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Intrinsic organization of cortical networks predicts
state anxiety: an functional near-infrared
spectroscopy (fNIRS) study
Lian Duan1, Nicholas T. Van Dam2,3, Hui Ai 1 and Pengfei Xu 4,5,6

Abstract
Although state anxiety has been characterized by hyper-responsive subcortical activity and its bottom-up connectivity
with cortical regions, the role of cortical networks in state anxiety is not yet well understood. To this end, we decoded
individual state anxiety by using a machine-learning approach based on resting-state functional connectivity (RSFC)
with functional near-infrared spectroscopy (fNIRS). Our results showed that the RSFC among a set of cortical networks
were highly predictive of state anxiety, rather than trait anxiety. Specifically, these networks included connectivity
between cortical areas in the default mode network (DMN) and dorsal attention network (DAN), and connectivity
within the DMN, which were negatively correlated with state anxiety; connectivity between cortical areas in the DMN
and frontoparietal network (FPN), FPN and salience network (SN), FPN and DAN, DMN and SN, which were positively
correlated with state anxiety. These findings suggest a predictive role of intrinsic cortical organization in the
assessment of state anxiety. The work provides new insights into potential neural mechanisms of emotion states and
implications for prognosis, diagnosis, and treatment of affective disorders.

Introduction
Anxiety characterizes a subjective emotional state, relating

to spatially or temporally distant and/or uncertain threat; it is
often accompanied by autonomic arousal and behavioral
avoidance1,2. In contrast to fear which represents a more
automated response to an imminent or immediate threat,
anxiety is commonly associated with an individual’s appre-
hension about potential or distant harm/threat2. While trait
anxiety reflects an individual’s predisposition for anxious
responses, state anxiety reflects a temporary, subjective
experience of apprehension about a potential threat or
negative experience3,4. Thus, state anxiety represents a cru-
cial situational relationship between physiological and

subjective experiences of potential threat/harm5. State anxi-
ety also reflects a potential precursor to broader tendencies
in that the regular recurrence of particular states is likely to
underpin the development of traits, over time6,7. While the
veracity of subjective experience is, by definition, impossible
to ascertain, objective markers of the subjective experience of
fear may be critical to understanding why some people
experience exaggerated threat responses while others do
not2. To be sure, these exaggerations likely stem from some
critical vulnerabilities (e.g., elevated trait anxiety or neuroti-
cism) but having some way of easily tracking the individual’s
state response as events are unfolding could hold much
potential for predicting and treating anxiety disorders.
Although some studies suggest common brain networks

among state, trait and pathological anxiety8,9, psychometric
(and related brain imaging) analyses suggest that cognitive
and somatic/physiological anxiety are quite different1,10,11.
State anxiety has been shown to be more correlated with
physiological/somatic symptoms than is trait anxiety12. Thus,
state anxiety is more likely to reflect an individual’s subjective
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(bodily) attention to and/or interpretation of their present
apprehension about imminent threat or harm, providing a
key link between trait anxiety and the fear response. Indeed,
recent work has shown that while trait anxiety tracks with
intrinsic connectivity in midline cortical areas, state anxiety is
more associated with activity in the insula13. Psychother-
apeutic treatments for anxiety focus on reducing broader
maladaptive behavioral patterns (consistent with trait anxi-
ety) across treatment but also focus in session on experience
at the moment, i.e., state anxiety; see, e.g., ref. 14.
On the basis of neuroimaging studies for brain

responses of anxious individuals to attentional15 and
emotional16,17 processes, previous models highlight the
role of hyperactive bottom-up input of the amygdala
during specific processes in state anxiety18,19. However,
recent a brain network model20 and meta-analysis9 have
shown common connectivity patterns within and between
various cortical areas between anxiety and anxiety dis-
orders21, including alterations in the frontoparietal con-
trol network (FPN), default mode network (DMN), dorsal
attention network (DAN), ventral attention network, sal-
ience network (SN), and sensorimotor network. Interest-
ingly, sustainedly altered activity in the vmPFC of the
DMN has been observed during temporally persistent
states of anxiety regardless of emotional manipulations22,
pointing to alterations of intrinsic activity in state anxiety.
Resting-state functional connectivity (RSFC) is assumed to

characterize commonly intrinsic representations of func-
tional brain architecture across cognitive functions and is
predictive of brain responses to task manipulations23 and
individual difference24. While a recent proposed
connectome-based predictive modeling model has been
shown to effectively detect cognitive and brain state
variability based on features from RSFC with full cross-
validation25,26, both structural27 and functional28 con-
nectivity of limbic areas with prefrontal regions have been
shown to predict individual variations in trait anxiety.
Individual differences in functional connectivity have
been shown to be composed of both trait-relevant and
state-dependent characteristics29. However, whether state
anxiety could be predictable based on the intrinsic con-
nectivity of brain networks, especially the cortical net-
works remain unclear. To this end, we conducted a
functional near-infrared spectroscopy (fNIRS) study in
individuals with various levels of state anxiety. We
expected that the cortical areas in the previously proposed
networks such as FPN and DMN should be able to predict
state anxiety.

Materials and methods
Participants and paradigm
Ninety-six healthy young adults (22.8 ± 2.7 years of age,

48 female) participated. The sample sizes were deter-
mined based on previous studies about the connectivity-

based prediction of anxiety27,28. No participants had any
history of psychiatric illness or neurological disease. All
provided informed consent prior to the experiment. The
study protocol was approved by the Institutional Review
Board at Shenzhen University.
All participants underwent a 7-min session of resting-

state fNIRS recording. They sat in a comfortable chair with
their eyes closed and were instructed to keep still, to relax
their mind, to remain awake, and not to think about any-
thing systematically30. No participants reported sleep or
were observed to be sleeping during fNIRS recording. After
fNIRS data collection, participants completed the state and
trait versions of the State-Trait Anxiety Inventory31.

fNIRS data acquisition and preprocessing
The fNIRS measurement was conducted with an ETG-

4000 continuous-wave optical topography system (Hitachi
Medical Company, Tokyo, Japan). The absorption of the
near-infrared light at two wavelengths (695 and 830 nm) was
measured with a sampling rate of 10Hz. Three pieces of
probe sets were used, including one-piece placed on the
frontal area and two pieces placed on the bilateral temporal-
parietal areas, forming 46 channels in total. The frontal probe
set was placed by approximately putting its bottom middle
optode on Fpz of the international 10–20 system32, and the
bilateral temporal-parietal probe sets were placed by
approximately putting their anterior inferior optode on T7
and T8, respectively (Fig. 1). The source-detector distance
was 30mm. The cortical localizing MNI coordinates of the
channels were obtained by using a 3-dimensional digitizer
and the NIRS-SPM software33,34.
The light absorption data were converted to oxygenated

(HbO) and deoxygenated (HbR) hemoglobin data via appli-
cation of the modified Beer–Lambert law35 with a differential
pathlength factor of 6.2636. The first and the last 10 s of data
were discarded to ensure steady-state. Data were visually
inspected to reject artifacts such as motion-related
noises37,38. To remove superficial physiological noise and
its related spurious connectivity39,40, the wavelet-based
method was used to remove global physiological noise
from the signal41. The data were band-pass filtered
(0.01–0.08Hz) to extract spontaneous neural activity42.

Feature extraction
To extract features for prediction of individual phenotypic

differences, we defined the fNIRS channels as nodes within
specific resting-state networks cf43. RSFC was calculated
between each channel and all other channels, representing
network edges, resulting in a resting-state network contain-
ing 46 nodes and 1035 edges for each participant. We
defined the RSFC as the Pearson correlation coefficient
between the time courses of each pair of channels44. All 1035
RSFC values made up the feature vector which was used to
predict individual phenotypic variation.

Duan et al. Translational Psychiatry          (2020) 10:402 Page 2 of 9



Prediction model
We built a multiple linear prediction models based on

ridge regression (Fig. 2). Ridge regression is a regularized
regression model which is particularly effective when the
number of predictors is much bigger than the number of
observations and collinearity exists among the pre-
dictors45. To assess whether the regression model could
predict the individual differences in anxiety, we used a
stratified eightfold cross-validation approach with the
nested cross-validation for the regularization parameter
estimation27. Specifically, we split the data of 96 partici-
pants eightfold. Each fold consisted of 12 participants and
had a similarly distributed range of anxiety values. We
performed eight iterations of model training and testing.
In the kth iteration, we kept the kth fold of data as the
testing set (12 samples) and used the remaining sevenfold
of data as the training set (84 samples) to train the
regression model. To determine the regularization para-
meter (alpha) of the ridge regression, for every iteration,
we traversed the alpha values from 0.01 to 10 in steps of
0.01. For every alpha value, we conducted a leave-one-out
cross-validation (LOOCV) only using the training set. We
averaged the alpha values corresponding to the maximum
mean accuracy of the LOOCV across iteration to obtain a
mean alpha value for model training. The mean alpha
value was also used in a permutation test (see below). We

tested the model of each iteration using the reserved
testing set and produced 12 predicted anxiety scores. We
concatenated the predicted anxiety scores from all the
eight iterations and obtained a vector of 96 predicted
anxiety scores, one predicted score for each participant.
We calculated the accuracy of the predictions by com-
puting the mean squared error (MSE) and the Pearson
correlation coefficient (r) between the predicted and
actual state/trait anxiety scores.
To test the statistical significance of the accuracy of the

predictions, we conducted a permutation test by ran-
domly pairing the samples and the anxiety scores. We
performed 10,000 permutations and calculated the MSE
of the model fit. We determined the p value as the pro-
portion of iterations in which the MSE derived from the
randomized data were smaller than or equal to that
derived from the real data.
To validate the model performance, we also estimated

the model by using different cross-validation schemes (4,
6, 12, 16-fold), and calculated the correlation coefficients
between actual and predicted anxiety scores.

RSFC in the prediction of anxiety
In order to determine which features (i.e., which

resting-state functional connectivity) significantly con-
tributed to the prediction of the individual differences in

Fig. 1 Schematic representations of optodes and channels. A The configuration of the fNIRS probes and B the localization of the fNIRS
measurement channels.
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anxiety, we used a bootstrap approach as used in previous
studies27,46. Specifically, we performed 1000 bootstrap
samplings with replacement. We generated 1000 inde-
pendent regression models and estimated the 99% con-
fidence interval of each feature’s weight. Those features
whose 99% confidence interval was either entirely above
or below zero were determined as significantly con-
tributing features. To further characterize the connectivity
properties of significant RSFC, we determined the ana-
tomical localization and the resting-state network affilia-
tion of terminal regions by using the automated
anatomical labeling template47 and the seven-network
brain surface parcellation template48, respectively.

Results
Prediction model
The models were used to attempt to predict both state

and trait anxiety, separately. The scores of state anxiety
ranged from 20 to 70 (Fig. 3A). The permutation tests
showed that the ridge regression model could significantly
predict levels of state anxiety above chance (mean alpha
= 3.93, p < 0.0054, Fig. 3B). The MSE of our model was
122.04, while the mean MSE of the randomized permu-
tation samples was 184.42. Pearson’s correlation between
the predicted state anxiety scores and self-reported state
anxiety scores was significantly correlated [r (95)= 0.36, p
< 3.43 × 10−4, Fig. 3C]. The validation analysis of different
cross-validation schemes showed that the results were
very robust (Table 1).
We also fitted the same model in trait anxiety (range:

22–66; Fig. 3D). The permutation test showed that the
model was not significantly predictive of levels of trait
anxiety (p= 0.474, Fig. 3E). Predicted and self-reported
trait anxiety were not significantly correlated [r (95)= 0.03,

p= 0.75, Fig. 3F], though the state anxiety was highly
correlated with those of trait anxiety (r (95)= 0.67, p <
1.46 × 10−13, Fig. 3G). To test whether the current pre-
dictive model is specific to the state rather than trait
anxiety, we regressed state anxiety on trait anxiety. Then
we used the connectivity-based model to predict the
residuals. Results showed that the correlation between
predictive scores and residuals was marginally significant
(r= 0.20, p= 0.051), suggesting that the current pre-
dictive model is largely associated with state anxiety,
independent of trait anxiety.

RSFC contributions to the prediction of state anxiety
The bootstrap analysis determined the rsFC sig-

nificantly contributed to the prediction model of state
anxiety (Fig. 4; Fig. 5; Table 2). Generally, the contributing
RSFC with negative weights was primarily distributed
within DMN and between DMN and DAN (Fig. 4A, B;
Fig. 5B), while the contributing RSFC with positive
weights was primarily distributed between FPN and
DMN, FPN, and DAN, as well as FPN and SN (Fig. 4C, D;
Fig. 5C).

Discussion
In the current study, we established a connectome-

based predictive model of state anxiety based on intrinsic
connectivity between cortical networks, including DMN,
FPN, DAN, and SN. These findings demonstrate a crucial
role of cortical regions in the individualized prediction of
state anxiety, extending the classical amygdala-centric
model of state anxiety. The state anxiety specific pre-
dictive model reveals potential neural underpinnings for
the distinction of state-trait anxiety. The prediction of
state anxiety suggests prominent contributions of state-

Fig. 2 Schematic of the model fit. To fit the predictive model, we used a stratified eightfold cross-validation approach. We performed eight
iterations of model training and testing. To determine the regularization parameter alpha, the training set of each iteration was entered into a nested
leave-one-out cross-validation process. Specifically, in iteration k (k= 1, 2,⋯, 8), we traversed the alpha values (α) from 0.01 to 10 in steps of 0.01. For
each α, we conducted a leave-one-out cross-validation and calculated the corresponding mean squared error, MSE(α). Then we picked the α which
minimized MSE(α), denoted as αk. We averaged αk (k= 1, 2,⋯, 8) and obtained a mean value α*, which was used as the regularization parameter for
model training.
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dependent connectomic characteristics to the prediction
of individual differences.
Our results reveal the intrinsic connectivity of cortical

network contributes to the prediction of anxiety state.
Although state anxiety has been characterized by hyperactive
amygdala while trait anxiety is linked with hypoactive pre-
frontal top-down control in previous models18,19, abundant
studies show cortical alterations in state anxiety as well.
Increased intrinsic connectivity of the DMN with the insula
of the SN has also been observed positively correlated with
levels of state anxiety in both youth and adults49. Altered
activation of the brain areas in the SN during threat mon-
itoring has been linked with the individual differences in state
anxiety50. State anxiety has also been shown to be associated
with responses of the vmPFC to threat51. Alterations in
cross-frequency coupling of cortical oscillations have also
been observed to be associated with state anxiety52. While
hyperactive amygdala representing hyper-functional stimu-
lus-driven bottom-up processing, cortical alterations may

indicate abnormal top-down response to the bottom-up
input20. Hyperactivation in the amygdala in emotion pro-
cessing in anxious patients has been shown to be associated
with its decoupling with the DMN at rest, the strength of
which was negatively correlated with state anxiety, suggesting
a dysfunctional inhibition of the DMN on the subcortical
amygdala activation in anxiety53. Alterations of
subcortical–cortical connectivity have been widely shown in
both state and trait anxiety50 during task-specific cognitive
processes54,55 and task-nonspecific resting state56–58. Taken
together, these brain features provide substantial candidates
for the current predictive models, raising possibilities for the
predictive role of cortical networks in anxiety states.
The model established in the current study is specific

for the state rather than trait anxiety. State anxiety has
been distinguished from trait anxiety by the definition of
temporal and persistent characteristics of anxiety. In the
psychometrical model, state anxiety is composed by
cognitive worry and autonomic emotional dimensions,
whereas trait anxiety consists of four dimensions includ-
ing social evaluation, physical danger, ambiguous, and
daily routines1. Although common brain networks
between state and trait anxiety have been revealed by
functional connectivity study8, differentiating neural
mechanisms of transient versus sustained anxiety has also
been shown in generating and regulating anxiety22. While
a common neural pathway of the AI in the SN with
amygdala has been shown between state and trait anxiety
with the specificity that state and trait anxiety are asso-
ciated with the functional and structural connectivity,
respectively56. These findings converge to common and
distinctive mechanisms between state and trait anxiety,
providing a potential schemes for diagnosis and treatment
of clinical syndromes of anxiety.

Fig. 3 Distribution of anxiety scores and performance of the prediction model. A Frequency distribution of levels of state anxiety. B Frequency
distribution of the MSE scores for the prediction analysis in state anxiety. C Scatter plot for the relationship between self-report scores and predicted
scores in state anxiety. D Frequency distribution of levels of trait anxiety. E Frequency distribution of the MSE scores for the prediction analysis in trait
anxiety. F Scatter plot for the relationship between self-report scores and predicted scores in trait anxiety. G Scatter plot for the relationship between
state and trait anxiety.

Table 1 Results of different fold number of cross-
validation.

Alpha MSE r

MSE-value p Value r Value p Value

4-fold 7.60 120.15 0.0076 0.35 4.26 × 10–4

6-fold 5.58 122.75 0.0109 0.34 6.53 × 10−4

8-fold 3.93 122.04 0.0054 0.36 3.43 × 10−4

12-fold 3.42 124.55 0.0103 0.36 3.50 × 10−4

16-fold 5.05 124.23 0.0101 0.35 3.97 × 10−4
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Our work provides evidence for prediction of emotion
states, besides prediction of personality trait or psycho-
pathology. The connectivity-based predictive model

characterizes individual-specific trait profiles in a way as
fingerprint59, which has been widely applied to cognitive
functions24,26, personality trait28,60, and clinical

Fig. 4 Contributing RSFC in the prediction of state anxiety. A The definition of nodes in the default mode network (DMN) and frontal-parietal
network (FPN). B Brain regions showed negatively weighted connectivity in the DMN and FPN. C The definition of nodes in the DMN, FPN, dorsal
attention network (DAN), and salience network (SN). D Brain regions showed positively weighted connectivity in the DMN, FPN, DAN, and SN.
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disorders61. However, extensive evidence also shows
indispensable contributions of state-dependent functional
architecture to Individualized brain organization62,63.
Brain state manipulations have been shown to improve
the prediction of individual traits by amplifying individual
variations in specific state64. State-independent

cortical–subcortical dysconnectivity has been shown to
be fundamental for psychosis prediction and character-
ization65. These results jointly suggest that linking state-
dependent functional reorganization with an individual
differences would contribute to the explanation of beha-
vioral phenotypes and clinical symptoms.

Fig. 5 Connectivity patterns of the six contributing networks. Patterns of A both negatively and positively weighted connectivity. B Connectivity
within the DMN, between the DMN and DAN, negatively predicted levels of state anxiety. C Connectivity of the FPN with the DMN, DAN, and SN
positively contributed to the prediction of state anxiety. See Fig. 1 for the location for each number of the optode. DMN default mode network, FPN
frontoparietal network, DAN dorsal attention network, SN salience network, SMN somatomotor network, LN limbic network.

Table 2 Contributing RSFC in the prediction of state anxiety.

Feature (rsFC) Seed Target Weight Confidence interval

Channel Region Network Channel Region Network

Negative weight 1 MFG.R DMN 26 ANG.R DMN −0.6519 −1.2696 −0.0342

7 SFGmed.L DMN 45 MTG.L DMN −0.5978 −1.1455 −0.050

8 MFG.L DMN 44 MTG.L DAN −0.545 −1.0374 −0.0526

17 SFG.L DMN 38 IPL.L DMN −0.7883 −1.5126 −0.0639

8 MFG.L DMN 25 SMG.R DAN −1.6234 −3.1666 −0.0802

37 IPL.L DAN 38 IPL.L DMN −0.7641 −1.514 −0.0142

Positive weight 2 SFG.R DMN 6 SFG.R FPN 0.8241 0.0626 1.5856

7 SFGmed.L DMN 34 MTG.R FPN 0.9947 0.0729 1.9165

13 MFG.L FPN 30 SMG.R SN 0.854 0.0615 1.6465

13 MFG.L FPN 37 IPL.L DAN 0.7145 0.0721 1.3569

5 MFG.R SN 6 SFG.R FPN 0.7113 0.0113 1.4114

2 SFG.R DMN 19 ORBmid.R FPN 0.9085 0.015 1.8019

2 SFG.R DMN 42 SMG.L SN 0.7256 0.043 1.4083

9 MFG.L FPN 39 ANG.L DMN 0.7408 0.0284 1.4532

13 MFG.L FPN 32 MTG.R DAN 0.8008 0.0005 1.6011

L left, R right, MFG middle frontal gyrus, SFGmed superior frontal gyrus (medial part), IPL inferior parietal lobule, ANG angular gyrus, MTG middle temporal gyrus, SMG
supramarginal gyrus, ORBmid middle frontal gyrus (orbital part), DMN default mode network, DAN dorsal attention network, SN salience network, FPN frontoparietal
network.
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Potentials imitations of the current study should be noted.
State anxiety in the current study could be more or less
different from the task-evoked transient anxiety. What we
measured was a self-reported temporal anxious state without
any specific bottom-up input from task manipulations, which
might be relatively tonic in comparison to transient anxiety
response to a specific stimulus but relatively phasic com-
pared to stable trait anxiety. Therefore, explanations of the
state of anxiety should be cautious here. In addition, the
measurement channels in the present study could not cover
the whole brain because of limited fNIRS probes. However,
the configuration in frontoparietal areas was priori defined in
terms of the regions characteristic in anxiety20 and the
regions with high connectivity variability that predominant in
individualized prediction66. Last but not least, given the
comorbidity of depression with anxiety, there might be
potential influences of depression on the current results.
Trait anxiety mitigated but did not eliminate, the associations
of state anxiety with connectivity. While past work has
shown that trait anxiety is associated with depression67, it is
possible that depression had potential confounding effects on
our findings. Given that the current study examined healthy
individuals with various levels of state anxiety, future studies
are necessary to test the utility of the current predictive
model for clinical anxiety.
In conclusion, we demonstrate intrinsic connectivity

between cortical networks is specifically predictive of
individual anxiety state. These findings shed light on the
prediction of emotional states and potential neural
mechanisms of trait-state distinction in anxiety, which
would have important implications for prognosis and
diagnosis of anxiety and anxiety disorders.
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