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Widespread transcriptional disruption of the
microRNA biogenesis machinery in brain and
peripheral tissues of individuals with schizophrenia
Romain Rey 1,2,3, Marie-Françoise Suaud-Chagny1,2, Jean-Michel Dorey2,4, Jean-Raymond Teyssier5 and
Thierry d’Amato1,2,3

Abstract
In schizophrenia, altered transcription in brain and peripheral tissues may be due to altered expression of the
microRNA biogenesis machinery genes. In this study, we explore the expression of these genes both at the cerebral
and peripheral levels. We used shinyGEO application to analyze gene expression from ten Gene Expression Omnibus
datasets, in order to perform differential expression analyses for eight genes encoding the microRNA biogenesis
machinery. First, we compared expression of the candidate genes between control subjects and individuals with
schizophrenia in postmortem cerebral samples from seven different brain regions. Then, we compared the expression
of the candidate genes between control subjects and individuals with schizophrenia in three peripheral tissues. In
brain and peripheral tissues of individuals with schizophrenia, we report distinct altered expression patterns of the
microRNA biogenesis machinery genes. In the dorsolateral prefrontal cortex, associative striatum and cerebellum of
individuals with schizophrenia, we observed an overexpression pattern of some candidate genes suggesting a
heightened miRNA production in these brain regions. Additionally, mixed transcriptional abnormalities were identified
in the hippocampus. Moreover, in the blood and olfactory epithelium of individuals with schizophrenia, we observed
distinct aberrant transcription patterns of the candidate genes. Remarkably, in individuals with schizophrenia, we
report DICER1 overexpression in the dorsolateral prefrontal cortex, hippocampus and cerebellum as well as a
congruent DICER1 upregulation in the blood compartment suggesting that it may represent a peripheral marker.
Transcriptional disruption of the miRNA biogenesis machinery may contribute to schizophrenia pathogenesis both in
brain and peripheral tissues.

Introduction
Schizophrenia (SZ) affects approximately 1% of the

worldwide population and is responsible for a tremendous
burden on society1. Subjects with SZ have a life expec-
tancy of approximately 20 years below that of the general
population2. Indeed, SZ is responsible for a dramatic
increase in mortality due to suicide but also to somatic
diseases (especially metabolic, cardiovascular pathology,

and cancers)2. In this respect, SZ is now considered as a
systemic disease in which pathological processes take
place not only at the cerebral level but also in peripheral
tissues3,4. Despite its high prevalence and major clinical
impact, SZ pathogenesis remains elusive. However, there
is strong evidence that the disorder is caused by the
interplay of environmental and genetic factors5.
New insights in schizophrenia pathogenesis have been

brought by the advent of microarray technologies and
more recently by transcriptome sequencing6–8. High-
throughput gene expression studies have constantly
reported the aberrant transcription of numerous genes in
brain and peripheral tissues of individuals with SZ (SZ
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individuals). To date, most findings from human post-
mortem brain tissues, peripheral tissues as well as animal
models have characterized differential expression of genes
involved in presynaptic function, neurotransmission, sig-
naling, myelination, neural development and migration,
immune/inflammatory mechanisms, energy production,
and response to oxidative stress6–9. Altogether, these
studies indicate that SZ is associated with a global dis-
turbance across many genes and that SZ-associated gene
expression patterns correspond with functional pathways.
This suggests that a complex dysregulation of gene
expression may be involved in SZ pathogenesis.
To date, the majority of studies investigating the under-

lying mechanisms driving these transcriptional abnormal-
ities have focused on alterations in transcription factors10,
gene promoter elements11, DNA methylation12, or post-
translational histone modifications13. However, there is now
increasing evidence indicating that post-transcriptional
influences on gene expression mediated by noncoding
RNAs are implicated in SZ pathogenesis14–18. Among the
different classes of noncoding RNAs, microRNAs (miRNAs)
are the most widely studied. In the central nervous system,
miRNAs are involved in the regulation of many essential
mechanisms such as neuronal differentiation, adult neuro-
genesis, or synaptic plasticity19–21. While some miRNAs can
regulate the expression of one specific target, others can be
considered as master regulators of a process since they have
the ability to control the expression levels of hundreds of
genes at the same time22. Moreover, many types of miRNAs
control their targets cooperatively23. Indeed, since as much
as 60% of the human protein-coding genes exhibit at least
one conserved miRNA-binding site, it has been suggested
that miRNAs may regulate the majority of them24. Func-
tionally, miRNAs regulate gene expression through the
binding to target sites in the 3′-untranslated region of
mRNAs; in this way they can either prevent mRNA trans-
lation into protein due to steric hindrance of the protein
synthesis machinery or target the mRNA for enzymatic
degradation23.
Most of miRNAs are produced by the canonical miRNA

biogenesis pathway. This molecular pathway relies on a
miRNA biogenesis machinery (BM) constituted of several
genes encoding enzymes and cofactors implicated in the
transcription, nuclear processing, export and maturation
of miRNAs (Fig. 1). Notably, various polymorphisms
located in the miRNA BM genes have been associated
with SZ risk25–28, and microarray studies in brain and
peripheral tissues of SZ individuals have reported altered
expression of several miRNAs suggesting a broader dis-
ruption of the miRNA BM14,18,29. Previously, Beveridge
et al. proposed the hypothesis that schizophrenic dis-
orders are associated with a dysregulation of the miRNA
BM in the cerebral cortex30. To date, only four human
studies have quantified the expression of genes coding for

the miRNA BM in postmortem brain samples30,31 and
peripheral blood11,32 of SZ individuals. To our knowledge,
no study has systematically explored the expression of the
main miRNA BM genes in various brain regions or per-
ipheral tissues of SZ individuals.
In this study, we used the bioinformatic application

shinyGEO to analyze gene expression from eight Gene
Expression Omnibus (GEO) datasets, in order to perform
differential expression analyses for eight genes encoding
the canonical miRNA BM. Firstly, we compared expres-
sion of the candidate genes between healthy controls (HC)
and SZ individuals in postmortem cerebral samples from
seven different brain regions. Secondly, we compared the
expression of the candidate genes between HC and SZ
individuals in three peripheral tissues. Thirdly, we tried to
replicate our findings by analyzing the expression levels of
the identified differentially expressed genes in indepen-
dent validation datasets. Finally, to evaluate the neuro-
biological relevance of the changes identified in peripheral
tissues, we compared them to those observed in brain
regions.

Material and methods
Search and inclusion criteria of primary datasets
The GEO database is a public repository, which archives

and freely distributes microarray functional genomic data
from control subjects and patients suffering from various
disorders, along with demographic, clinical and quality
data33. GEO datasets thus constitute a valuable resource
for identifying biomarkers of diseases.
With the aim to identify altered expression of the

miRNA BM genes both at the central and peripheral level
in SZ individuals, we explored GEO database for datasets
providing microarray expression results from SZ indivi-
duals and HC. Microarray datasets related to SZ, were
searched in NCBI GEO database using the following
search terms: “schizophrenia”[All Fields] AND “Homo
sapiens”[porgn] AND “gse”[Filter] AND “Expression
profiling by array”[Filter]. We only included datasets from
original studies (i) involving brain or peripheral tissues
samples from SZ individuals and HC and (ii) using the
Affymetrix Human Genome U133 plus 2.0 (HG-
U133_Plus_2) or Affymetrix Human Gene 1.0 ST
(Human Gene 1.0 ST) or Affymetrix Human Gene 1.1 ST
(Human Gene 1.1 ST) arrays. Each of these three chips
can technically interrogate the expression of all the can-
didate genes included in the present study. Moreover,
Human Gene 1.0 ST and Human Gene 1.1 ST arrays
exhibit comparable detection thresholds and are highly
concordant with HG-U133_Plus_2 array34,35.

Included primary datasets
In this study, eight independent GEO datasets were

included36–43, providing data from seven different brain
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regions relevant to SZ44–47 (dorsolateral prefrontal cortex
(DLPFC) (BA46), anterior prefrontal cortex (BA10), par-
ietal cortex, superior temporal cortex (BA22),

hippocampus, associative striatum, and cerebellum) and
three peripheral tissues (peripheral blood mononuclear
cells (PBMCs), olfactory epithelium, and skin fibroblasts).
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Fig. 1 Canonical and noncanonical pathways of miRNA biogenesis. A Canonical miRNA biogenesis pathway: (1) Transcription: a primary miRNA
(pri-miRNA) is transcribed by the RNA polymerase II. (2) Nuclear processing: the Microprocessor complex, composed of the RNase III Drosha and its
cofactor DGCR8, initiates the maturation process and releases a precursor miRNA (pre-miRNA). (3) Nuclear export: the pre-miRNA is recognized and
exported to the cytoplasm by the Exportin-5 (Xpo5)/Ran-GTP transporter interacting with NUP153. (4) Cytoplasm processing: the pre-miRNA
undergoes a second processing by the RNase III Dicer. The generated miRNA duplex is then loaded into an Argonaute protein (Ago2) which
preferentially ejects one strand and retains the mature miRNA. (5) Gene silencing: Ago2 and the mature miRNA form the RNA-induced silencing
complex (RISC). RISC recognizes target mRNA by paring the 5′-end of the miRNA molecule with a partially complementary sequence in the 3′-
untranslated region of target mRNAs. B Exportin-1-dependant noncanonical pathway: a pre-miRNA is generated directly through transcription,
exported by exportin-1 (Xpo1) and undergoes the usual cytoplasm processing.
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The original studies from which the primary datasets were
obtained are presented in Supplementary Table 1. It
should be noticed that postmortem brain and peripheral
tissues samples were collected from different subjects.

Search and inclusion criteria of validation datasets
With the aim to replicate our main findings, validation

datasets were searched in GEO database with identical
search terms as those used in the first step of the study.
For validation datasets, we selected GEO datasets from
original studies (i) involving SZ individuals and HC, (ii)
with samples from a brain region or a peripheral tissue in
which altered transcription was observed in the primary
datasets (i.e., DLPFC (BA46), associative striatum, hip-
pocampus, cerebellum, blood compartment, and olfactory
epithelium), (iii) using chips able to technically interrogate
the expression of the differentially expressed genes iden-
tified in the primary datasets. Additionally, included
validation datasets had to meet the following criteria: (i) a
primary dataset and its validation counterpart must be
derived from independent samples and (ii) the sample size
of the validation dataset must be equal to or larger than
that of its primary counterpart.

Included validation datasets
At the cerebral level, we included one validation dataset48

providing expression data from the DLPFC (BA46) of SZ
individuals and HC. Regarding the blood compartment, one
validation dataset49 was included, providing expression data
from the whole blood of SZ individuals and HC. The ori-
ginal studies from which the validation datasets were
obtained are presented in Supplementary Table 2.

Demographic characteristics and quality data
For each primary and validation GEO dataset, the

quality data of the samples and the demographic char-
acteristics of the subjects, who provided brain or periph-
eral tissue are summarized in Tables 1 and 2, respectively.
For each GEO dataset providing data from postmortem
brain samples, there was no significant difference in age,
sex distribution, postmortem interval (PMI), and RNA
integrity number (RIN) between the SZ individual and HC
groups. For the brain pH, a significant difference was only
observed in the anterior prefrontal cortex BA10 (p=
0.019) and in the superior temporal cortex (p= 0.002).
For each GEO dataset providing data from peripheral
tissues, there was no significant difference in age dis-
tribution between the SZ patient and HC groups. For the
sex distribution, a significant difference was only observed
in the whole blood (p= 0.0001).

Candidate genes
The selected candidate genes code for the main com-

ponents of the canonical miRNA BM: DROSHA, DGCR8,Ta
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RAN, XPO5, NUP153, DICER1, and AGO250. Addition-
ally, we included XPO1 which is involved in an alter-
native, noncanonical pathway51 (Fig. 1). Expression of
RAN, XPO5, NUP153, and XPO1 has never been sys-
tematically explored in previous studies on psychiatric
disorders although these genes are involved in miRNAs
export to the cytoplasm, which constitutes an essential
step in the miRNA maturation process.

Ethical statement
All the data used in this project were acquired in pre-

vious studies, all of which conformed to ethical stan-
dards36–43,48,49.

Statistical analysis
XLSTAT software (XLSTAT 2017: Data Analysis and

Statistical Solution for Microsoft Excel. Addinsoft, Paris,
France, 2017) was used to perform statistical analyses. For
each included GEO dataset, demographic characteristics
of subjects and quality data of samples in HC and SZ
patient groups were compared using unpaired t-test (for
age, postmortem interval, brain pH, and RNA integrity
number), and Fisher exact test (for gender).
For each tissue, we used shinyGEO application to realize

differential expression analysis between SZ individuals
and HC52. shinyGEO is implemented using R [https://
www.r-project.org/] and shiny [http://shiny.rstudio.com/].
shinyGEO downloads processed gene expression datasets
from GEO using GEOquery package53, gene expression
values are log2-transformed to stabilize the variance.
Descriptive Statistics of log2(candidate gene expression)
values in brain and peripheral tissues are provided in
Supplementary Table 3. Normal distribution was tested
using Shapiro–Wilk test. For differential expression, exact
p-values were calculated using unpaired, two-tailed t-
tests. When a deviation from normality was detected,
exact p-values were calculated using unpaired, two-tailed
Mann–Whitney U-tests. In case of violation of the equal

variance assumption, exact p-values were calculated using
unpaired, two-tailed Welch tests. The resulting p-values
have been adjusted by the Benjamini and Hochberg’s
approach to control the false discovery rate. Gene
expression comparisons were considered to be statistically
significant for adjusted p-values < 0.05.

Results
Differential expression analysis in the brain tissues
Compared to HC, we observed distinct altered expression

patterns of the miRNA BM coding genes in the brain tissues
of SZ individuals with the exception of the anterior pre-
frontal (BA10), parietal and superior temporal (BA22) cor-
tices in which no alterations were found. SZ individuals
exhibited a set of genes significantly upregulated in the
DLPFC (BA46) (XPO1 and DICER1), the associative stria-
tum (XPO1) and in the cerebellum (DROSHA, NUP153,
DICER1, and AGO2). Moreover, altered transcription of
several of the candidate genes was identified in the hippo-
campus (DROSHA, DGCR8, RAN, XPO5, XPO1, DICER1,
and AGO2). In the validation dataset derived from DLPFC
(BA46) samples, we replicated DICER1 overexpression in SZ
individuals vs. HC. The detailed results are provided in Fig. 2
and Supplementary Table 4.

Differential expression analysis in the peripheral tissues
Compared to HC, distinct altered transcription patterns

of the miRNA BM coding genes were identified in the
peripheral tissues of SZ individuals. SZ individuals
exhibited a set of differentially expressed genes in the
PBMCs (DROSHA, DGCR8, XPO5, NUP153, DICER1,
and AGO2) and in the olfactory epithelium (RAN, XPO1,
and AGO2). In contrast, no changes were found in the
skin fibroblasts. In the validation dataset derived from
whole blood samples, we replicated DICER1 over-
expression and DGCR8, XPO5, AGO2 decreased
expression in SZ individuals vs. HC. The detailed results
are provided in Fig. 3 and Supplementary Table 5.

Table 2 Demographic characteristics of the peripheral tissues samples.

Peripheral tissue Subjects (n) Age (mean ± SD) Gender (M/F)

Control Schizophrenia p-valuea Control Schizophrenia p-valuea

Primary datasets

Blood (PBMCs) 29 HC/43 SZ 23.02 ± 4.03 23.90 ± 4.08 0.378 29/0 43/0 1

Olfactory epithelium 19 HC/19 SZ 39.7 ± 11.6 38.9 ± 11.4 0.829 13/6 13/6 1

Skin fibroblasts 20 HC/20 SZ 48.4 ± 12.2 44.6 ± 12.7 0.340 9/11 10/10 0.758

Validation dataset

Blood (whole blood) 96 HC/106 SZ 39.3 ± 14.2 39.6 ± 10.7 0.877 42/54 76/30 1 × 10−4

PBMCs peripheral blood mononuclear cells, HC healthy controls, SZ individuals with schizophrenia
aUnpaired t-tests and Fisher exact tests were conducted to assess group differences for continuous and discrete variables, respectively.
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Discussion
Compared to HC, we observed altered expression pat-

terns of the miRNA BM coding genes both in brain and
peripheral tissues of SZ individuals. These patterns were
distinct between the different tissues. All the original
studies from which are derived the included datasets used
a genome-wide approach. As a principle, the expression of
all genes was analyzed, including those involved in the

miRNA BM. However, while some original studies have
reported differential expression of these genes in their
supplementary data36,42, those results were not discussed
in the original experiments. The present study re-analyzed
the original data using a candidate-gene approach,
allowing us to extend previous knowledge on
schizophrenia-associated microRNA BM dysregulation to
other brain regions and peripheral tissues.
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First, we report distinct altered transcriptional patterns
of the miRNA BM coding genes in four brain regions (the
DLPFC, associative striatum, hippocampus, and cere-
bellum) of SZ individuals vs. HC. Notably, heterogeneous
results have been identified both at the gene-level (some
miRNA BM genes undergo significant expression changes
whereas others show no alteration) and at the brain

region-level (the altered transcriptional patterns differ
from one brain region to another). Such distinct abnormal
transcription patterns have been previously reported in
two different brain regions, namely the DLPFC (including
BA9 and BA46) and the superior temporal gyrus
(BA22)30,31. The spatial heterogeneity of the observed
transcriptional alterations may contribute to the distinct
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abnormal expression patterns of miRNA28,30,31,54–60 and
subsequently, to the heterogeneous abnormal mRNA
levels7,8,61 (through miRNA-induced mRNA degradation)
and protein levels62–64 (through the interference of
mRNA translation) observed in various brain regions of
SZ individuals.
In the DLPFC (BA46), associative striatum and cere-

bellum of SZ individuals vs. HC, all the explored miRNA
BM genes whose expression was altered were over-
expressed, suggesting a heightened miRNA production in
these brain regions. Our results are consistent with the
increased expression of miRNAs previously reported in
the DLPFC (BA46) of SZ individuals31. In the DLPFC,
overexpression of miRNAs could account for the emer-
gence of SZ during the brain maturation period of late
adolescence. Indeed, in the DLPFC, global miRNA
expression physiologically displays a reduction from
adolescence, with a predominant inflexion point at 17
years65. In adolescence, overexpression of the miRNA BM
may thus constitute a disruption of the posttranscriptional
regulatory environment. In adulthood, persistent over-
expression of miRNA BM genes may reflect immaturity of
the brain tissue which is in accordance with the report
that miRNAs normally enriched in infants tend to be
upregulated in SZ individuals66.
To our knowledge, it is the first time that an over-

expression of the miRNA biogenesis genes is reported in
the associative striatum and the cerebellum of SZ indivi-
duals. Since, none of the available studies exploring the
cerebral expression of miRNA in SZ individuals have
examined cerebellum or striatum tissues28,30,31,54–60,
more studies are needed to determine if the herein
reported overexpression of the miRNA BM genes is
associated with a global increase in miRNA expression in
these areas. In this regard, high quality brain collections
are compulsory considering the limited stability and short
half-life of specific brain-enriched miRNAs67. We also
report an altered transcriptional pattern of miRNA BM
coding genes in the hippocampus of SZ individuals. While
some miRNA BM genes were overexpressed, others were
underexpressed. The complexity of this altered tran-
scriptional pattern does not allow for a clear hypothesis
on the overall level of miRNA in this structure.
While previous studies observed aberrant transcription

of the miRNA BM in the DLPFC BA46 and BA930,31, our
results expand this epigenetic disruption to subcortical
structures and to the cerebellum. This is in accordance
with the central role of these areas in SZ pathogenesis68.
On the one hand, all these regions exert crucial roles in
cognition processes46,69–71, and are considered as key
regions in the pathophysiology of schizophrenia44–47. On
the other hand, there is now increasing evidence that
miRNAs play an important role in various aspects of
synaptic plasticity21, and that the dynamic changes in

miRNA levels regulate the expression of genes involved in
cognitive processes72. Disruption of the miRNA BM in
brain structures involved in cognitive functions may thus
participate to the cognitive impairment associated with
schizophrenic disorders66,73.
In the blood compartment and olfactory epithelium of

SZ individuals vs. HC, we observed two distinct altered
transcriptional patterns characterized by an overall
underexpression of the candidate genes (except for the
overexpression of DICER1 and RAN in the blood com-
partment and olfactory epithelium, respectively). In con-
trast, no changes were found in the skin fibroblasts.
Although skin fibroblasts are considered as a promising

surrogate system for the study of SZ pathogenesis74, our
results suggest that they may not be affected by tran-
scriptional alterations of the miRNA BM. In PBMCs,
whole blood and olfactory epithelium of SZ individuals
the aberrant transcription of the candidate genes is con-
sistent with the previously reported altered expression of a
wide range of miRNAs in peripheral blood75–77, and
olfactory epithelium78 of SZ individuals. However, in the
present study, the transcriptional alterations observed in
peripheral tissues did not reflect those identified in the
brain tissues of SZ individuals (with the exception of
DICER1 overexpression in the blood compartment). Such
discrepancies were expected since (i) peripheral blood and
olfactory epithelium have specific expression profiles,
distinct from that of the brain tissue, thus, they can’t be
perfect surrogates for gene expression in the brain79,80, (ii)
brain and peripheral tissues samples used in the present
study were not derived from the same subjects and (iii)
brain and peripheral tissues of SZ individuals might be
affected by different alterations79. Nevertheless, such dis-
crepancies does not preclude the possibility that tran-
scriptional alterations observed in peripheral tissues could
be used as clinical biomarkers of schizophrenia18,74–76,78,79.
More studies in peripheral tissues are needed to identify
effective sources of biomarkers for SZ.
Among individual genes whose expression was altered

in the present study, a significant finding was the
increased expression of DICER1 in the DLPFC (BA46),
hippocampus, cerebellum and PBMCs of SZ individuals
compared to HC. Moreover, in the blood compartment,
we replicated DICER1 overexpression in the whole blood
of SZ individuals vs. HC. It is noteworthy that DICER1
expression is age-dependent with a significant increase
from young adulthood onward65. However, since there
was no significant difference between the mean age of SZ
individuals and HC in the different datasets, it is unlikely
that age explains our results.
In the DLPFC (BA46), our results are consistent with

two previous studies reporting a significant upregulation
of DICER1 in the DLPFC (BA46 and BA9) of SZ indivi-
duals from an independent collection of postmortem
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brain samples30,31. On the one hand, DICER1 is essential
for neural and synaptic plasticity81. Moreover, DICER1
codes for the Dicer enzyme, which is involved in neural
cell differentiation50 and immune cell regulation82. On the
other hand, the DICER1 overexpression observed in the
present study is likely associated with a global increase in
miRNA expression as reported in the DLPFC of SZ
individuals31. Such an association between an upregula-
tion of Dicer and a global increase in miRNA expression
has been previously shown in tumorous cells83. Alto-
gether, these results suggest that DICER1 overexpression
in brain tissues of SZ individuals may be associated with
an increased miRNA production, leading to extensive
detrimental consequences on synaptic and neural plasti-
city as well as on immune cell function. DICER1 over-
expression may constitute a key mechanism in the SZ
pathogenesis. The association between genetic poly-
morphisms in DICER1 and increased risk to develop SZ
sustains this hypothesis27,28,84,85.
Remarkably, in the blood compartment as well, we

report DICER1 overexpression in the PBMCs and whole
blood of SZ individuals vs. HC. These results are con-
sistent with two previous peripheral studies. A genome-
wide significant overexpression of DICER1 was identified
in the lymphoblastoid cell lines (LCL) of SZ individuals vs.
HC86. DICER1 overexpression was also reported in the
whole blood of treatment-resistant SZ individuals vs.
HC11. In the whole blood of individuals with first episode
psychosis (FEP), DICER1 overexpression may depend on
the treatment status and IL-6 peripheral levels87–89.
DICER1 overexpression in the blood compartment may
thus be a clinically useful peripheral biomarker of SZ.
More studies are needed to assess the interaction between
antipsychotic treatment and IL-6/DICER1 blood expres-
sion levels.
In SZ individuals, we observed an altered expression of

DROSHA and DGCR8 genes encoding proteins involved
in the nuclear maturation step of miRNAs.
At the brain level, the decreased hippocampal expres-

sion of DROSHA contrasted with its upregulation in the
cerebellum. These results are consistent with and extend
those of two previous studies who reported DROSHA
overexpression in the DLPFC (BA9) of SZ individuals,
while no alteration was observed in the DLPFC (BA46)
and superior temporal gyrus (BA22)30,31. The DGCR8
hippocampal overexpression observed in the present
experiment is consistent with the increased expression of
DGCR8 reported in the DLPFC (BA9) and superior
temporal cortex (BA22) of SZ individuals30. However, we
did not confirm DGCR8 overexpression in the superior
temporal cortex (BA22) of SZ individuals. These dis-
crepant results may be due to the heterogeneity of the
demographic and clinical characteristics of the human
samples: age, illness duration, nature, and/or severity of

symptomatology may influence the miRNA biogenesis
system and thus constitutes confounding factors. While
illness duration and clinical features were not available in
both studies, the population presently studied was older
than that studied by Beveridge et al.30 (mean age ± SD;
present study: SZ individuals: 72.2 ± 16.9 years/control
subjects: 67.7 ± 22.2 years; Beveridge et al. study: SZ
individuals: 52.7 ± 11.7 years/control subjects: 53.2 ± 11.4
years). Altogether these results suggest that the nuclear
processing step of miRNAs biogenesis may be altered in
various brain regions of SZ individuals. Interestingly,
overexpression of DROSHA may exert detrimental effects
on the miRNA production through the destabilization of
DGCR8 mRNA by Drosha enzyme50. Moreover, DGCR8
is located within the 22q11.2 region which is prone to
spontaneous structural variation. 22q11.2 microdeletion
(leading to decreased expression of DGCR8) is the
strongest known genetic risk factor for SZ disorders90.
22q11.2 microduplication (leading to overexpression of
DGCR8) has also been recently reported in SZ indivi-
duals91 and shown to increase risk for intellectual dis-
ability and autism spectrum disorder92,93. DGCR8
abnormal expression may thus constitute a nonspecific
risk factor for neurodevelopmental disorders.
At the peripheral level, we observed a decreased

expression of DROSHA and DGCR8 in the PBMCs of SZ
individuals, suggesting a reduction in miRNAs nuclear
processing in the blood compartment. However, when
considering previous results from whole blood samples of
FEP individuals vs. HC, mixed results have been reported
regarding DROSHA and DGCR8 expression87–89. Such
discrepancies between PBMCs and whole blood are
expected since those two tissues have distinct expression
profiles94. However, additional factors such as illness
duration87–89, antipsychotic status89, peripheral cytokine
levels88, or antipsychotic-IL-6 interaction88 may be
involved in the mixed results observed in the blood
compartment.
Interestingly, we report for the first time XPO1 altered

expression in SZ individuals compared to HC. In the
present study, XPO1 was overexpressed in the DLPFC
(BA46), the associative striatum and the hippocampus,
whereas it was downregulated in the olfactory epithelium.
This is coherent with previous results reporting XPO1 as
a contributing factor to neurodevelopmental disorders95.
Apart from the canonical biogenesis pathway, various

alternative factors have been implicated in miRNA bio-
genesis50. Notably, while the majority of premiRNAs are
exported to the cytoplasm through the canonical pathway
(involving exportin 5 and RAN nuclear protein, encoded
by XPO5 and RAN, respectively), the exportin 1 protein
(encoded by XPO1), involved in a noncanonical pathway,
can export specific miRNAs to the cytoplasm50,51.
Moreover, during cellular quiescence, the canonical
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miRNA biogenesis pathway is downregulated and specific
miRNAs are generated by an alternative exportin 1-
ependent pathway96. In the DLPFC (BA46), associative
striatum and hippocampus, our results raise for the first
time the intriguing question of whether schizophrenia is
associated with a shift towards the activation of a non-
canonical miRNA biogenesis pathways in cerebral tissues97.
Consistently, in the hippocampus of SZ individuals, XPO1
overexpression contrasted with the decreased expression of
the canonical miRNA biogenesis genes XPO5 and RAN.
Intriguingly, we observed opposite transcriptional
abnormalities in the olfactory epithelium (downregulation
of XPO1 and overexpression of RAN) suggesting that the
putative shift towards a noncanonical pathway may be
restricted to cerebral tissues of SZ individuals.
In the present study, AGO2 expression was altered in

opposite directions between brain and peripheral tissues
of SZ individuals: it was overexpressed in the hippo-
campus and cerebellum, whereas its expression was
decreased in the PBMCs, whole blood, and olfactory
epithelium. Our results replicate and extend the decreased
expression of AGO2 previously reported in the PBMCs of
SZ individuals32. Further research is needed to determine
if peripheral downregulation of AGO2 expression could
represent a biomarker of SZ.
Recently, AGO2 has been functionally linked to dele-

terious stress exposure. Indeed, Bam et al. reported a
decreased expression of AGO2 in the PBMCs of war
veterans suffering from PTSD98. In this latter study,
AGO2 decreased expression was associated with the
underexpression of numerous miRNAs targeting proin-
flammatory genes and lead to PTSD-associated chronic
peripheral inflammation. At the brain level, animal
models have shown that specific miRNAs associate with
Ago2 protein in the amygdala following chronic
stress99,100. Altogether, these results suggest that AGO2
may be involved in stress response mechanisms and that
its altered expression may be associated to detrimental
stress exposures. In the present study, traumatic events
were not provided, thus we could not explore a possible
link between AGO2 altered expression and exposure to
stressful events. More studies are needed to explore the
impact of stress on the miRNA BM.

Limits
Interpretation of the present results is affected by lim-

iting factors. First, brain and peripheral tissues were
obtained from eight different and modest-sized SZ sam-
ples. PBMCs were collected from rather young men
(mean age ± SD: 23.02 ± 4.03 for the controls and 23.90 ±
4.08 for the SZ individuals), whereas brain tissues were
obtained from older men and women (Table 1). There-
fore, the gene expression changes identified in the cere-
bral tissues may reflect the influence of age, while those

identified in the PBMCs may be gender specific. However,
previous studies investigating miRNA BM expression in
the cerebral cortex did not find any significant correlation
between gender and gene expression levels30,31,65. In
contrast, Beveridge et al. reported that DICER1 (but not
DROSHA or DGCR8) expression increased with age65.
However, since we did not find any significant difference
in age between control subjects and SZ individuals in the
different datasets used in the present study (Tables 1 and
2), it is unlikely that age explain our results. Second,
factors inherent in postmortem brain studies, and beyond
the investigator’s control, might have influenced our
results. (i) Treatment data were not provided for the GEO
datasets. Thus, a potential impact of antipsychotic treat-
ment on candidate gene expression could not be ruled
out. In individuals with FEP, baseline circulating IL-6
levels may modulated the gene expression response of
DICER1 and DROSHA to treatment with risperidone88.
Further studies are needed to replicate these results. (ii)
The other concern is the effect of brain pH on our results
since we observed a significant difference in brain pH
between control and SZ patient groups in the anterior
PFC (BA10) and superior temporal cortex. However, the
main results discussed in the present study do not derive
from these samples.
This study provides evidence of a widespread tran-

scriptional disruption of the miRNA BM both in brain
and peripheral tissues of SZ individuals. In the DLPFC
(BA46), associative striatum and cerebellum of SZ indi-
viduals, we observed an overexpression pattern of the
candidate genes suggesting a heightened miRNA pro-
duction in these brain regions. In SZ individuals, the
transcriptional abnormalities were further extended to the
hippocampus. These aberrant transcription patterns may
contribute to SZ pathogenesis. Moreover, we observed
distinct transcriptional abnormalities of the miRNA BM
in peripheral tissues suggesting that SZ is a systemic
disease. In SZ individuals, we finally reported a DICER1
overexpression in the hippocampus, cerebellum, and
DLPFC (BA46) (consistently with two previous reports).
We furthermore reported a congruent overexpression of
DICER1 in the peripheral blood of two independent
samples of SZ individuals. These latter results replicate
two previous observations and suggest that it may
represent a clinically useful peripheral marker.
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