Anterior cingulate gyrusa

3. Nucleus accumbensb

24: 24 25

MDD major depressive disorder, CTRL control.
aBrain regions assayed in all three studies.
bBrain regions assayed in two studies.
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other two transcriptomic studies, Ramaker et al. did not
include sex as a covariate. The normalized data was
transformed to log2-counts per million using the limma’s
R package voom function to be linearly fitted with the full
design model previously mentioned using limma’s lmFit
function23–25. The differentially expressed data was then
calculated from the linear fit model using limma’s eBayes
function24. This resulted in 35,238 genes with the asso-
ciated p- and t-values for each brain region for both sexes
for downstream meta-analyses.

Differential expression statistics
We integrated differential expression statistics at the

level of genes and found that most of the 269 GWAS
identified genes were assayed in at least two tran-
scriptomic studies. The Ding et al. dataset provided dif-
ferential expression statistics for 155 of the 269
depression risk genes. Of the 114 genes without data,
68.4% were filtered out due to the study’s filtering criteria,
and the remaining 31.6% were uncharacterized in this
study. Labonté et al. had complete differential expression
data for 243 of the 269 genes. For the 26 missing genes,
seven genes did not have p-values for both sexes across
their sampled brain regions and were filtered out from our
analysis. The remaining 19 genes were found to be
assayed in the dataset (GSE102556), but appear to have
been filtered out by the analysis pipeline of Labonté and
colleagues. However, Ding et al. also filtered out 14 of the
19 genes suggesting they had low expression levels and
variance. For the Ramaker et al. dataset, we re-analyzed
the corresponding dataset (GSE80655), resulting in dif-
ferential expression statistics for all 269 genes. Overall,
differential expression statistics from all three tran-
scriptomic studies were available for 153 of the 269
depression risk genes.

Meta-analysis
We performed study-specific meta-analyses that com-

bined across sexes and brain regions in a single study and
broader meta-analyses that joined results across studies.
These meta-analyses followed one of five criteria that
differ in the number of brain regions or sexes across the
transcriptomic studies. For instance, the full analysis
included data from all brain regions and both sexes. We
also separated female from male data across all brain
regions to identify sex-specific effects. The expression
patterns across the cortex are relatively stable compared
to the larger expression differences found across the
subcortex26. To limit regional variability, we performed
separate analyses that were restricted to cortical and
subcortical samples. Select criteria were applied in our
three developed models to highlight candidate genes
associated with the different objectives of the models,
which are further described in the sections below.

Our meta-analysis methods differed depending on the
model under analysis, but all followed the same general
process. First, genes were prioritized in association with
MDD by performing a meta-analysis in each tran-
scriptomic dataset. For each study, we combined the one-
sided p-values across the desired sex and brain regions for
each gene in both directions of expression change using
Fisher’s combined probability test27. The direction with
the more significant p-value was used to calculate the
two-sided study-specific meta p-value and meta direction.
To aggregate the three study-specific meta-analyses into
one across-study meta-analysis, the one-sided study-spe-
cific p-values for each gene were combined using Fisher’s
method in each direction27. The across-study meta
direction and meta p-values for each gene were calculated
as described above. The Bonferroni method was used to
correct for multiple testing.

First model
Our first model was the simplest, where the objective

was to identify the genes that were consistently differen-
tially expressed across the three transcriptomic datasets
under the five meta-analysis criteria.

Sex-interaction model
Opposing sex-specific patterns have been previously

reported in transcriptomic studies of MDD13,14. This
model’s objective was to test for genes with opposing
transcriptional differences between male and female cases
of MDD. To do this, we inverted each gene’s direction of
differential expression (multiplied by −1) for males before
performing our study-specific meta-analyses. Genes were
prioritized under our full, cortical and subcortical criteria.

Genome-wide ranking model
This model was designed to equally weight the per-gene

statistics of each study, providing a relative assessment of
the gene’s significance compared to the rest of the gen-
ome. This model was applied to the results of the eight
study-specific meta-analyses.
This model uses genome-wide study-specific meta-

analysis results from the other two models. Howard et al.
identified the 269 depression risk genes by testing 17,842
genes using MAGMA19. Therefore, we filtered our study-
specific results to select for those included in the 17,842
gene set. An additional step was then taken compared to
the other models to convert the absolute p-value to a
genome-wide relative statistic. In every study-specific
meta-analysis result from each model, we calculated the
proportion of genes in the genome with a smaller study-
specific meta p-value than the current gene under
observation in both directions (higher and lower expres-
sion in cases). For example, a gene with a study-specific p-
value of 1.56 × 10−6 that ranks 100th genome-wide, would
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be assigned an empirical p-value of 100/17842= 0.0056.
This procedure is applied for all three studies, providing a
similar uniform distribution of p-values across the gen-
ome. Then, as with the other models, these p-values for
each gene and direction were combined across studies
using Fisher’s method as described above.

Genetic and transcriptomic associations
We investigated the degree of association between our

across-study meta-analyses results and the gene-based
MAGMA statistics for the 269 genes using Spearman
correlation. We also tested if our across-study meta-
analyses statistics significantly differed for the 269 genes
compared to the 17,573 genes that were not associated
with depression using the Wilcoxon rank-sum test.

Neuroanatomical expression enrichment
The Allen Human Brain Atlas, a comprehensive tran-

scriptomic atlas of the human brain, was used to char-
acterize neuroanatomical expression patterns28. This atlas
mapped the human brain’s transcriptomic architecture
from six healthy adults of five males and one female (ages
24–57). This atlas contains 3702 expression profiles of
232 distinct brain regions.
Using this atlas, we created a maximum expression map

that assigns the brain region that maximally expresses
each of the 269 depression risk genes. We used the probe-
to-gene mappings generated by the Re-Annotator soft-
ware29. Some regions were profiled from a single donor
resulting in some donor-specific bias. To reduce this bias,
we filtered the brain regions that included expression data
from at least four donors leaving 190 brain regions. Probe
level expression values were averaged for each gene
transcript across the donors in the 190 brain regions. We
then filtered for the region with the greatest expression
for each gene, creating our maximum expression gene-to-
region mapping. We used the hypergeometric test to
identify if any region was significantly enriched for max-
imal expression.

Cell-type taxon expression enrichment
Zeisel et al. used single-cell RNA sequencing to char-

acterize the transcriptomic cell types within the mouse
nervous system30. They obtained the transcriptome of
509,876 cells, which was reduced to 160,796 cells after
assessing quality. These remaining cells formed 265
transcriptomic cell-type clusters, which were broadly
grouped into 39 distinct cell-type taxa across the central
and peripheral nervous systems.
We referenced these results to map the 269 genes to the

cell-type taxon that most highly expresses it. We down-
loaded the study’s publicly available expression matrix
(level 6 taxon level 4 aggregated all cell types) loom file
found at http://mousebrain.org/loomfiles_level_L6.html.

This expression matrix provides the average molecule
counts for each cell-type taxon. The taxon that displayed
the highest expression for each gene was selected to create
our maximum expression map. The R homologene
package was used to map the 269 genes to orthologous
mouse genes31. The hypergeometric test was used to
identify taxa enriched for maximal expression of the
depression risk genes, and their z-scores across the 39
taxa were calculated.

Results
We prioritized the 269 depression risk genes identified

in the most recent GWAS of depression. Differential
expression statistics were obtained from three tran-
scriptomic studies that examined expression in a total of
197 postmortem brains (101 MDD cases and 96 control
subjects, Table 1). These studies focused on the cerebral
cortex by sampling from the orbitofrontal, dorsolateral
prefrontal, insular, and anterior cingulate cortices. Sub-
cortical samples from the rostral amygdala, nucleus
accumbens and the ventral subiculum were also tran-
scriptomically profiled. Of these, the dorsolateral pre-
frontal and anterior cingulate were profiled in all three
studies.

Full across-study meta-analysis
Beginning with the broadest prioritization perspective,

we were interested in identifying the depression risk
genes that were most consistently differentially expres-
sed across all brain regions and both sexes. Our full
across-study meta-analysis was a result of combining 26
p-values across the study-specific meta-analyses. In this
analysis, two genes were differentially expressed: SPRY2
(pBonf < 0.00347) with lower levels of expression and
ITPR3 (pBonf < 0.0161) with higher levels of expression
in cases (Supplement Data Table S1, Fig. 2). Visualiza-
tion of the differential expression statistics for SPRY2
showed overall lower expression in MDD cases, while
ITPR3 was more variable across the two datasets with
available data (Fig. 2). All across-study meta-analysis
results are also available online as interactive spread-
sheets (see Data availability).

Sex-specific across-study meta-analysis
Evidence of gender differences has been previously

shown in MDD13,14,32. Therefore, we performed a strati-
fied analysis to test if any depression risk genes were
differentially expressed in a sex-specific manner. When
restricted to male data, four genes were statistically sig-
nificant: UBE2M, CKB, ITPR3, all with higher expression
and HSPA1A (all pBonf < 0.0249) had lower expression in
MDD cases (Supplement Data Table S2, Fig. 2). For
females, three genes were differentially expressed: SPRY2
and SAMD5 had lower levels of expression and MANEA
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(all pBonf < 0.0257) displayed higher levels of expression in
MDD cases (Supplement Data Table S3, Fig. 2).

Cortical and subcortical across-study meta-analysis
Cortical structures are common targets of depression

research, and expression patterns across the cerebral
cortex are more consistent than subcortical tissues26,33–38.
Therefore, we restricted our analysis to cortical brain
regions in both sexes by combining 18 region and sex-
specific analyses. This highlighted four statistically sig-
nificant genes: SAMD5, with lower levels of expression,
ZC3H7B with higher levels of expression, SPRY2 with
lower expression and UBE2M with higher levels of
expression in MDD cases (all pBonf < 0.0202). ZC3H7B
was the only gene that was not identified in the above
analyses, suggesting a stronger cortex-specific signal for
this gene (Supplement Data Table S4, Fig. 2). The other
three remaining genes were previously identified in the
above meta-analyses.
We additionally performed a subcortical across-study

analysis that combined eight region and sex-specific
analyses. This analysis highlighted one gene ZNF184
(pBonf < 0.0457), suggesting a specific subcortex signal
with overall lower expression in MDD cases (Supplement
Data Table S5, Fig. 2).
The cortical meta-analyses, which resulted in four dif-

ferentially expressed genes in comparison to the single gene
identified in the subcortical data suggest a stronger cortical
signal. However, fewer regions were included in the sub-
cortical analysis, reducing the power to detect consistent
differential expression. To test this effect, we reduced the

cortical meta-analyses to the same number of region and
sex-specific analyses used in the subcortical analyses (eight).
Of the 36 possible cortical combinations with matching
power, 32 had no, or a single differentially expressed gene.
This suggests our limited findings in the subcortical meta-
analysis is due to less sampling of the subcortex, and
expression differences are not enriched in cortical regions.

Sex-interaction across-study analyses
Previous analyses using the Ding and Labonté datasets

have found that differentially expressed genes showed
inverse expression differences between male and female
MDD cases13,14. To determine if this applied to the 269
genes, we tested for opposing transcriptional changes.
Using data from all assayed brain regions, we found
MANEA, UBE2M, TMEM106B, CKB, LST1 and ASXL3
were differentially expressed in opposing directions
between sexes (all pBonf < 0.0235, Supplement Data Table
S6, Fig. 2). When we restrict the interaction analysis to
cortical samples, the same genes were identified except
LST1 and ASXL3 (Supplement Data Table S7, Fig. 2), and
when restricted to subcortical brain regions, no genes
were differentially expressed (Supplementary Data Table
S8, Fig. 2). Given this increased number of hits, we
additionally tested if our meta-p values are lower across
all 269 genes and found they are not (paired Wilcoxon
rank-sum test, p= 0.24). While these results are limited,
the increased number of hits from this model provides
some support for previous findings of opposing gene
expression signatures of MDD between males and
females.

Fig. 2 Heatmap visualizations of differential expression results. a Study-specific direction signed log(p-values) for the top 12 genes separated by
sex and region. Cell colours range from blue to red, which represents lower and higher expression in cases compared to controls, respectively. Colour
intensity represents the degree of differential expression. Missing values are marked in gray. b Corrected meta p-values for the same genes across the
8 across-study meta-analyses. Cell colours range from low (yellow) to high (purple) corrected p-values in each meta-analysis. ACC anterior cingulate
cortex (two studies), DLPFC dorsal lateral prefrontal cortex, nAcc nucleus accumbens, Ins anterior insula, Sub subiculum, AMY amygdala, SI sex
interaction.
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Genome-wide ranking analyses
The Labonté dataset had greater influence in our

across-study meta-analysis results. Specifically, ITPR3 and
SPRY2 that were found in our full analysis from the first
model were only significant in the full Labonté-specific
meta-analysis. The full Labonté-specific meta-analysis
also had the lowest p-values across the 269 genes
(Labonté =1.56 × 10−6; Ding = 3.3 × 10−5; Ramaker =
3.38 × 10−4). Labonté et al. assayed more regions, which
possibly amplified donor-dependent signals when p-
values were combined. Therefore, to equalize the con-
tributions of each study, we derived normalized ranks for
each gene, relative to the rest of the genome (see
“Methods”). Across the eight genome-wide meta-analyses,
top genes were ZNF184 from the subcortical analysis of
the first model (empirical pBonf= 0.156), PSORS1C1 from
the cortical analysis in the sex-interaction model
(empirical pBonf= 0.184) and HSPA1A in the male ana-
lysis from the first model (empirical pBonf= 0.262) (Sup-
plement Data Table S9–S11). The top genes from the
remaining five meta-analyses had an empirical pBonf of 1
(Supplement Data Table S12–S16). Although there is a
significant loss of power, when the 269 genes are analyzed
relative to the remainder of the genome ZNF184 shows
the most consistent differential expression when studies
are equally weighted.

Broad associations between genetic and transcriptomic
results
Beyond individual gene tests, we assessed broader

relationships between the genetic and differential
expression results. In our 16 across-study meta-analyses,
there was no correlation between the genetic and differ-
ential expression statistics (|r | < 0.04, p > 0.0598) and no
significant difference between the statistics for the 269
genes and the 17,573 tested genes not associated with
depression (Wilcoxon rank-sum test). Overall, a broad
association between the genetic and gene expression sig-
nals was not observed.

Neuroanatomical expression enrichment
To provide a spatial perspective, we created a maximal

expression map that links each depression risk gene to the
brain region that most highly expresses it. To reduce
donor-specific sampling biases from the Allen Human
Brain Atlas, we examined 190 regions that were all
assayed from at least four donors. With the exception of
C7orf72, the remaining 268 genes were profiled in this
Atlas. Seventy-nine brain regions maximally expressed at
least one of the 268 genes. Given this large number of
regions, we tested if specific brain regions were sig-
nificantly enriched for maximal expression of the 268
genes than expected by chance (Supplementary Data
Table S17). The midbrain raphe nuclei had the strongest

enrichment for maximal expression (pBonf = 0.021). The
six genes that were maximally expressed in this region are
all members of the protocadherin alpha family (PCDHA1,
PCDHA2, PCDHA3, PCDHA4, PCDHA5, PCDHA7).
These genes form a cluster on chromosome 5 and have
very similar sequences that can cause a single microarray
probe to match several protocadherin genes39. This was
reflected in our results where three genes (PCDHA2,
PCDHA4, PCDHA7) were mapped to the same probes.
After grouping these protocadherin genes together,
enrichment of the midbrain raphe nuclei was no longer
statistically significant; and the top brain region was
replaced by the dorsal lateral geniculate nucleus of the
thalamus (15 genes maximally expressed, pBonf= 0.0806).
The map showed the central glial substance maximally
expressed the most genes (26 genes) but was not statis-
tically significantly enriched (pBonf = 1) (Supplementary
Data Table S17). The combined corticolimbic structures
maximally expressed 36 of the 268 genes indicating that
the majority of depression associated genes are highly
expressed in other brain regions. Therefore, a diverse set
of regions are highly enriched for the depression
risk genes.

Cell-type taxon expression enrichment
We next sought to identify cellular populations enriched

for expression of the 269 depression risk genes. We created
a maximum expression map of the cell-type taxon that
most highly expresses each gene. Transcriptomic cell types
were obtained from a clustering of cells from the mouse
nervous system30. This maximum expression map sum-
marizes the cell-type taxon maximally enriched for each
depression risk gene. Of the 269 depression risk genes, 240
had orthologous mouse genes with expression data avail-
able. Of the 39 transcriptomic cell-type taxons, 34 had
maximal expression of at least one of the risk genes. Two
transcriptomic cell types were enriched for maximal
expression: cholinergic and monoaminergic neurons
(pBonf = 2.26 × 10−5) and enteric neurons (pBonf = 0.00893)
(Supplementary Data Table S18). In Fig. 3, expression
across all 39 cell-type taxa is presented for the top differ-
entially expressed genes. This marks the diffuse pattern of
Ckb (max z-score = 2.2) and specific expression of Hspa1a
and Spry2 in enteric cells (max z-score > 3.4). The enteric
neuron taxon included neuronal cell clusters annotated as
nitrergic and cholinergic30. Deeper analysis using the more
granular 265 transcriptomic cell-type clusters indicated that
enteric cholinergic neurons had a greater enrichment than
nitrergic enteric neurons (Supplementary Data Table S19).
The cholinergic and monoaminergic neuron taxon contains
clusters that express various neurotransmitters and are
localized to the mid- and hindbrain30. Within this taxon,
greatest enrichment was observed in the cluster named
‘afferent nuclei of cranial nerves VI–XII’ followed by
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clusters of cholinergic and serotonergic neurons (Supple-
mentary Data Table S19). In this mouse dataset, we again
observe a diverse anatomical pattern for the 269 genes.

Predictability of Gene Expression
To assess how specific the differential expression signals

are to depression, we examined the depression associated
genes in the context of a large differential expression
meta-analysis40. This meta-analysis calculated the prior
probabilities for a list of genes. The higher the probability,
the more likely that gene will be differentially expressed
for many case-control disease studies. We included these
empirical prior probabilities for the 269 genes in our
result tables (Supplement Data Tables S1-S16).

For our top 12 genes, data for UBE2M was not available,
and the remaining genes had empirical prior probabilities
above 0.732 except for ZNF184 (0.368) and ZC3H7B
(0.183). These results suggest that on an individual gene
basis, differential expression of ZC3H7B and ZNF184 are
specific to depression while the other nine genes may be
perturbed by generic processes.

Interactive online spreadsheet
We provide all our tables as interactive online spread-

sheets to promote collaborative information sharing for
these 269 genes. Across-study meta-analysis results are
available online as interactive spreadsheets (see Data
availability). Comments are enabled, and edit access can

Fig. 3 Expression heatmap for the top differentially expressed genes across the 39 mouse cell-type taxa. Cell colours range from blue to red,
which represent depleted and specific expression, respectively. LST1 is not shown because it lacks a homologous mouse gene in the Homologene
database.
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be requested to add information as we learn more about
these candidate causal genes.

Discussion
We prioritized the genes identified in the largest genetic

study of depression to date by incorporating differential
expression data from 197 individuals across seven unique
brain regions related to reward, attention and emotion
processing. We highlight 12 genes with the most con-
sistent differential expression. Referencing transcriptomic
atlases, we find that these genes are broadly expressed
with some enrichment in the dorsal lateral geniculate
nucleus, cholinergic, monoaminergic, and enteric neu-
rons. Our study highlights relevant pathogenic tissues and
candidate causal genes to guide future studies of depres-
sion risk factors.
Dysfunction in prefrontal cortical circuits is commonly

implicated in depression pathogenesis15,18,41–43. Further-
more, these regions primarily play a role in executive
functions and emotion regulation, which are often
impaired in depression33–38,44,45. Prior focus on the
frontal cortex may have indirectly inflated its relevance to
the disorder. For example, in schizophrenia, a larger
number of dorsolateral prefrontal cortex associations
from a transcriptome imputation analysis was driven by
tissue sample size rather than the relevance of the region7.
Howard et al. found that genes harbouring the genetic
variants have specific expression enrichment in the heal-
thy prefrontal cortex. However, in our analysis, the dorsal
lateral geniculate nucleus of the thalamus was most
enriched for the depression risk genes. This region that
relays visual information most highly expresses CKB. In
addition, MANEA, another top hit, is highly expressed in
the nearby dorsolateral thalamus. Past studies have
explored the association between vision impairment and
depression46–51. Research has also identified possible sex
differences related to visual perception52. Our lack of
enrichment in the frontal cortex may be a result of our
focus on the 269 genes and the finer anatomical resolu-
tion of our analyses. We suspect that experiments tar-
geting these specific regions and genes may provide
deeper insight into depression.
We provide evidence that neurons are enriched for the

expression of candidate depression risk genes than
expected by chance. Our findings highlighted enteric
neurons, supporting previous associations between the
gut microbiome and mental health53. Furthermore, inte-
gration of the depression GWAS results and tran-
scriptomic data from brain and non-brain tissues found
enrichment in the colon7. Future research should con-
tinue to explore the potential associations between the
enteric nervous system and mood disorders.
Broadly, we observed no correlation between differ-

ential expression in MDD and the degree of genetic

association. Similar findings were also reported in a meta-
analysis of autism spectrum disorder54. Past consortium
analysis identified 108 loci associated with schizophrenia,
comparable to the 102 loci associated with depression55.
In a transcriptomic study of schizophrenia, two genes
harbouring the 108 loci were differentially expressed in
the prefrontal cortex56. In addition, epigenetic risk scores
for depression are largely independent of the polygenic
genetic risk scores57,58. Given these previous findings of
weak relationships between differential expression,
methylation, and genetic hits, our number of highlighted
genes is not unexpected.
Mirroring our CKB results, creatine studies have also

found sex-specific signals in the context of depression.
Recently, CKB was also differentially expressed in a
single-nucleus study of the prefrontal cortex in MDD59.
Creatine kinase isoenzymes, including CKB, which is
specific to the brain, converts creatine to phosphocreatine
to efficiently meet energy demands60. In rodents, creatine
kinase isoenzymes are sexually dimorphic with higher
activity in males than females61. The Human Protein
Atlas indicated CKB is expressed at higher levels in male
versus female tissues62. In MDD studies, increased crea-
tine levels heightened depressive symptoms in male rats
while females displayed antidepressant-like effects63.
Phosphocreatine levels and depression scores were
negatively correlated in the frontal lobe in adolescent
females with treatment-resistant MDD64. Recently, a
negative relationship between dietary creatine consump-
tion and depression was found in an American sample of
22 692 adults65. When stratified by sex, this effect was
only statistically significant in females. In support of past
studies, our findings warrant further investigation of CKB
activity and creatine concentrations in the context of
depression.
There is a genetic correlation between depression and

obesity, and shared genetic factors include Sprouty RTK
Signaling Antagonist 2 (SPRY2)15,18,66. SPRY2 was sig-
nificantly associated with body fat percentage and type 2
diabetes mellitus in large genetic studies67–69. A knockout
analysis of SPRY2 found a significant increase in glucose
uptake and lipid droplet accumulation in an in vitro
model of human hepatocyte cells70. This suggests that
decreased expression of SPRY2 in human hepatocytes
contributes to the pathogenesis of obesity and type 2
diabetes. MDD severity in females was correlated with
various measures of obesity (BMI, total body fat and
visceral fat mass)71. Our results reflect that SPRY2 is more
female-specific, with overall decreased levels of expression
in cases. Additionally, SPRY2 is most highly expressed in
enteric neurons suggesting an association with the gut-
brain-axis. Further genetic studies may reveal the role of
SPRY2 in both depression and obesity, particularly in
females.
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UBE2M has been associated with various cancers72–74,
and dermatomyositis75. These illnesses predominantly
affect males and commonly have overactivation of
UBE2M that generally results in poorer survival72–75.
Similarly, we show that UBE2M is a more male-specific
gene with greater expression in MDD cases. Additionally,
UBE2M is most highly expressed in peripheral sensory
neurons, which are also affected in some cases of der-
matomyositis76–82. Further studies are needed to better
understand this gene in the context of both dermato-
myositis and depression.
Although ITPR3 was filtered from the Ding et al. study,

it remained highly prioritized with higher expression in
cases, particularly males. This gene encodes a receptor
protein that mediates the intracellular release of cal-
cium83. In our analysis, ITPR3 was most highly expressed
in the supraoptic nucleus of the hypothalamus. This
region produces vasopressin, an antidiuretic hor-
mone84,85. Past studies found that MDD cases have
increased vasopressin plasma concentrations, which were
also found to be positively correlated with psychomotor
retardation86–88. Inositol and its supplementation have
been studied in the context of depression with mixed
results (reviewed in ref. 89). Additional studies are needed
to assess the interrelationship between ITPR3, vaso-
pressin, inositol, calcium and depression.
The limitations of this study are consistent with those

inherent in most postmortem brain gene expression stu-
dies and must be considered when interpreting our
results. By combining datasets, we sought to alleviate
challenges associated with low sample size and choice of
brain regions assayed. Signals of RNA quality, post-
mortem interval, and patient drug use may still be present
despite efforts to control for these factors. Also, the dif-
ferential expression signature of depression in the brain
appears to be weak. When the individual publications are
considered separately, two of the three did not identify
differentially expressed genes after multiple test correc-
tion with Ding and colleagues identifying only nine. When
examining each of the 26 studies in isolation, only two
genes survive correction for 269 tests (CKB and UBE2M).
Another limitation is that our use of Fisher’s method
assumes the independence of gene expression profiles
from different regions of the same donor. As a result, the
correlation between expression profiles from different
regions of the same donor will probably boost signals
repeated across brain regions. We performed ranked and
cortical/subcortical analyses to address this, but note our
analyses are biased towards expression differences that are
consistent across brain regions. We also note that not all
of the 269 genes had data from all three transcriptomic
studies. Furthermore, the cell-type results are based on
mouse rather than human data, which may not accurately
translate to humans. This species difference also resulted

in missing cell-type taxon assignment for some of the 269
depression risk genes without a mouse homolog. While
the neuroanatomical enrichment analyses were performed
on pathologically normal brains, we hope that our results
will help target future cell and region-specific studies.

Conclusion
We prioritized the 269 GWAS depression risk genes

and highlighted 12 that were consistently differentially
expressed across three transcriptomic studies of MDD:
MANEA, UBE2M, CKB, ITPR3, SPRY2, SAMD5,
TMEM106B, ZC3H7B, LST1, ASXL3, ZNF184 and
HSPA1A. We provide evidence of greater influence from
sex compared to the brain region profiled. Our results
revealed the depression risk genes are maximally expres-
sed in various brain regions but highlight the dorsal lateral
geniculate nucleus of the thalamus. In the mouse nervous
system, cholinergic, monoaminergic, and enteric neurons
highly express the candidate genes. Characterization of
where these genes are most expressed revealed a diversity
of regions, supporting depression’s heterogeneous nature.
Overall, our results contribute important information to
guide future studies and advance our understanding of the
etiology of depression.
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