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Abstract

Aberrant topological organization of brain connectomes underlies pathological mechanisms in major depressive
disorder (MDD). However, accumulating evidence has only focused on functional organization in brain gray-matter,
ignoring functional information in white-matter (WM) that has been confirmed to have reliable and stable topological
organizations. The present study aimed to characterize the functional pattern disruptions of MDD from a new
perspective—WM functional connectome topological organization. A case-control, cross-sectional resting-state
functional magnetic resonance imaging study was conducted on both discovery [91 unmedicated MDD patients, and
225 healthy controls (HCs)], and replication samples (34 unmedicated MDD patients, and 25 HCs). The WM functional
networks were constructed in 128 anatomical regions, and their global topological properties (e.g., small-worldness)
were analyzed using graph theory-based approaches. At the system-level, ubiquitous small-worldness architecture and
local information-processing capacity were detectable in unmedicated MDD patients but were less salient than in HCs,
implying a shift toward randomization in MDD WM functional connectomes. Consistent results were replicated in an
independent sample. For clinical applications, small-world topology of WM functional connectome showed a
predictive effect on disease severity (Hamilton Depression Rating Scale) in discovery sample (r=0.34, p = 0.001).
Furthermore, the topologically-based classification model could be generalized to discriminate MDD patients from
HCs in replication sample (accuracy, 76%; sensitivity, 74%,; specificity, 80%). Our results highlight a reproducible
topologically shifted WM functional connectome structure and provide possible clinical applications involving an
optimal small-world topology as a potential neuromarker for the classification and prediction of MDD patients.

Introduction

Human brain connectomics parsimoniously balance the
local specialization and global integration to embed a
small-world topology"?. This optimal architecture ubi-
quitously persists in both intact and diseased human
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functional and anatomical connectomes®™®. A functional
connectome is generally explored in brain gray-matter
(GM) using resting-state functional magnetic resonance
imaging (fMRI). Anatomical connectomes, based on
bundles of axons within white-matter (WM), are normally
characterized using diffusion-tensor imaging (DTI).
Although DTI can characterize the detailed infrastructure
of WM, it fails to uncover brain dynamics within WM or
report possible function-activity states in WM.

Newly discovered evidence has revealed that brain WM
also contain neural signal dynamics responding to task-
induced brain activation, as well as to intrinsic brain
activity’ . Resting-state blood-oxygen-level-dependent
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(BOLD) fMRI signals in WM can be organized into WM
anatomical tracts and also strongly correlate with that in
GM°™'!, Beyond brain activity within WM, our previous
network-based works indicated that WM functional
connectomes exhibited a reliable and stable small-world
topology'?, and further offered a novel applicable neuro-
marker of general fluid intelligence'®. The detectable
functional organizations of WM were disrupted in various
psychiatric and neurological disorders'*™”. These dis-
turbances of WM functional networks might provide
additional functional information for advancing our
understanding of neuropsychopathology of brain diseases.

Depression has increasingly been postulated as an
alteration of whole-brain connectome organization, which
could serve as a specific diagnostic neuromarker and
therapeutic evaluation tool'®*™*°, These dysfunctional
network organizations suggest that patients with major
depressive disorder (MDD) may involve an abnormal
capacity of the overall information segregation or integrity
in the brain’s connectivity network'®*'. Leveraging graph-
analysis, nontrivial topological properties, involving global
(e.g., small-worldness, and modular structure) and nodal
properties (e.g., efficiency of highly connected hubs) are
disrupted during depression®>**, At a functional con-
nectome level within the GM, first-episode, drug-naive
depressive patients showed altered global properties (i.e.,
decreased path lengths and higher global efficiency),
indicating a shift toward randomization in brain con-
nectomes”’, which are with the capacity of increased
integration and/or decreased segregation**, However, an
opposite pattern and no significant depression-associated
differences also existed in these global measures®~*’. In
addition, at the anatomical connectomes within WM
scales, depressive patients also exhibited mixed findings
for global network integrity**=>°. On the basis of various
divergent brain connectome findings, several theories
have been proposed to explain MDD at the sample het-
erogeneity level and brain network definition level*>?",
On a brain network level, it was crucial to firstly elucidate
the role of WM functional connectomes because a
hypothesis of aberrant WM functional connectomes
might provide an additional functional neuromarker for
depression “beyond” GM functional and WM anatomical
connectomes.

This study aimed to comprehensively investigate the
topological organization of WM functional connectomes
in unmedicated MDD patients. As noted, small-world
topology is an optimized model used to characterize the
brain connectome, considering two fundamental organi-
zational principles in the brain: functional segregated and
integrated information processing21’32’33. Hence, the pre-
sent study examined whether the small-world topology of
WM functional connectomes was a possible unmedicated
MDD-related biomarker. This hypothesis was tested in a
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large discovery sample of unmedicated MDD patients by:
(i) utilizing a graph-based connectome approach to
characterize topological properties of WM functional
connectomes; (ii) quantifying alterations of small-world
topology in MDD patients; and (iii) exploring clinical
applications including depression severity prediction and
disease classification based on small-world topology.
Furthermore, the replicated alterations of small-world
topology were conducted using a completely independent
sample of MDD patients.

Materials and methods
Participants

Two independent samples (called discovery and repli-
cation samples) of unmedicated MDD patients were
recruited. Discovery samples were conducted by South-
west University, China. All MDD patients were recruited
from the Psychiatric Department of the First Affiliated
Hospital of Chongqing Medical University and diag-
nosed using the Structural Clinical Interview for Diag-
nostic and Statistical Manual of Mental Disorders, by
experienced psychiatric physicians. All MDD patients
underwent assessment for depression severity by using
the 17-item Hamilton Depression Rating Scale (HAMD).
The discovery samples included 103 unmedicated MDD
patients and 252 age- and sex-matched healthy controls
(HCs). Briefly, MDD patients were excluded if they: (i)
were <18 years of age or >65 years of age; (ii) had HAMD
scores below 8; (iii) had major neurological or other
psychiatric disorders; and (iv) had magnetic resonance
imaging (MRI) abnormalities, or had any metal or elec-
tronic implants. With advertisements and posters,
demographically matched HCs were recruited from col-
lege and local community using the following criteria: (i)
no mood disorder or neurological disorders, (ii) no history
of psychiatric illness among their first-degree relatives,
and (iii) no history of substance or alcohol dependence.
This study was approved by the Ethics Committee of
Southwest University and First Affiliated Hospital of
Chongqing Medical University. Written informed consent
was obtained from all subjects.

Replication samples included 38 unmedicated MDD
patients and 30 age- and sex-matched HCs (recruited by
advertisements and posters). The methods and results
relative to the replication samples are reported in the
Supplementary Materials.

Data acquisition

All participants in the discovery sample underwent both
structural and functional image scanning using a Siemens
Trio 3.0 T MRI scanner (Siemens, Malvern, PA, USA) at
Southwest University, Chongqing, China. The structural
images were acquired from a high resolution, T1-
weighted magnetization-prepared rapid gradient echo
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sequence (repetition time=1900ms, echo time=
2.52 ms, inversion time =900 ms, flip angle =9°, field of
view = 256 x 256 mm?, matrix = 256 x 256, voxel size =
1x1x1 mm? and slices = 176). The resting-state fMRI
images were obtained using a single-shot, gradient-
recalled echo planar imaging sequence (repetition time =
2000 ms, echo time = 30 ms, flip angle = 90°, field of view =
220 x 220 mm?, matrix = 64 x 64, voxel size = 3.4 x 3.4 x
3mm?, and slices = 32). For each subject, a total of 242
volumes (484's) were acquired. All participants were
instructed to simply rest with their eyes closed. The data
acquisition of the replication sample is detailed in the
Supplementary Materials.

Data preprocessing

All images were preprocessed using DPARSF (v4.3,
www.restfrmi.net) and SPM12 toolkits (www.fil.ion.ucl.ac.
uk/spm/software/spm12), as in our previous studies®'*.
Structural images were co-registered with functional
images, and segmented into GM, WM, and cerebrospinal
fluid (CSF) using a diffeomorphic nonlinear registration
algorithm (DARTEL)** in SPMI12. Functional images
were preprocessed using a workflow®'"!'*3> that is
described in Supplementary Materials. To create a group-
level WM mask, voxels identified as WM across 80% of all
subjects were then included""'*. To eliminate the impact
of deep brain structures, the Harvard-Oxford Atlas (25%
probability) was used to remove subcortical nuclei (i.e.,
bilateral thalamus, putamen, caudate, pallidum, and
nucleus accumbens) from the group-level WM mask.
Quality control procedure was presented in Supplemen-
tary Fig. S1, and described in Supplementary Materials.
Finally, 91 unmedicated MDD patients and 225 HCs from
the discovery sample, and 34 unmedicated MDD patients
and 25 HCs from the replication sample were included in
subsequent analyses.

Construction of WM functional connectomes

To define nodes in WM functional connectomes
the group-level WM mask was randomly subdivided into
N (here, N=128) contiguous anatomical regions while
constraining the size of nodes as uniformly as possible
using a region-growing method®®. As previously described
by Zalesky et al.*>, N seed voxels in WM are randomly
chosen, each of which corresponds to the first voxel to be
classified as belonging to each of the N nodes. All other
voxels in WM remain unlabeled. The strategy is to
incrementally ‘grow’” each node voxel-by-voxel until every
WM voxel has been assigned to exactly one node. At each
iteration of the growth phase, a new voxel is assigned to
the node with the smallest volume®®. Each subject’s cor-
relation matrix (128 x 128) was constructed by Pearson’s
correlation coefficient between averaged time series
within each paired node. Subsequently, Fisher r to Z

12,13,15
)
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transformation was applied to the correlation matrices.
Topological properties were evaluated based on the
weighted WM functional connectomes. A schematic of
the analysis is shown in Fig. 1.

Topological properties of WM functional connectomes
For WM functional connectomes at each sparsity
threshold, the global topological properties were calcu-
lated. A small-worldness architecture supported integrated
and segregated information processing. Hence, the global
topological properties included small-world topology
involving the normalized clustering coefficient (y), nor-
malized shortest path length (1), and small-worldness (o)
(for a recent review on the interpretations of these net-
work topological properties)'®>. These topological prop-
erties are known to be interrelated and each provides a
different viewpoint from which to discern major features
of the large-scale architecture®’. We then calculated the
area under the curve (AUC) of each topological property
across the range of sparsities from 0.1-0.3 (interval = 0.01)
(Supplementary Fig. S2). Sparse thresholds were deter-
mined based on WM FC matrices across all participants
from the both discovery and replication samples (Sup-
plementary Materials). The AUC provides a summarized
scalar for topological properties of WM functional con-
nectome independent of single threshold selection and
was sensitive in detecting abnormalities of topological
properties in brain disorder’. The global topological
properties of WM functional connectomes were computed
using Gretna software (v2.0, www.nitrc.org/projects/
gretna). The mathematical definitions of these topologi-
cal properties are listed in the Supplementary Materials.

Statistical analysis
Demographic and clinical characteristics

Demographic and clinical characteristics were evaluated
between MDD patients and HCs. Differences in age and
education were analyzed using nonparametric
Mann—-Whitney U test (ie, values did not follow a
Gaussian distribution) or the two-sample t-tests (ie.,
values followed a Gaussian distribution). The y* test was
used for sex comparisons.

Global topological property comparisons

Differences in AUC values of global topological prop-
erties (including y, A, and o) between groups were
examined using nonparametric Mann—Whitney U tests
(i.e., values did not follow a Gaussian distribution) or two-
sample ¢-tests (i.e., values followed a Gaussian distribu-
tion). Age, sex, educational level, and head motion (mean
framewise displacement (FD) values) were used as cov-
ariates. The significance threshold was set at p <0.05.
Bonferroni correction was used for three planned
comparisons.
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Fig. 1 Schematic diagram of the study design. Step 1: Structural images were co-registered with preprocessed functional images. Step 2: The co-
registered structural image was segmented into WM, GM, and CSF. Step 3: The group-level WM mask was then randomly separated into 128
anatomical nodes with an approximately identical size. Step 4: BOLD-fMRI signals in WM were then obtained and used to compute FC matrices
between each pair of nodes using Pearson'’s correlation. Step 5: WM functional connectomes were constructed across a series of sparsity from 0.1-0.3
(interval = 0.01). Step 6: The AUC values of topological properties (i.e., small-world topology and nodal topological properties) were then evaluated
across a series of sparsity. Finally, the small-world topology was used as a feature to predict depressive severity and to distinguish the patients from
HCs. Abbreviation: AUC, area under curve; BOLD-fMRI, blood-oxygen-level-dependent functional magnetic resonance imaging; CSF, cerebrospinal
fluid; FC, functional connectivity; GM, gray matter; HC, healthy control; MDD, major depressive disorder; WM, white matter; SVM, support vector
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Relationships between small-world topology and
depression severity

With no strong a priori predictions, we specifically
investigated the relationships between the small-world
topology (including AUC values of y, A, and o) and
depression severity (HAMD scores) in the unmedicated
MDD patients using Pearson’s correlation analysis. The
significance threshold was set at p<0.05. Bonferroni
correction was used for three planned correlations.

Prediction model based on small-world topology

To further investigate a potential clinical application for
prediction in MDD, we predicted the depression severity
in both the discovery and replication samples from small-
world topology using a linear support vector regression

(SVR) model (LIBSVM toolbox v3.22, https://www.csie.
ntu.edu.tw/~cjlin/libsvm/)*®. Internal validation analysis
was first performed on the discovery sample. The AUC
values of small-world topologies (including y, A, and o) of
each patient were used as predictive features. A five-fold
cross-validation was used in linear SVR. Five-fold cross-
validation represents a good compromise between model
bias and variance”. Briefly, the MDD patients in discovery
sample were randomly divided into five folds. Among
them, four folds were used as training sets, and the
remaining one fold was selected as the testing set. For each
trial of cross-validation, the predictive HAMD score was
obtained for each patient in testing set based on the
building prediction model**??. Finally, we used the Pear-
son’s correlation to determine whether predicted HAMD
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Table 1 Clinical and demographic characteristics.
Characteristics Discovery sample Replication sample

Patients (n =91) HCs (n=225) p-values Patients (n = 34) HCs (n =25) p-values
Age (years) 3686+ 11.51 3946+ 15.88 047° 31.21+£890 2756 +7.07 0.09°
Gender (female/male) 62/29 148/77 0.69° 23/11 20/5 0.29°
Education (years) 1251+368 13.03+392 0.06° 1291 +3.21 1440+ 257 0.06°
Duration of illness (months) 2955+ 4152 NA NA 29.69 + 3851 NA NA
HAMD score 2230+3.96 NA NA 2276595 NA NA

HC healthy controls, HAMD 17-item Hamilton Depression Scale, NA not available.
Values were mean + standard deviation (SD).

Mann-Whitney U test

bChi-square test.

“Two-sample t-tests.

score is correlated with the observed HAMD score in
patients with MDD?*>??, To further externally validate the
generalization of the predictive model constructed on the
discovery sample, the same procedure was applied to the
patients with MDD in the replication sample.

Classification model based on small-world topology

To investigate another potential clinical application for
MDD classification, we distinguished MDD patients from
HCs using a support vector machine (SVM) model with
sigmoid kernel function (LIBSVM toolbox v3.22, https://
www.csie.ntu.edu.tw/~cjlin/libsvm/)*®. The AUC values
of small-world topologies (including y, A, and o) of each
patient were used as classification features. Because of the
imbalance of the discovery sample numbers (225 HCs vs.
91 MDD patients), an ensemble strategy was used to avoid
classification bias*®. Specifically, in each trial, 80% of
MDD patients and HC subjects of equal number were
randomly selected to train the SVM classification model.
This trial was repeated three times, which covered almost
all participants, and an odd value (=3) benefited the
subsequent voting procedures. Consequently, three clas-
sification models were created and then directly applied to
the replication samples, rather than to the discovery
sample. Finally, the classification label (1: positive, O:
negative) in replication sample was obtained based on the
voting for these three models.

Network analysis on replication sample

To produce a complete and direct replication, the small-
world topologies (including y, A, and o) of WM functional
connectomes were re-evaluated in the replication sample.
The AUC values of small-world topologies across the same
range of sparsity were then compared between MDD
patients and HCs using Mann-Whitney U tests or two-
sample t-tests after controlling for confounding factors of
age, sex, education, and head motion (mean FD). The

significance threshold was set at p < 0.05. Bonferroni cor-
rection was used for three planned comparisons.

Results
Demographic and clinical characteristics

The final analysis included data from 91 unmedicated
MDD patients and 225 HCs. No differences in age (p =
0.47), sex (p = 0.69), and educational level (p = 0.06) were
found between patients and HCs (Table 1).

Alterations of small-world topology

Small-world topology of WM functional connectomes
depends on the choice of sparsity. In the current study, a
data specific small-world topology was evaluated at a
sparsity range from 0.1-0.3 (internal = 0.01) and were
detected in both MDD patients and HCs. However, the
patients exhibited a significantly decreased normalized
clustering coefficient (y, Mann—Whitney U test, U = 8434,
p=0.01, Bonferroni-corrected), and small-worldness
architecture (o, Mann—Whitney U test, U =8427, p=
0.01, Bonferroni-corrected) compared with HCs (Fig. 2a).
No difference was found between patients and HCs in the
normalized shortest path length (A, Mann—Whitney U test,
U=10222, p=0.98) (Fig. 2a). These results suggested
disrupted and segregated information processing in MDD
patients (Fig. 2b). To determine possible head motion
effects on our results, we performed correlation analyses
between mean FD values and small-world topology across
participants in the MDD patients and HC groups,
respectively. The results showed no statistically significant
correlation between small-world topology and head
motion (Supplementary Table S1).

The relationship between small-world topology and
depressive severity

We quantified across-participant relationships between
small-world topology (y, A and ¢) and depression severity
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Fig. 2 Small-world topology in the patients with MDD and HCs. a Between-group comparisons showed the decreased normalized clustering
coefficient (Mann-Whitney U test, U= 8427, p=0.01, Bonferroni corrected), and small-worldness (Mann-Whitney U test, U= 8434, p =0.01,

Bonferroni corrected) in MDD patients compared to HCs. No difference was observed in normalized shortest path length (Mann-Whitney U test, U =
10,222, p =0.98). The AUC values were adjusted by age, sex, education, and head motion. b The patients with MDD exhibited the decreased small-
world topology patterns implied as a shift toward randomization in their WM functional connectomes. AUC, area under curve; HC, healthy control;

MDD, major depressive disorder.
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Fig. 3 Relationships between small-world topology and depressive severity in MDD patients. a—c The correlations between normalized
clustering coefficients (r=-0.27, p = 0.009, Bonferroni-corrected), normalized short path length (r=-0.06, p = 0.55) and small-worldness (r = -0.24,
p=0.02, uncorrected) and HAMD scores, respectively. AUC, area under curve; HAMD, 17-item Hamilton Depression Scale.

by measuring the HAMD. The small-world topology y
were negatively correlated with HAMD scores (r = -0.27,
p=0.009, Bonferroni-corrected) (Fig. 3a), whereas A
(r=-0.06, p=0.55) (Fig. 3b) and ¢ (r=-0.23, p =0.02,
uncorrected) (Fig. 3c) did not.

Prediction and classification results based on small-world
topology

We showed that a predictive model, based on small-
world topology features of discovery samples, could be
successfully applied to internal validation analyses. We
found a significant correlation between observed and
predicted HAMD scores in the discovery sample (r=
0.34, p =0.001) (Fig. 4). However, this predictive model
did not predict HAMD scores on replication samples

(r=0.24, p=0.17). We speculated that this generalized
prediction tendency might be due to the heterogeneity of
scanning parameters and depression severity evaluation
procedures.

To further clarify the important role of small-world
topology in WM functional connectomes in unmedicated
MDD patients, we trained the SVM based on small-world
topology in the discovery sample. We then obtained a
classification accuracy of 76% (sensitivity = 74% and spe-
cificity = 80%) in the replication sample.

Validation of topological properties in replication samples

We validated alterations of small-world topology in the
replication sample. MDD patients in the replication
sample also showed decreased global topological
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Fig. 4 Prediction of HAMD scores based on small-world topology
features in MDD patients. The predictive model, based on small-
world topology features, could predict HAMD scores in discovery
samples using a support vector regression model (r=0.34, p = 0.001).
HAMD, 17-item Hamilton Depression Scale.

properties including y (two-sample t-tests, t = -2.19, p =
0.03, uncorrected) and o (two-sample ¢-tests, t =—2.40,
p =0.02, uncorrected) compared with HCs, whereas no
difference was observed in A (two-sample ¢-test, £t =1.41,
p=0.16) (Figure S3). Furthermore, we did an auxiliary
analysis using 2 (patients and HCs) x 2 (discovery and
replication samples) two-way analysis of variance. We did
not find statistically significant interaction effect for
small-worldness (p =0.06), thus excluding the con-
founding factor of scanning parameter.

Discussion

Our findings suggest that integrated and segregated
information processing in the human brain are the
potential hotspots for aberrant WM functional con-
nectomes in MDD. Aberrant WM functional organiza-
tions were examined in both discovery and replication
samples, indicating a replicated less integrated function in
patients with MDD compared with HCs. Furthermore, the
detectable small-world topology predicted the depression
severity in MDD patients and distinguished these patients
from HCs, highlighting a new index for understanding the
pathological mechanisms of MDD.

Neuromarker of MDD-related topological properties

In the current study, we included MDD patients who
were not treated to rule out the heterogeneity of medi-
cation'®. Therefore, our findings suggested that the
abnormal small-world topology of WM functional con-
nectomes were unlikely attributable to medication.

The human brain is the most complex network known to
man. The rudimentary small-world topology balances
functional segregation and specialization, supporting a
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parsimonious architecture for human brain organization™.
This small-world topology was replicated in both WM
structural and GM functional connectomes of unmedicated
MDD patientszs'?’o. However, from brain dynamics within
WM functional perspective, our previous study elucidated
that the WM functional connectome also had reliable and
stable small-world topology after controlling for potential
confounding factors, such as head motion, parcellation,
Euclidean distance, global, and CSF signal regression
hemodynamic response function, and thresholding effects'.
The ubiquitous small-worldness architecture was detectable
in unmedicated MDD patients, suggesting an optimal
organization of the brain to enable efficient information
transfer of distributed processing. The decreased ¢ organi-
zation might be attributed to decreased y value, because of
the similar pattern of A between unmedicated MDD patients
and HCs. A high clustering refers to the ability of densely
interconnected groups of brain regions to perform specia-
lized processing procedures related to MDD?!. The
decreased y may reflect disrupted neuronal segregation
between interconnected brain regions and is consistent with
previous MDD studies based on GM functional or WM
structural connectomes**?, In addition, these abnormal
patterns of WM functional connectomes were somewhat
different from some previous findings regarding WM
structure and GM function in depressive patients'®*>*%%,
such as higher global efficiency of GM functional con-
nectomes in depressed patients, and increased path length
of structural connectome in patients with remitted geriatric
depression. The heterogenetic results may be caused by
brain network definition level. Thus, the identification of
potential WM functional features may help us to investigate
complementary biomarker for understanding the under-
pinning mechanism of MDD well.

Potential clinical applications for MDD

With the evidence pointing to abnormal small-world
topology in MDD patients, we performed several
exploratory analyses to test whether the small-world
topology of WM functional connectomes was strong
enough to be considered as potential biomarkers for
MDD clinical prediction and classification. For prediction
application, the small-world topology of WM functional
connectomes could be used as features to predict HAMD
scores in the discovery sample. Although the predictive
model could not perfectly predict HAMD scores in
replication samples, it showed a marginal tendency. This
phenomenon might be due to the heterogeneity of scan-
ning parameters and depression severity evaluations and
the relatively smaller sample size between the discovery
and replication samples. For classification application, the
current results distinguished unmedicated MDD patients
from HCs using small-world topology of WM functional
connectomes. However, MDD patients with the less
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segregated information processing in WM functional
connectome exhibited most depressive severity. The
combined two patterns suggested that the identified
small-worldness parameters of WM functional con-
nectomes were perhaps indicative of ‘trait’ markers, which
were generally associated with clinical status and classi-
fication. In addition, the prediction and classification
approaches have been proven to successfully differentiate
between MDD patients with and without suicidal ideation
based on topological properties of GM functional con-
nectomes>>, Future studies may examine whether apply-
ing the small-world topology of the brain connectome
facilitates the identification of MDD and further provides
early indications for psychiatric treatment.

Elaborating the possible physiological basis of BOLD fMRI
signals in WM

Despite brain connectome studies emerging in depres-
sion research, findings from WM functional connectome
are still limited. This deficiency may be due to the long-
standing controversy about concerning a possible phy-
siological basis in WM. The first concern is that WM
contains lower cerebral blood flow and volume compared
to GM’, resulting in lower BOLD fMRI signals and
weaker correlations within WM relative to GM. In addi-
tion, BOLD signals are associated with local field action
potentials in GM, while not reflecting action potentials in
WM”*, However, in comparison to GM, and regardless
of large discrepancies with respect to the physiological
factors observed between GM and WM, WM maintains a
higher ratio of glial cells to neurons**, while showing an
approximately equal oxygen extraction fraction. Finally,
BOLD fMRI signals in WM are always regarded as noise
or artifact to be regressed out during resting-state fMRI
preprocessing and often are overlooked with application
of GM masks during fMRI analyses''. However, recent
studies have reported existing functional information in
WM using resting-state fMRI”">'"'?, suggesting that
there are no fundamental barriers or direct sources of
evidence against the possibility of detecting WM neural
activities using BOLD-fMRI.

Although the functional information was detected in
WM, an existing issue is whether WM BOLD-fMRI sig-
nals are not interfered by GM neural activities. From the
architecture of brain venous systems, the deoxygenated
blood from WM is almost independent from cortical GM.
In fact, there are two venous systems in normal neuroa-
natomy: one is the superficial venous system, which drains
deoxygenated blood in superficial WM and then via the
GM cortex into pial veins; the other is the deep system
draining deoxygenated blood in deep WM into sub-
ependymal veins. The brain venous architecture is spa-
tially non-overlapping. Deoxygenated blood drainage
from the GM cortex to the deep venous system through

Page 8 of 10

WM does exist, but the probability of draining is less than
3%'>?>%, Therefore, the BOLD-fMRI signals from WM
are almost all from WM from brain venous systems. More
importantly, we also applied several methods to ensure
that WM BOLD-fMRI signals were not affected by strictly
GM signals by controlling the boundary between WM
and GM (with 90% threshold on the probability map of
WM), masking out GM functional images from WM
functional preprocessing, and therefore, identifying par-
ticipants’ voxels only in the WM to create WM
mask®'"'%, Thus, the abnormal topological properties of
WM functional connectomes are in fact due to alterations
in WM BOLD-fMRI signals.

Limitations and future directions

The current study has several limitations. First, the
sample size in designing the replication sample was small.
This would result in small statistical power of altered
small-world topology which did not survive after Bon-
ferroni correction. Future studies should increase the
replication samples to validate the current finding. Sec-
ond, the heterogeneity of scanning parameters and
depression severity evaluations are different between the
discovery and replication samples. This would contribute
to small predictive power of HAMD scores. Another
possibility is that the substantial heterogeneity of
depression itself”” may not be the most compelling goal
to predict diagnostic symptoms as a whole. Third,
although we have validated the stability and reliability of
small-worldness in WM functional connectome using
resting-state fMRI'?, future study will investigate the
stability of topological properties across different cogni-
tive task-based fMRI for better exploring the under-
pinning mechanism in MDD. Finally, considering the
several WM structural connectome studies and the first
study exploring WM functional connectomes in MDD
patients, we did not include WM structural connectomes.
Future studies will investigate whether combining the
WM functional connectome with WM structural con-
nectome or GM functional connectome can provide
complementary biomarkers for understanding the bio-
logical mechanisms of MDD patients, such as the iden-
tification of neuromarkers for classification and
prediction.

Conclusions

The current study firstly investigated the topological
properties of WM functional connectomes in MDD
patients with no medication history. We identified and
replicated robust decreased small-world topology in two
completely independent samples compared to HCs. The
clinical applications based on small-world topology of
WM functional connectome suggested the potential bio-
marker of WM functional connectomes on MDD-related
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early prognosis and diagnosis. Collectively, the replicated
effects in WM functional connectomes provide a novel
index of small-world topology alterations in unmedicated
MDD that can be readily combined with additional neu-
roimaging modalities, perhaps yielding more sensitive
neuromarkers for MDD.
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