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Abstract
The current state of computer vision methods applied to autism spectrum disorder (ASD) research has not been well
established. Increasing evidence suggests that computer vision techniques have a strong impact on autism research.
The primary objective of this systematic review is to examine how computer vision analysis has been useful in ASD
diagnosis, therapy and autism research in general. A systematic review of publications indexed on PubMed, IEEE
Xplore and ACM Digital Library was conducted from 2009 to 2019. Search terms included [‘autis*’ AND (‘computer
vision’ OR ‘behavio* imaging’ OR ‘behavio* analysis’ OR ‘affective computing’)]. Results are reported according to
PRISMA statement. A total of 94 studies are included in the analysis. Eligible papers are categorised based on the
potential biological/behavioural markers quantified in each study. Then, different computer vision approaches that
were employed in the included papers are described. Different publicly available datasets are also reviewed in order to
rapidly familiarise researchers with datasets applicable to their field and to accelerate both new behavioural and
technological work on autism research. Finally, future research directions are outlined. The findings in this review
suggest that computer vision analysis is useful for the quantification of behavioural/biological markers which can
further lead to a more objective analysis in autism research.

Introduction
Visual observation and analysis of children’s natural

behaviours are instrumental to the early detection of
developmental disorders, including autism spectrum
disorder (ASD). While a gold standard observational
tool is available, there are limitations that hinder the
early screening of ASD in children. Interpretative cod-
ing of child observations, parent interviews and manual
testing1 are costly and time-consuming2. In addition,
the reliability and validity of the results obtained from a
clinician’s observations can be subjective3, arising from
differences in professional training, resources and cul-
tural context. Furthermore, behavioural ratings typi-
cally do not capture data from the children in their
natural environments. Such limitations combined with

rising incidence rates call for the development of new
methods of ASD diagnosis without compromising
accuracy, in order to reduce waiting periods for access
to care. This is critical as diagnosis and intervention
within the first few years of life can provide long-term
improvements for the child and can even have greater
effect on outcomes4.
Early behavioural risk markers of ASD have been dis-

covered with the help of retrospective analysis of home
videos5–7. Research studies have documented ASD-
related behavioural markers that emerge within the first
months of life; these include diminished social engage-
ment and joint attention8,9, atypical visual attention such
as difficulty during response-to-name protocol10, longer
latencies to disengage from a stimulus if multiple ones are
presented11, and non-smooth visual tracking12. Further-
more, children with ASD may exhibit atypical social
behaviours such as decreased attention to social scenes,
decreased frequency of gaze to faces13 and decreased
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expression of emotion. In addition, evidence suggests that
differences in motor control are an early feature of
ASD14–17.
Over the past decade, computer vision has been used in

the field of automated medical diagnosis as it can provide
unobtrusive objective information on a patient’s condi-
tion. A recent finding has shown that utilising computer
vision methods to automatically detect symptoms can
pre-diagnose over 30 conditions18. For example, compu-
ter vision-based facial analysis can be used to monitor
vascular pulse, assess pain, detect facial paralysis, diagnose
psychiatric disorders and even distinguish ASD indivi-
duals from individuals with typical development (TD)
through behaviour imaging19. The main rationale for
using computer vision for a clinical purpose would be to
remove any potential bias, develop a more objective
approach to analysis, increase trust towards diagnosis, as
well as decrease errors related to human factors in the
decision-making process. Furthermore, computer vision-
based systems provide a low-cost and non-invasive
approach, potentially reducing healthcare expenditures
when compared to medical examinations.
Computer vision techniques have been effectively

exploited in the last years to automatically and con-
sistently assess existing ASD biomarkers, as well as dis-
cover new ones20. To further examine how computer
vision has been useful in ASD research, a systematic
review of published studies was conducted on computer
vision techniques for ASD diagnosis study, therapy and
autism research in general. First, eligible papers are
categorised based on the quantified behavioural/biolo-
gical markers. In addition, different publicly available
ASD datasets suitable for computer vision research are
reviewed. Finally, interesting research directions are
outlined. To this end, this systematic review can serve as
an effective summary resource that researchers can
consult when developing computer vision-based assess-
ment tools for automatically quantifying ASD-related
markers.

Materials and methods
Eligibility criteria
All titles and abstracts were initially screened to include

studies that meet the following inclusion criteria: (1) the
study focussed on autism in humans (i.e. animal studies
were excluded); (2) the study mainly focussed on the use
of computer vision techniques in autism diagnosis study,
therapy of autism or autism research in general; (3) the
study explained how behavioural/biological markers can
be automatically quantified; and (4) the study included an
experiment, a pilot study or a trial with at least one group
of individuals with ASD. Finally, results in the form of
review, meta-analysis, keynote, narrative, editorial or
magazine were excluded.

Search process
An electronic database search of PubMed, IEEE Xplore

and ACM Digital Library was conducted by including
simple terms and Medical Subject Headings terms for
keywords [‘autis*’ AND (‘computer vision’ OR ‘behavio*
imaging’ OR ‘behavio* analysis’ OR ‘affective computing’)]
in all fields (title, abstract, keywords, full text and biblio-
graphy) from January 1, 2009 to December 31, 2019. A
snowballing approach was also conducted to identify
additional papers. Included peer-reviewed articles followed
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement21. Duplicates were
removed and the title and abstract of each article were
scanned for relevance. The full text of potentially relevant
studies was assessed for eligibility considering established
criteria detailed above. A PRISMA flow diagram was
constructed and is shown in Appendix A.

Data items and analysis
Identical variables in eligible studies were extracted

where possible into an Excel spreadsheet: (1) quantified
behavioural/biological markers; (2) application focus; (3)
child diagnosis and size of participants’ groups; (4) age
range of the participants or age mean and standard
deviation; (5) input data and devices used; (6) computer
vision method applied in the study; and (7) dataset used in
the study. 94 eligible studies were categorised based on
the behavioural/biological markers that were quantified.

Results
Overview of behavioural/biological markers used in
eligible papers
The findings in this survey show that there is an

increase in the number of significant contributions of
computer vision methods to autism research. Over the
last decade, computer vision has been used to capture and
quantify different information, such as: (a) Magnetic
Resonance Imaging (MRI)/functional MRI (see Table 1)
(b) facial expression/emotion (see Table 2) (c) eye gaze
data (see Table 3) (d) motor control/movement pattern
(see Table 4) (e) stereotyped behaviours (see Table 5) and
(f) multimodal data (see Table 6). Identical variables
(discussed in ‘Data Items and Analysis’) were reported for
each quantified information.
This review presents consolidated evidence on the

effectiveness of using computer vision techniques in (1)
determining behavioural/biological markers for diagnosis
and characterisation of ASD, (2) developing assistive
technologies that aid in emotion recognition and
expression for ASD individuals and (3) augmenting
existing clinical protocols with vision-based systems for
ASD therapy and automatic behaviour analysis. The fol-
lowing subsections discuss in detail how each quantified
marker was utilised in autism research.
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Magnetic resonance imaging (MRI)/functional MRI (fMRI)
The need for a more quantitative approach to ASD

diagnosis has pushed research towards analysing brain
imaging data, such as MRI and fMRI. Generally, MRI and
fMRI techniques scan different parts of the brain to
provide images which are then used as input for further
processing. These images have been used to determine
potential biomarkers that show differences between ASD
and TD subjects. For example, Samson et al.22 used fMRI
scans to explore the differences of complex non-social
sound processing between ASD and TD subjects. With
increasing temporal complexity, TD subjects showed
greater activity in anterolateral superior temporal gyrus
while ASD subjects have greater effects in Heshl’s gyrus.
Abdelrahman et al.23 used MRI scans to generate a 3D
model of the brain and accurately calculate the volume of
white matter in the segmented brain. Considering the
white matter volume as a discriminatory feature in a
classification step using k-nearest neighbour algorithm,
their system reached an accuracy of 93%. Durrleman
et al.24 examined MRI scans to find differences in the
growth of the hippocampus in children with ASD and
control subjects. Their findings suggest that group dif-
ferences may be better identified by maturation speed
rather than shape differences at a given age. Ahmadi
et al.25 used independent component analysis to show that
within-network connections on fMRI images of ASD
subjects are lower when compared to TD subjects.
The remaining eligible studies developed new techni-

ques for diagnosing ASD using MRI26,27 and fMRI28–30

data in the ABIDE repository. Based on their recent
findings, Chaddad et al.26,27 demonstrated the potential of
hippocampal texture features extracted from MRI scans
as biomarkers for the diagnosis and characterisation of
ASD. They used Laplacian-of-Gaussian filter31 across a
range of resolution scales and performed statistical ana-
lysis to identify regions exhibiting significant textural
differences between ASD and TD subjects. They identified
asymmetrical difference in the right hippocampus, left
choroid-plexus and corpus callosum and symmetrical
difference in the cerebellar white matter.
Some of the techniques are based on conventional

machine learning techniques, such as Support Vector
Machines (SVM). For example, Chanel et al.32 used a
multivariate pattern analysis approach in two different
fMRI experiments with social stimuli. The method, based
on a modified version of SVM Recursive Feature Elim-
ination algorithm33, is trained independently and then
combined to obtain a final classification output (e.g. ASD
or TD). Their results revealed classification accuracy of
between 69% and 92.3%. Crimi et al.30 used a constrained
autoregressive model followed by an SVM to differentiate
individuals with ASD from TD individuals. Zheng et al.34

constructed multi-feature-based networks (MFN) andTa
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SVM to classify individuals of the two groups. Their
results showed that using MFN significantly improved the
classification accuracy by almost 14% compared to using
morphological features. Their findings also demonstrated
that variations in cortico-cortical similarities can be used
as biomarkers in the diagnostic process.
Deep learning techniques have also been proposed for

automating ASD diagnosis by extracting discriminative
features from fMRI data and feeding them to a classifier28.
In order to increase the number of training samples and
avoid overfitting, Eslami and Saeed28 used Synthetic
Minority Over-Sample (SMOTE)35. They also investi-
gated the effectiveness of the features extracted using an
SVM classifier. Their model achieved more than 70%
classification accuracy for four fMRI datasets, with highest
accuracy of 80%. Attaining similar performance, Li et al.29

adopted a deep transfer learning neural network model
for ASD diagnosis. Compared to traditional models, their
approach led to improved performance in terms of
accuracy, sensitivity, specificity and area under receiver
operating characteristic curve.

Facial expression/emotion
Emotion classification focusses on the development of

algorithms that produce an emotion label (e.g. happy or
sad) from a face in a photo or a video frame. Recent
advances in the field of computer vision have contributed
to the development of various emotion classifiers that can
potentially play a significant role in mobile screening and
therapy for ASD children. However, most classifiers are
biased towards neurotypical adults and can fail to gen-
eralise to children with ASD. To address this, Kalantarian
et al.36,37 presented a framework for semi-automatic label
frame extraction to crowdsource labelled emotion data
from children. The labels consist of six emotions: disgust,
neutral, surprise, scared, angry and happy. To improve the
generalisation of expression recognition models to chil-
dren with ASD, Han et al.38 presented a transfer learning
approach based on a sparse coding algorithm. Their
results showed that their method can more accurately
identify the emotional expression of children with ASD.
Tang et al.39 proposed a convolutional neural networks-
based (CNN) method for smile detection of infants in
mother–infant interaction. Their results showed that their
approach can achieve a mean accuracy of 87.16% and F1-
score of 62.54%.
Several papers have focussed on using computer vision

to develop assistive technologies for ASD children40–43.
For example, researchers40,42,43 developed and evaluated a
wearable assistive technology to help ASD children with
emotion recognition. Vahabzadeh et al.44. provided initial
evidence for the potential of wearable assistive technolo-
gies to reduce hyperactivity, inattention and impulsivity in
school-aged children, adolescents and young adults withTa
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ASD. Leo et al.45 and Pan et al.46 developed an automatic
emotion recognition system in robot-children interaction
for ASD treatment. Their results suggest that computer
vision could help to improve the efficiency of behaviour
analysis during interactions with robots.
Most research mainly focusses on qualitative recogni-

tion of facial expressions. This is due to the fact that
computational approach on facial expression analysis is
an emerging research topic. There are a few attempts to
automatically quantify facial expression production of
ASD children47–52. For example, Leo et al.47 proposed a
framework to computationally analyse how ASD and TD
children produce facial expression. Guha et al.52 inves-
tigated differences in the overall and local facial
dynamics of TD and ASD children. Their observations
showed that there is reduced complexity in the dynamic
facial behaviour of ASD children arising primarily from
the eye region. Computer vision has also been used to
predict engagement and learning performance. For
example, Ahmed and Goodwin53 analysed facial
expressions from video recordings obtained when kids
interacted with a computer-assisted instruction pro-
gramme. Their results showed that emotional and
behavioural engagement can be quantified automatically
using computer vision analysis.
Harrold et al.54,55 developed a mobile application that

allows children to learn emotions with instant feedback
on performance through computer vision. White et al.56

presented results which showed that children with ASD
found their system to be acceptable and enjoyable. Similar
to this approach, Garcia-Garcia et al.57 presented a system
that incorporates emotion recognition and tangible user
interfaces to teach children with ASD to identify and
express emotions. Jain et al.58 proposed an interactive
game that can be used for autism therapy. The system
tracks facial features to recognise the facial expressions of
the participant and to animate an avatar. Developed as a
game, the system attempts to teach kids how to recognise
and express emotions through facial expressions.
A deep learning approach has also been applied to

recognise developmental disorders through facial images.
For example, Li et al.59 introduced an end-to-end CNN-
based system for ASD classification using facial attributes.
Their results show that different facial attributes are sta-
tistically significant and improve classification perfor-
mance by about 7%. A deep convolutional neural network
(DCNN) for feature extraction followed by an SVM for
classification has been trained by Shukla et al.60 to detect
whether a person in an image has ASD, cerebral palsy,
Down syndrome, foetal alcohol spectrum syndrome,
progeria or other intellectual disabilities. Their results
indicate that their model has an accuracy of 98.80% and
performs better than average human intelligence in dis-
tinguishing between different disorders.

Eye gaze data
Analysing attention and psychological factors encoded

in eye movements of individuals could help in ASD
diagnosis. Computer vision has been used to auto-
matically analyse children’s gaze and distinguish ASD-
related characteristics present in a video61. Research has
shown that there is a significant difference in gaze pat-
terns between children with ASD and TD. Eye tracking
technology provides automatic assessment of gaze beha-
viour in different contexts. For example, Balestra et al.62

showed that it can be used to study language impair-
ments, text comprehension and production deficits. In
addition, it can be used to identify fixation and saccades63,
recognise affective states64 and even reveal early bio-
markers associated with ASD65,66. Furthermore, eye
tracking can be used to detect saliency differences
between ASD and TD children. Researchers67–70 showed
that there is a difference in preference for both social and
non-social images. This finding is consistent with a
similar published study of Syeda et al.71, which examined
face scanning patterns in a controlled experiment. By
extracting and analysing gaze data, the study revealed that
children with autism spend less time looking at core
features of faces (e.g. eyes, nose and mouth). Chrysouli
et al.72 proposed a deep learning-based technique to
recognise the affective state (e.g. engaged, bored, fru-
strated) of an individual (e.g. ASD, TD, etc.) from a video
sequence.
Building upon the knowledge of previous research,

several studies have concentrated on using visual atten-
tion preference of children with ASD for diagnosis. For
example, Liu et al.73,74 proposed a machine learning-based
system to capture discriminative eye movement patterns
related to ASD. They also presented a comprehensive set
of effective feature extraction methods, prediction fra-
meworks and corresponding scoring frameworks. Vu
et al.75 examined the impact of visual stimuli and expo-
sure time on the quantitative accuracy of ASD diagnosis.
They showed that using a ‘social scene’ stimulus with 5-s
exposure time has the best performance at 98.24%. By also
using visual attention preference, Jiang and Zhao76

leveraged recent advances in deep learning for superior
performance in ASD diagnosis. In particular, they used a
DCNN and SVM to achieve an accuracy of 92%. Higuchi
et al.77 developed a novel system that provides visualisa-
tion of automatic gaze estimation and allows for experts
to perform further analysis.
Most of the studies have been conducted in a highly

controlled environment in which the subjects were asked
to view a screen for a short period of time. Recently,
Chong et al.78 presented a novel deep learning archi-
tecture for eye contact detection in natural social inter-
actions. In their study, eye contact detection was
performed during adult–child sessions in which the adult
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wears a point-of-view camera. Their results showed sig-
nificant improvement over existing methods, with a
reported precision and recall of 76% and 80%, respec-
tively. Toshniwal et al.79 proposed an assistive technology
that tracks attention using mobile camera and uses haptic
feedback to recapture attention. Their evaluation study
with users with various intellectual disabilities showed
that it can provide better learning with less intervention.

Motor control/movement pattern
The use of computer vision has also shown potential for

a more precise, objective and quantitative assessment of
early motor control variations. For example, Dawson
et al.80 used computer vision analysis to analyse differ-
ences in midline head postural control, as reflected in the
rate of spontaneous head movements between toddlers
with ASD versus those without ASD. Their study followed
a response-to-name protocol where a series of social and
non-social stimuli (i.e. in the form of a movie) were shown
on a smart tablet while the child sat on a caregiver’s lap.
During the protocol, the examiner, standing behind the
child, calls the child’s name and the child’s reaction is
recorded using the smart tablet. Afterwards, a fully
automated computer vision algorithm detects and tracks
49 facial landmarks and estimates head pose angles. Their
study revealed that toddlers with ASD exhibited a sig-
nificantly higher rate of head movement compared to
their typically developing counterparts. Using the same
approach, Martin et al.81 examined head movement
dynamics of a cohort of children. They found that there is
an evident difference in lateral (yaw and roll) head
movement between children with ASD and TD children.
Deep learning has also been employed to develop novel

screening tools that analyse gestures captured in video
sequences. For example, Zunino et al.82 used CNN to
extract features, followed by a long short-term memory
(LSTM) model with an attentional mechanism. They
demonstrated that it is possible to determine whether a
video sequence contains grasping action performed by
ASD or TD subjects. In another study, Vyas et al.83 esti-
mated children’s pose over time by retraining a state-of-
the-art pose estimator (2D Mask R-CNN) and trained a
CNN to categorise whether a given video clip contains a
typical (normal) or atypical (ASD) behaviour. Their
approach with an accuracy of 72% outperformed con-
ventional video classification approaches.
Computer vision has also been used to develop motion-

based touchless games for ASD therapy. For example,
Piana et al.84 conducted an evaluation study of a system
designed for helping ASD children to recognise and
express emotions by means of their full-body movement
captured by RGB-D sensors. Their results showed that
there is an increase in task (recognition) accuracy from
the beginning to the end of training sessions. Bartoli

et al.85 showed the effectiveness of using embodied
touchless interaction to promote attention skills during
therapy sessions. Similarly, Ringland et al.86 developed
SensoryPaint that allows whole-body interactions and
showed that it is a promising therapeutic tool. Magrini
et al.87 developed an interactive vision-based system
which reacts to movements of the human body to pro-
duce sounds. Their system has been evaluated by a team
of clinical psychologists and parents of young patients.
Computer vision has also been used to develop robot-

mediated assistive technologies for ASD therapy.
Dickstein-Fischer and Fischer88 developed a robot, named
PABI (Penguin for Autism Behavioural Interventions),
with augmented vision to interact meaningfully with an
autistic child during therapy. Similarly, Bekele et al.89

developed a robot with augmented vision to automatically
adapt itself in an individualised manner and to administer
joint attention prompts. Their study suggests that robotic
systems with augmented vision may be capable of
enhancing skills related to attention coordination. This
confirms an earlier study of Dimitrova et al.90 where
adaptive robots showed potential for educating children
in various complex cognitive and social skills that even-
tually produce a substantial development impact.

Stereotyped behaviours
In the context of autism research, atypical behaviours

are assessed during screening using different clinical tools
and protocols. For example, Autism Observation Scale for
Infants (AOSI) consists of a set of protocols that is
designed to assess specific behaviours91. During the last
decade, research has been growing towards behavioural
imaging to create new capabilities for the quantitative
understanding of behavioural signs, such as those outlined
in AOSI. For example, Hashemi et al.92,93 examined the
potential benefits that computer vision can provide for
measuring and identifying ASD behavioural signs based
on two components of AOSI. In particular, they devel-
oped a computer vision tool to assess: (1) disengagement
of attention: the ability of kids to disengage their attention
from one of two competing visual stimuli and (2) visual
tracking, to visually follow a moving object laterally across
the midline. Similarly, computer vision analysis has also
been explored to automatically detect and analyse atypical
attention behaviours in toddlers in a response-to-name
protocol. A proof of concept system that used marker-less
head tracking was presented by Bidwell et al.94 and scal-
able applications were developed by Hashemi et al.95,
Campbell et al.96 and Hashemi et al.97. The latter systems
run on a mobile application designed to elicit ASD-related
behaviours (e.g. social referencing, smiling while watching
a movie and pointing) and use computer vision analysis to
automatically code behaviours related to early risk mar-
kers of ASD. When compared to a human analyst,
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computer vision analysis was found to be as reliable in
predicting child response latency. Using the response-to-
name protocol, Wang et al.98 proposed a non-contact
vision system that achieved an average classification score
of 92.7% for assistant screening of ASD. The results of the
mentioned studies show that computer vision tools can
capture critical behavioural observations and potentially
augment clinical behavioural observations when using
AOSI. Bovery et al.99 also used a mobile application and
movie stimuli to measure attention of toddlers. They used
computer vision algorithms to detect head and iris posi-
tions and determine the direction of attention. Their
results showed that toddlers with ASD paid less attention
to the movie, showed less attention to the social as
compared to the non-social visual stimuli and often
directed their attention to one side of the screen.
Behaviours other than those outlined by AOSI have also

been quantified using computer vision. For example, self-
stimulatory behaviours refer to stereotyped, repetitive
movements of body parts. Also known as ‘stimming
behaviours’, these behaviours are often manifested when a
person with autism engages in actions like rocking, pacing
or hand flapping. Researchers100–102 have introduced a
dataset with stimming behaviours and used computer
vision to determine if these behaviours exist in a video
stream. Another quantified behaviour is social interaction
and communication among individuals with ASD. Winoto
et al.103 developed an unobtrusive sensing system to
observe, sense and annotate behavioural cues which can be
reviewed by specialists and parents for better tailored
assessment and interventions. Similarly, children’s
responses when interacting with robots have been quanti-
fied using computer vision techniques. Feil-Seifer and
Matarić104 showed that computer vision can be used to
study behaviours of ASD children towards robots during
free-play settings. Moghadas and Moradi105 proposed a
computer vision approach to analyse human-robot inter-
action sessions and to extract features that can be used for
ASD diagnosis.

Multimodal data
Over the last decade, there has been increasing interest

in incorporating multiple behavioural modalities to
achieve superior performance and even outperform pre-
vious state-of-the-art methods that utilise only a single
modality for ASD screening. For example, Chen and
Zhao106 proposed a privileged modality framework that
integrates information from two different tasks; (1) photo
taking task where subjects freely move around the
environment and take photos and (2) image-viewing task
where their eye movements are recorded by an eye-
tracking device. They used CNN and LSTM to integrate
features extracted from these two tasks for more accurate
ASD screening. Their results showed that the proposed

models can achieve new state-of-the-art results. They also
demonstrated that utilising knowledge across the two
modalities dramatically improved performance by more
than 30%.
Wang et al.107 presented a standardised screening pro-

tocol, namely Expressing Needs with Index Finger Pointing
(ENIFP), to assist in ASD diagnosis. The protocol is admi-
nistered in a novel non-invasive system trained using deep
learning to automatically capture eye gaze and gestures of
the participant. Their results showed that the system can
record the child’s performance and reliably check mutual
attention and gestures during the ENIFP protocol. Com-
puter vision techniques have also been used during robotic
social therapy sessions proposed by Mazzei et al.108.
Computer vision systems that incorporate multimodal

information have also been used to detect behavioural
features during interaction with a humanoid robot. For
example, Coco et al.109. proposed a technological frame-
work to automatically build a quantitative report that
could help therapists to better achieve either ASD diag-
nosis or assessment tasks. Furthermore, computer vision
has been used to address autism therapy through social
robots that automatically adapt their behaviours. For
example, researchers110–113 have presented systems that
simultaneously include eye contact, joint attention, imi-
tation and emotion recognition for an intervention pro-
tocol for ASD children. Egger et al.114 presented the first
study showing the feasibility of computer vision techni-
ques to automatically code behaviours in natural envir-
onments. Another assistive technology was introduced by
Peters et al.115. to assist people with cognitive disabilities
in brushing teeth. It uses behaviour recognition and a
machine learning network to provide automatic assistance
in task execution.
Rehg et al.116. proposed a new action recognition

dataset for analysis of children’s social and communicative
behaviours based on video and audio data. Their pre-
liminary experimental results demonstrated the potential
of this dataset to drive multi-modal activity recognition.
Similarly, Liu et al.117 proposed a ‘Response-to-Name’
dataset and a multimodal ASD auxiliary screening system
based on machine learning. Marinoiu et al.118 introduced
one of the largest existing multimodal datasets of its kind
(i.e. autistic interaction rather than genetic or medical
data). They also proposed a fine-grained action classifi-
cation and emotion prediction task recorded during
robot-assisted therapy sessions of children with ASD.
Their results showed that machine-predicted scores align
closely with human professional diagnosis.
Computer vision has also been applied to multimodal

data, such as fMRI and eye gaze information, in order to
test differences in response selectivity of the human
visual cortex between individuals with ASD and TD.
Schwarzkopf et al.119. have shown that sharper spatial
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selectivity in visual cortex is not characterised in ASD
individuals.

Datasets used in eligible papers
The dataset requirement typically depends on the target

behavioural/biological marker and the computer vision
methods to be employed. In this section, the publicly
available datasets used by eligible papers are reviewed and
those with autistic samples are focussed on.

Magnetic resonance imaging datasets
Autism Brain Imaging Data Exchange (ABIDE) initiative

has aggregated functional and structural brain imaging
data collected from different laboratories to accelerate
understanding of the neural basis of autism. ABIDE I
represents the first ABIDE initiative120. This effort yielded
a total of 1112 records (sets of magnetic resonance ima-
ging (MRI) and functional MRI), including 539 from
individuals with ASD and 573 from TD individuals.
ABIDE II was established to further promote discovery of
brain connectome in ASD121. It consists of 1114 records
from 521 individuals with ASD and 593 TD individuals.
Hazlett et al.122 conducted an MRI study with 51 children
with ASD and 25 control children (including both
developmentally delayed and TD children) between 18
and 35 months of age.

Autism spectrum disorder detection dataset
This dataset consists of a set of video clips of reach-to-

grasp actions performed by children with ASD and TD82. In
the protocol, children were asked to grasp a bottle and
perform different subsequent actions (e.g. placing, pouring,
passing to pour, and passing to place). A total of 20 children
with ASD and 20 TD children participated in the study.

DE-ENIGMA dataset
DE-ENIGMA dataset is a free, large-scale, publicly

available multi-modal (e.g. audio, video, and depth) data-
base of autistic children’s interactions that is suitable for
behavioural research123. A total of 128 children on the
autism spectrum participated in the study. During the
experiment, children within each age group were randomly
assigned to either a robot-led or a researcher/therapist-led
teaching intervention which was implemented across
multiple short sessions. This dataset includes ~13 TB of
multi-modal data, representing 152 h of interaction. Fur-
thermore, 50 children’s data have been annotated by
experts for emotional valence, arousal, audio features and
body gestures. The annotated data are in effect ready for
future autism-focussed machine learning research.

Multimodal behaviour dataset
The Multimodal Dyadic Behaviour (MMDB) dataset is a

unique collection of 160 multimodal (video, audio and

physiological) recordings and annotations of the social
and communicative behaviours of 121 children aged
15–30 months, gathered in a protocol known as the
Rapid-ABC sessions116. This play protocol is an inter-
active assessment (3–5min) consisting of five semi-
structured play interactions in which the examiner eli-
cits social attention, interaction and non-verbal commu-
nication from the child.

Saliency4ASD dataset
Saliency4ASD Grand Challenge aims to align the visual

attention modelling community around the application of
ASD diagnosis and to provide an open dataset of eye
movements recorded from children with ASD and TD.
The database consists of 300 images with various animals,
buildings, natural scenes and combinations of different
visual stimuli124. Each image has corresponding eye-
tracking data collected from 28 participants.

Self-stimulatory behaviour dataset
Due to the lack of a database containing self-stimulatory

behaviours, Rajagopalan et al.101 searched for and col-
lected videos on public domain websites and video portals
(e.g. YouTube). They classified the videos into three
categories: arm flapping, head banging and spinning.
Compared to other datasets, their dataset is recorded in
natural settings. The dataset contains 75 videos with an
equal number of videos for each category.

Other datasets
Until recently, autism datasets have been relatively small

when compared to other datasets in which machine
learning has seen tremendous application. As a result,
earlier published research has resorted to using a subset of
videos of neurotypical individuals from human action
recognition datasets [UCF101125, Weizmann126], facial
expression datasets [Cohn-Kanade(CK)127, CK+128,
FERET129, Hollywood2130, HELEN131, CelebA132, Affect-
Net133, EmotioNet134, BU-3D Facial Expression135] and
gesture recognition datasets [Oxford Hand Dataset136,
Egohands137] to help train systems that analyse autistic
behaviours.

Limitations
This review has some limitations: one is linked to the

number of included papers and the other to the quality of
papers included. Although it has been attempted to make
the review as inclusive as possible through the PRISMA
checklist, there are studies that might not have been
included because of the chosen keywords and time period
used. Nevertheless, as far as is known, this is the first
systematic review of the current state of computer vision
approaches in autism research.
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Being a relatively new field of research, some published
papers have few longitudinal studies or included small
cohorts of participants, thus the quality of the results may
change as more clinical trials are conducted. Nonetheless,
this systematic review suggests that these advances in
computer vision are applicable in the ASD domain and
can stimulate further research in using computer vision
techniques to augment existing clinical methods. How-
ever, these approaches require further evaluation before
they can be applied in clinical settings.

Discussion
In this work, a systematic review has been provided on

the use of computer vision techniques in autism research
in general. Although there have been considerable studies
on this area, different factors such as controlled experi-
ments in a clinical setting mean that quantification of
human behaviours in real scenarios remains challenging
in the context of understanding image or video streams.
In this paper, publicly available datasets relevant
to behaviour analysis have also been reviewed, in order to
rapidly familiarise researchers with datasets applicable to
their field and to accelerate both new behavioural and
technological work on autism. The primary conclusion of
this study on computer vision approaches in autism
research are provided below:
1. Different behavioural/biological markers have already

been quantified, to some extent, using computer
vision analysis with comparable performance to a
human analyst.

2. For feature extraction and classification tasks, deep
learning-based approaches have shown superior
performance when compared to traditional computer
vision approaches.

3. The growing number of large-scale publicly available
datasets provides the required scale of data needed for
furthering machine learning and deep learning
developments.

4. Multimodal methods attain superior performance by
combining knowledge across different modalities.

In the current state of the art, it is evident that computer
vision analysis is useful for the quantification of beha-
vioural/biological markers that can further lead to a non-
invasive, objective and automatic tool for autism research.
It can also be used to provide effective interventions using
robots with augmented vision during therapies. In addi-
tion, it can be used to develop technologies that assist
individuals with ASD in certain tasks, such as emotion
recognition.
To date, most published studies are related to the use of

computer vision in a clinical setting. However, in complex
scenes outside of clinical protocols, there are many issues
with feature learning in single or even multimodal data. In
addition, it is challenging to compare the performance of

the eligible studies due to the lack of benchmarked
datasets that researchers have ‘agreed’ on for the use of
deep learning138. Until recently, there have been no large-
scale datasets that researchers could use to compare their
results. Given the current state of research, researchers in
this area should address the following problems:
1. Multimodal approaches based on multimodal fusion

methods. In current research, most studies have
focussed on RGB data from image or video streams.
However, an increasing number of studies has
shown that superior performance can be achieved
through a combination of multimodal information.

2. Researchers should agree to work on a benchmark
dataset and evaluate their models on them for more
reliable comparison of performance. The datasets
reviewed in this paper serve as a starting point for
researchers to use in computer vision research.
Experts can borrow knowledge gained from existing
state-of-the-art human activity recognition models
trained on neurotypical individuals, apply them to
these datasets, and build models that can generalise
to individuals with ASD.

3. Computer vision approaches that address fully
unconstrained scenarios. Most published studies
require participants to be in clinical settings that
typically do not capture data from the children in
their natural environments.

4. Longitudinal studies or a collection of a large cohort
of individuals with ASD and TD individuals should be
conducted to evaluate the performance of succeeding
computer vision systems. This requires a careful and
systematic empirical validation to ensure their
accuracy, reliability, interpretability and true clinical
utility. This would help determine if these systems
can generalise across different participant groups (e.g.
multiple ages, cultural differences) and demonstrate
fairness and unbiasedness.

5. It is also important to gain a deeper understanding
of human factors, user experience and ethical
considerations surrounding the application of vision-
based systems. This would help develop usable and
useful systems and determine if these systems can
really be used to augment existing behavioural
observations in a clinical setting.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-020-01015-w).

de Belen et al. Translational Psychiatry          (2020) 10:333 Page 16 of 20

https://doi.org/10.1038/s41398-020-01015-w
https://doi.org/10.1038/s41398-020-01015-w


Received: 5 May 2020 Revised: 4 September 2020 Accepted: 9 September
2020

References
1. Thabtah, F. & Peebles, D. A new machine learning model based on induction

of rules for autism detection. Health Inform. J. 1460458218824711 (2019).
2. Wiggins, L. D., Baio, J. & Rice, C. Examination of the time between first

evaluation and first autism spectrum diagnosis in a population-based sam-
ple. J. Dev. Behav. Pediatr. 27, S79–S87 (2006).

3. Taylor, L. J. et al. Brief report: an exploratory study of the diagnostic reliability
for autism spectrum disorder. J. Autism Dev. Disord. 47, 1551–1558 (2017).

4. Pickles, A. et al. Parent-mediated social communication therapy for young
children with autism (PACT): long-term follow-up of a randomised controlled
trial. Lancet 388, 2501–2509 (2016).

5. Adrien, J. L. et al. Autism and family home movies: preliminary findings. J.
Autism Dev. Disord. 21, 43–49 (1991).

6. Adrien, J. L. et al. Early symptoms in autism from family home movies.
Evaluation comparison 1st 2nd year life using I.B.S.E. scale. Acta Pae-
dopsychiatr. 55, 71–75 (1992).

7. Werner, E. & Dawson, G. Validation of the phenomenon of autistic regression
using home videotapes. Arch. Gen. Psychiatry 62, 889–895 (2005).

8. Mars, A. E., Mauk, J. E. & Dowrick, P. W. Symptoms of pervasive develop-
mental disorders as observed in prediagnostic home videos of infants and
toddlers. J. Pediatr. 132, 500–504 (1998).

9. Osterling, J. & Dawson, G. Early recognition of children with autism: a
study of first birthday home videotapes. J. Autism Dev. Disord. 24,
247–257 (1994).

10. Nadig, A. S. et al. A prospective study of response to name in infants at risk
for autism. Arch. Pediatr. Adolesc. Med. 161, 378–383 (2007).

11. Elsabbagh, M. et al. Disengagement of visual attention in infancy is
associated with emerging autism in toddlerhood. Biol. Psychiatry 74,
189–194, https://doi.org/10.1016/j.biopsych.2012.11.030 (2013).

12. Zwaigenbaum, L. et al. Behavioral manifestations of autism in the first year of
life. Int. J. Dev. Neurosci. 23, 143–152 (2005).

13. Ozonoff, S. et al. A prospective study of the emergence of early behavioral
signs of autism. J. Am. Acad. Child Adolesc. Psychiatry 49, 256–266.e251–252
(2010).

14. Flanagan, J. E., Landa, R., Bhat, A. & Bauman, M. Head lag in infants at risk for
autism: a preliminary study. Am. J. Occup. Ther. 66, 577–585 (2012).

15. Esposito, G., Venuti, P., Apicella, F. & Muratori, F. Analysis of unsupported gait
in toddlers with autism. Brain Dev. 33, 367–373 (2011).

16. Gima, H. et al. Early motor signs of autism spectrum disorder in spon-
taneous position and movement of the head. Exp. Brain Res. 236,
1139–1148 (2018).

17. Brisson, J., Warreyn, P., Serres, J., Foussier, S. & Adrien-Louis, J. Motor antici-
pation failure in infants with autism: a retrospective analysis of feeding
situations. Autism 16, 420–429 (2012).

18. Thevenot, J., López, M. B. & Hadid, A. A survey on computer vision for
assistive medical diagnosis from faces. IEEE J. Biomed. Health Inform. 22,
1497–1511 (2018).

19. Rehg, J. M. Behavior imaging: using computer vision to study. Autism MVA
11, 14–21 (2011).

20. Sapiro, G., Hashemi, J. & Dawson, G. Computer vision and behavioral phe-
notyping: an autism case study. Curr. Opin. Biomed. Eng. 9, 14–20 (2019).

21. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G., Group, a. t. P. Preferred
reporting items for systematic reviews and meta-analyses: the PRISMA
statement. Ann. Intern. Med. 151, 264–269 (2009).

22. Samson, F. et al. Atypical processing of auditory temporal complexity in
autistics. Neuropsychologia 49, 546–555 (2011).

23. Abdelrahman, M., Ali, A., Farag, A., Casanova, M. F. & Farag, A. New approach
for classification of autistic vs. typically developing brain using white matter
volumes. In Proc. Ninth Conference on Computer and Robot Vision. 284–289
(2012).

24. Durrleman, S. et al. Toward a comprehensive framework for the spatio-
temporal statistical analysis of longitudinal shape data. Int. J. Comput. Vis. 103,
22–59 (2013).

25. Ahmadi, S. M. M., Mohajeri, N. & Soltanian-Zadeh, H. Connectivity
abnormalities in autism spectrum disorder patients: a resting state fMRI

study. In Proc. 22nd Iranian Conference on Electrical Engineering (ICEE).
1878–1882 (2014).

26. Chaddad, A., Desrosiers, C., Hassan, L. & Tanougast, C. Hippocampus and
amygdala radiomic biomarkers for the study of autism spectrum disorder.
BMC Neurosci. 18, 52 (2017).

27. Chaddad, A., Desrosiers, C. & Toews, M. Multi-scale radiomic analysis of sub-
cortical regions in MRI related to autism, gender and age. Sci. Rep. 7, 45639
(2017).

28. Eslami, T. & Saeed, F. Auto-ASD-network: a technique based on deep
learning and support vector machines for diagnosing autism spectrum
disorder using fMRI data. In Proc. 10th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics. 646–651
(Association for Computing Machinery).

29. Li, H., Parikh, N. A. & He, L. A novel transfer learning approach to enhance
deep neural network classification of brain functional connectomes. Front.
Neurosci. 12, https://doi.org/10.3389/fnins.2018.00491 (2018).

30. Crimi, A., Dodero, L., Murino, V. & Sona, D. Case–control discrimination
through effective brain connectivity. In Proc. IEEE 14th International Sympo-
sium on Biomedical Imaging (ISBI 2017). 970–973 (2017).

31. Ganeshan, B., Miles, K. A., Young, R. C. & Chatwin, C. R. In search of biologic
correlates for liver texture on portal-phase CT. Acad. Radio. 14, 1058–1068
(2007).

32. Chanel, G. et al. Classification of autistic individuals and controls using cross-
task characterization of fMRI activity. NeuroImage: Clin. 10, 78–88 (2016).

33. Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer clas-
sification using support vector machines. Mach. Learn. 46, 389–422 (2002).

34. Zheng, W. et al. Multi-feature based network revealing the structural
abnormalities in autism spectrum disorder. IEEE Trans. Affect. Comput. 1–1,
https://doi.org/10.1109/TAFFC.2018.2890597 (2018).

35. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic
minority over-sampling technique. J. Artif. Int. Res. 16, 321–357 (2002).

36. Kalantarian, H. et al. Labeling images with facial emotion and the potential
for pediatric healthcare. Artif. Intell. Med. 98, 77–86 (2019).

37. Kalantarian, H. et al. A gamified mobile system for crowdsourcing video for
autism research. In Proc. IEEE International Conference on Healthcare Infor-
matics (ICHI). 350–352 (2018).

38. Han, J. et al. Affective computing of childern with authism based on feature
transfer In Proc. 5th IEEE International Conference on Cloud Computing and
Intelligence Systems (CCIS). 845–849 (2018).

39. Tang, C. et al. Automatic smile detection of infants in mother-infant inter-
action via CNN-based feature learning. In Proc. Joint Workshop of the 4th
Workshop on Affective Social Multimedia Computing and First Multi-modal
Affective Computing of Large-scale Multimedia Data. 35–40 (Association for
Computing Machinery).

40. Daniels, J. et al. Feasibility testing of a wearable behavioral aid for social
learning in children with autism. Appl. Clin. Inform. 9, 129–140 (2018).

41. Jazouli, M., Majda, A. & Zarghili, A. A $P recognizer for automatic facial
emotion recognition using Kinect sensor. In Proc. Intelligent Systems and
Computer Vision (ISCV). 1–5 (2017).

42. Washington, P. et al. SuperpowerGlass: a wearable aid for the at-home
therapy of children with autism. In Proc. ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 1, Article 112, https://doi.org/10.1145/3130977
(2017).

43. Voss, C. et al. Superpower glass: delivering unobtrusive real-time social cues
in wearable systems. In Proc. ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct. 1218–1226 (Association for Computing
Machinery, 2016).

44. Vahabzadeh, A., Keshav, N. U., Salisbury, J. P. & Sahin, N. T. Improvement of
attention-deficit/hyperactivity disorder symptoms in school-aged children,
adolescents, and young adults with autism via a digital smartglasses-based
socioemotional coaching aid: short-term, uncontrolled pilot study. JMIR Ment.
Health 5, e25 (2018).

45. Leo, M. et al. Automatic emotion recognition in robot-children interaction for
ASD treatment. In Proc. IEEE International Conference on Computer Vision
Workshop (ICCVW). 537–545 (2015).

46. Pan, Y., Hirokawa, M. & Suzuki, K. Measuring K-degree facial interaction
between robot and children with autism spectrum disorders. In Proc. 24th
IEEE International Symposium on Robot and Human Interactive Communica-
tion (RO-MAN). 48–53 (2015).

47. Leo, M. et al. Computational analysis of deep visual data for quantifying facial
expression production. Appl. Sci. 9, 4542 (2019).

de Belen et al. Translational Psychiatry          (2020) 10:333 Page 17 of 20

https://doi.org/10.1016/j.biopsych.2012.11.030
https://doi.org/10.3389/fnins.2018.00491
https://doi.org/10.1109/TAFFC.2018.2890597
https://doi.org/10.1145/3130977


48. Coco, M. D. et al. A computer vision based approach for understanding
emotional involvements in children with autism spectrum disorders. In
Proc. IEEE International Conference on Computer Vision Workshops (ICCVW).
1401–1407 (2017).

49. Leo, M. et al. Computational assessment of facial expression production in
ASD children. Sensors 18, 3993 (2018).

50. Samad, M. D., Bobzien, J. L., Harrington, J. W. & Iftekharuddin, K. M. Analysis
of facial muscle activation in children with autism using 3D imaging. In
Proc. IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
337–342 (2015).

51. Leo, M. et al. Towards the automatic assessment of abilities to produce facial
expressions: the case study of children with ASD. In Proc. IET Conference 66
(64 pp.) <https://digital-library.theiet.org/content/conferences/10.1049/
cp.2018.1675> (2018).

52. Guha, T., Yang, Z., Grossman, R. B. & Narayanan, S. S. A computational study of
expressive facial dynamics in children with autism. IEEE Trans. Affect. Comput.
9, 14–20 (2018).

53. Ahmed, A. A. & Goodwin, M. S. Automated detection of facial expressions
during computer-assisted instruction in individuals on the autism spectrum.
In Proc. CHI Conference on Human Factors in Computing Systems. 6050–6055
(Association for Computing Machinery, 2017).

54. Harrold, N., Tan, C. T., Rosser, D. & Leong, T. W. CopyMe: a portable real-time
feedback expression recognition game for children. In CHI ’14 Extended
Abstracts on Human Factors in Computing Systems. 1195–1200 (Association
for Computing Machinery, 2014).

55. Harrold, N., Tan, C. T., Rosser, D. & Leong, T. W. CopyMe: an emotional
development game for children in CHI ’14 Extended Abstracts on Human
Factors in Computing Systems. 503–506 (Association for Computing
Machinery).

56. White, S. W. et al. Feasibility of automated training for facial emotion
expression and recognition in autism. Behav. Ther. 49, 881–888 (2018).

57. Garcia-Garcia, J. M., Cabañero, M. d. M., Penichet, V. M. R. & Lozano, M. D.
EmoTEA: teaching children with autism spectrum disorder to identify and
express emotions. In Proc. XX International Conference on Human Computer
Interaction. Article 36 (Association for Computing Machinery).

58. Jain, S., Tamersoy, B., Zhang, Y., Aggarwal, J. K. & Orvalho, V. An interactive
game for teaching facial expressions to children with Autism Spectrum
Disorders. In Proc. 5th International Symposium on Communications, Control
and Signal Processing. 1–4 (2012).

59. Li, B. et al. A facial affect analysis system for autism spectrum disorder. In Proc.
IEEE International Conference on Image Processing (ICIP). 4549–4553 (2019).

60. Shukla, P., Gupta, T., Saini, A., Singh, P. & Balasubramanian, R. A Deep Learning
frame-work for recognizing developmental disorders. In Proc. IEEE Winter
Conference on Applications of Computer Vision (WACV). 705–714 (2017).

61. Tung, K. et al. Eye detection in CSBS-DP evaluation video. I Proc. IEEE Inter-
national Conference on Consumer Electronics-Taiwan (ICCE-TW). 1–2 (2016).

62. Balestra, A. et al. Analyzing text comprehension deficits in autism with eye
tracking: a case study. In Proc. 3rd International Conference on Human System
Interaction. 230-235.

63. Li, B. et al. Modified DBSCAN algorithm on oculomotor fixation identification.
In Proc. Ninth Biennial ACM Symposium on Eye Tracking Research & Applica-
tions. 337–338 (Association for Computing Machinery).

64. Matthews, O. et al. Combining trending scan paths with arousal to model
visual behaviour on the web: a case study of neurotypical people vs people
with autism. In Proc. 27th ACM Conference on User Modeling, Adaptation and
Personalization. 86–94 (Association for Computing Machinery).

65. Pierce, K. et al. Eye tracking reveals abnormal visual preference for geometric
images as an early biomarker of an autism spectrum disorder subtype asso-
ciated with increased symptom severity. Biol. Psychiatry 79, 657–666 (2016).

66. Murias, M. et al. Validation of eye-tracking measures of social attention as a
potential biomarker for autism clinical trials. Autism Res. 11, 166–174 (2018).

67. Chawarska, K., Macari, S. & Shic, F. Decreased spontaneous attention to social
scenes in 6-month-old infants later diagnosed with autism spectrum dis-
orders. Biol. Psychiatry 74, 195–203 (2013).

68. Shi, L. et al. Different visual preference patterns in response to simple and
complex dynamic social stimuli in preschool-aged children with autism
spectrum disorders. PLoS One 10, e0122280 (2015).

69. Shic, F., Bradshaw, J., Klin, A., Scassellati, B. & Chawarska, K. Limited activity
monitoring in toddlers with autism spectrum disorder. Brain Res. 1380,
246–254 (2011).

70. Campbell, D. J., Chang, J., Chawarska, K. & Shic, F. Saliency-based Bayesian
modeling of dynamic viewing of static scenes. In Proc. Symposium on Eye
Tracking Research and Applications. 51–58 (Association for Computing
Machinery).

71. Syeda, U. H. et al. Visual face scanning and emotion perception analysis
between autistic and typically developing children. In Proc. ACM International
Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of
the 2017 ACM International Symposium on Wearable Computers. 844–853
(Association for Computing Machinery, 2017).

72. Chrysouli, C., Vretos, N. & Daras, P. Affective state recognition based on eye
gaze analysis using two–stream convolutional networks. In Proc. IEEE 28th
International Workshop on Machine Learning for Signal Processing (MLSP). 1–6
(2018).

73. Liu, W., Li, M. & Yi, L. Identifying children with autism spectrum disorder
based on their face processing abnormality: a machine learning framework.
Autism Res. 9, 888–898 (2016).

74. Liu, W. et al. Efficient autism spectrum disorder prediction with eye move-
ment: a machine learning framework. In Proc. International Conference on
Affective Computing and Intelligent Interaction (ACII). 649-655 (2015).

75. Vu, T. et al. Effective and efficient visual stimuli design for quantitative autism
screening: an exploratory study. In Proc. IEEE EMBS International Conference on
Biomedical & Health Informatics (BHI). 297–300 (2017).

76. Jiang, M. & Zhao, Q. Learning visual attention to identify people with autism
spectrum disorder. In Proc. IEEE International Conference on Computer Vision
(ICCV). 3287–3296 (2017).

77. Higuchi, K. et al. Visualizing gaze direction to support video coding of social
attention for children with autism spectrum disorder. In Proc. 23rd Interna-
tional Conference on Intelligent User Interfaces. 571–582 (Association for
Computing Machinery).

78. Chong, E. et al. Detecting gaze towards eyes in natural social interactions and
its use in child assessment. In Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 1, Article 43, https://doi.org/10.1145/3131902 (2017).

79. Toshniwal, S., Dey, P., Rajput, N. & Srivastava, S. VibRein: an engaging and
assistive mobile learning companion for students with intellectual disabilities.
In Proc. Annual Meeting of the Australian Special Interest Group for Computer
Human Interaction. 20–28 (Association for Computing Machinery).

80. Dawson, G. et al. Atypical postural control can be detected via computer
vision analysis in toddlers with autism spectrum disorder. Sci. Rep. 8, 17008
(2018).

81. Martin, K. B. et al. Objective measurement of head movement differences in
children with and without autism spectrum disorder. Mol. Autism 9, 14
(2018).

82. Zunino, A. et al. Video gesture analysis for autism spectrum disorder
detection In Proc. 24th International Conference on Pattern Recognition (ICPR).
3421-3426 (2018).

83. Vyas, K. et al. Recognition of atypical behavior in autism diagnosis from video
using pose estimation over time. In Proc. IEEE 29th International Workshop on
Machine Learning for Signal Processing (MLSP). 1-6 (2019).

84. Piana, S., Malagoli, C., Usai, M. C. & Camurri, A. effects of computerized
emotional training on children with high functioning autism. IEEE
Trans. Affect. Comput., 1-1, https://doi.org/10.1109/TAFFC.2019.2916023
(2019).

85. Bartoli, L., Corradi, C., Garzotto, F. & Valoriani, M. Exploring motion-based
touchless games for autistic children’s learning. In Proc. 12th International
Conference on Interaction Design and Children. 102–111 (Association for
Computing Machinery).

86. Ringland, K. et al. SensoryPaint: a natural user interface supporting sensory
integration in children with neurodevelopmental disorders. In Proc. Con-
ference on Human Factors in Computing Systems, https://doi.org/10.1145/
2559206.2581249 (2014).

87. Magrini, M., Carboni, A., Salvetti, O. & Curzio, O. An auditory feedback based
system for treating autism spectrum disorder. In Proc. International Workshop
on ICTs for Improving Patients Rehabilitation Research Techniques. 46–58
(Springer).

88. Dickstein-Fischer, L. & Fischer, G. S. Combining psychological and engi-
neering approaches to utilizing social robots with children with autism. Conf.
Proc. IEEE Eng. Med Biol. Soc. 2014, 792–795 (2014).

89. Bekele, E. T. et al. A step towards developing adaptive robot-mediated
intervention architecture (ARIA) for children with autism. IEEE Trans. Neural
Syst. Rehabilitation Eng. 21, 289–299 (2013).

de Belen et al. Translational Psychiatry          (2020) 10:333 Page 18 of 20

https://digital-library.theiet.org/content/conferences/10.1049/cp.2018.1675
https://digital-library.theiet.org/content/conferences/10.1049/cp.2018.1675
https://doi.org/10.1145/3131902
https://doi.org/10.1109/TAFFC.2019.2916023
https://doi.org/10.1145/2559206.2581249
https://doi.org/10.1145/2559206.2581249


90. Dimitrova, M., Vegt, N. & Barakova, E. Designing a system of interactive robots
for training collaborative skills to autistic children In Proc. 15th International
Conference on Interactive Collaborative Learning (ICL). 1–8 (2012).

91. Bryson, S. E., Zwaigenbaum, L., McDermott, C., Rombough, V. & Brian, J. The
autism observation scale for infants: scale development and reliability data. J.
Autism Dev. Disord. 38, 731–738 (2008).

92. Hashemi, J. et al. A computer vision approach for the assessment of autism-
related behavioral markers. In Proc. IEEE International Conference on Devel-
opment and Learning and Epigenetic Robotics (ICDL). 1–7 (2012).

93. Hashemi, J. et al. Computer vision tools for low-cost and noninvasive
measurement of autism-related behaviors in infants. Autism Res. Treat. 2014,
935686 (2014).

94. Bidwell, J., Essa, I. A., Rozga, A. & Abowd, G. D. Measuring child visual attention
using markerless head tracking from color and depth sensing cameras. In
Proc. 16th International Conference on Multimodal Interaction. 447–454
(Association for Computing Machinery).

95. Hashemi, J. et al. A scalable app for measuring autism risk behaviors in young
children: a technical validity and feasibility study. In Proc. 5th EAI International
Conference on Wireless Mobile Communication and Healthcare. 23–27 (ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

96. Campbell, K. et al. Computer vision analysis captures atypical attention in
toddlers with autism. Autism 23, 619–628 (2019).

97. Hashemi, J. et al. Computer vision analysis for quantification of autism risk
behaviors. IEEE Trans. Affect. Comput., 1-1, https://doi.org/10.1109/
TAFFC.2018.2868196 (2018).

98. Wang, Z. et al. Screening early children with autism spectrum disorder via
response-to-name protocol. IEEE Trans Ind. Inform., 1-1, https://doi.org/
10.1109/TII.2019.2958106 (2019).

99. Bovery, M. D. M. J., Dawson, G., Hashemi, J. & Sapiro, G. A scalable off-the-shelf
framework for measuring patterns of attention in young children and its
application in autism spectrum disorder. IEEE Trans. Affect. Comput., 1–1,
https://doi.org/10.1109/TAFFC.2018.2890610 (2018).

100. Rajagopalan, S. S. & Goecke, R. Detecting self-stimulatory behaviours for
autism diagnosis. In Proc. IEEE International Conference on Image Processing
(ICIP). 1470–1474 (2014).

101. Rajagopalan, S. S., Dhall, A. & Goecke, R. Self-stimulatory behaviours in the
wild for autism diagnosis. In Proc. IEEE International Conference on Computer
Vision Workshops. 755-761 (2013).

102. Rajagopalan, S. S. Computational behaviour modelling for autism diagnosis.
In Proc. 15th ACM on International Conference on Multimodal Interaction.
361–364 (Association for Computing Machinery).

103. Winoto, P., Chen, C. G. & Tang, T. Y. The development of a Kinect-based
online socio-meter for users with social and communication skill
impairments: a computational sensing approach. In Proc. IEEE Interna-
tional Conference on Knowledge Engineering and Applications (ICKEA).
139–143 (2016).

104. Feil-Seifer, D. & Matarić, M. Using proxemics to evaluate human-robot
interaction. In Proc. 5th ACM/IEEE international conference on Human-robot
interaction. 143–144 (IEEE Press).

105. Moghadas, M. & Moradi, H. Analyzing human-robot interaction using
machine vision for autism screening. In Proc. 6th RSI International Conference
on Robotics and Mechatronics (IcRoM). 572–576 (2018).

106. Chen, S. & Zhao, Q. Attention-based autism spectrum disorder screening
with privileged modality. In Proc. IEEE/CVF International Conference on Com-
puter Vision (ICCV). 1181–1190 (2019).

107. Wang, Z., Xu, K. & Liu, H. Screening early children with autism spectrum
disorder via expressing needs with index finger pointing. In Proc. 13th
International Conference on Distributed Smart Cameras. Article 24 (Association
for Computing Machinery).

108. Mazzei, D. et al. Robotic social therapy on children with autism: preliminary
evaluation through multi-parametric analysis. In Proc. International Conference
on Privacy, Security, Risk and Trust and 2012 International Confernece on Social
Computing. 766–771 (2012).

109. Coco, M. D. et al. Study of mechanisms of social interaction stimulation in
autism spectrum disorder by assisted humanoid robot. IEEE Trans. Cogn. Dev.
Syst. 10, 993–1004 (2018).

110. Rudovic, O., Lee, J., Dai, M., Schuller, B. & Picard, R. W. Personalized machine
learning for robot perception of affect and engagement in autism therapy.
Sci. Robot. 3, eaao6760 (2018).

111. Palestra, G., Varni, G., Chetouani, M. & Esposito, F. A multimodal and multilevel
system for robotics treatment of autism in children. In Proc. International
Workshop on Social Learning and Multimodal Interaction for Designing Artificial
Agents. Article 3 (Association for Computing Machinery).

112. Dickstein-Fischer, L. A., Pereira, R. H., Gandomi, K. Y., Fathima, A. T. & Fischer, G.
S. Interactive tracking for robot-assisted autism therapy. In Proc. Companion
of the 2017 ACM/IEEE International Conference on Human-Robot Interaction.
107–108 (Association for Computing Machinery).

113. Mehmood, F., Ayaz, Y., Ali, S., Amadeu, R. D. C. & Sadia, H. Dominance in visual
space of ASD children using multi-robot joint attention integrated dis-
tributed imitation system. IEEE Access 7, 168815–168827 (2019).

114. Egger, H. L. et al. Automatic emotion and attention analysis of young chil-
dren at home: a ResearchKit autism feasibility study. npj Digit. Med. 1, 20
(2018).

115. Peters, C., Hermann, T., Wachsmuth, S. & Hoey, J. Automatic task assistance for
people with cognitive disabilities in brushing teeth—a user study with the
TEBRA system. ACM Trans. Access. Comput. 5, Article 10, https://doi.org/
10.1145/2579700 (2014).

116. Rehg, J. M. et al. Decoding children’s social behavior. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition. 3414–3421 (2013).

117. Liu, W., Zhou, T., Zhang, C., Zou, X. & Li, M. Response to name: a dataset and a
multimodal machine learning framework towards autism study. In Proc.
Seventh International Conference on Affective Computing and Intelligent Inter-
action (ACII). 178–183 (2017).

118. Marinoiu, E., Zanfir, M., Olaru, V. & Sminchisescu, C. 3D Human sensing, action
and emotion recognition in robot assisted therapy of children with autism. In
Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2158–2167 (2018).

119. Schwarzkopf, D. S., Anderson, E. J., de Haas, B., White, S. J. & Rees, G. Larger
extrastriate population receptive fields in autism spectrum disorders. J.
Neurosci. 34, 2713 (2014).

120. Di Martino, A. et al. The autism brain imaging data exchange: towards a
large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psy-
chiatry 19, 659–667 (2014).

121. Di Martino, A. et al. Enhancing studies of the connectome in autism using
the autism brain imaging data exchange II. Sci. Data 4, 170010 (2017).

122. Hazlett, H. C. et al. Magnetic resonance imaging and head circumference
study of brain size in autism: birth through age 2 years. Arch. Gen. Psychiatry
62, 1366–1376 (2005).

123. Baird, A. et al. Automatic classification of autistic child vocalisations: a novel
database and results. In Proc. Interspeech 2017 849–853 (2017).

124. Duan, H. et al. A dataset of eye movements for the children with autism
spectrum disorder. In Proc. 10th ACMMultimedia Systems Conference. 255–260
(Association for Computing Machinery).

125. Soomro, K., Zamir, A. R., & Shah, M. UCF101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprintarXiv:1212.0402 (2012).

126. Blank, M., Gorelick, L., Shechtman, E., Irani, M. & Basri, R. Actions as space-time
shapes. In Proc. Tenth IEEE International Conference on Computer Vision
(ICCV'05) Volume 1. 1395–1402 Vol. 1392.

127. Kanade, T., Cohn, J. F. & Yingli, T. Comprehensive database for facial
expression analysis. In Proc. Fourth IEEE International Conference on Automatic
Face and Gesture Recognition (Cat. No. PR00580). 46–53.

128. Lucey, P. et al. The Extended Cohn-Kanade dataset (CK+): a complete dataset
for action unit and emotion-specified expression in 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition—Workshops.
94–101.

129. Phillips, P. J., Wechsler, H., Huang, J. & Rauss, P. J. The FERET database and
evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16,
295–306 (1998).

130. Marszalek, M., Laptev, I. & Schmid, C. Actions in context. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition. 2929–2936 (2009).

131. Le, V., Brandt, J., Lin, Z., Bourdev, L. & Huang, T. S. Interactive Facial Feature
Localization. 679–692 (Springer Berlin Heidelberg).

132. Liu, Z., Luo, P., Wang, X. & Tang, X. Deep learning face attributes in the wild. In
Proc. IEEE International Conference on Computer Vision. 3730–3738.

133. Mollahosseini, A., Hasani, B. & Mahoor, M. H. AffectNet: a database for facial
expression, valence, and arousal computing in the wild. IEEE Trans. Affect.
Comput. 10, 18–31 (2019).

134. Benitez-Quiroz, C. F., Srinivasan, R. & Martinez, A. M. EmotioNet: an accurate,
real-time algorithm for the automatic annotation of a million facial

de Belen et al. Translational Psychiatry          (2020) 10:333 Page 19 of 20

https://doi.org/10.1109/TAFFC.2018.2868196
https://doi.org/10.1109/TAFFC.2018.2868196
https://doi.org/10.1109/TII.2019.2958106
https://doi.org/10.1109/TII.2019.2958106
https://doi.org/10.1109/TAFFC.2018.2890610
https://doi.org/10.1145/2579700
https://doi.org/10.1145/2579700


expressions in the wild. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 5562–5570 (2016).

135. Lijun, Y., Xiaozhou, W., Yi, S., Jun, W. & Rosato, M. J. A 3D facial expression
database for facial behavior research. In Proc. 7th International Conference on
Automatic Face and Gesture Recognition (FGR06). 211–216.

136. Mittal, A., Zisserman, A. & Torr, P. H. Hand detection using multiple proposals.
BMVC 2, 5 (2011).

137. Bambach, S, Lee, S, Crandall, D. J, Yu, C. & Lending a hand: detecting hands
and recognizing activities in complex egocentric interactions Proc. IEEE Int.
Conf. Comput. Vis.1949–1957 (2015).

138. Thabtah, F. Machine learning in autistic spectrum disorder behavioral research:
a review and ways forward. Inform. Health Soc. Care 44, 278–297 (2019).

139. Yin, L., Chen, X., Sun, Y., Worm, T. & Reale, M. A high-resolution 3D dynamic
facial expression database. In Proc. 8th IEEE International Conference on
Automatic Face & Gesture Recognition. 1–6 (2008).

140. Savran, A. et al. Bosphorus Database for 3D Face Analysis. 47–56 (Springer
Berlin Heidelberg).

141. Sim, T., Baker, S. & Bsat, M. The CMU pose, illumination, and expression (PIE)
database. In Proc. 5th IEEE International Conference on Automatic Face Gesture
Recognition. 53–58.

142. Lyons, M., Akamatsu, S., Kamachi, M. & Gyoba, J. Coding facial expressions
with Gabor wavelets. In Proc. Third IEEE International Conference on Automatic
Face and Gesture Recognition. 200–205.

143. Pantic, M., Valstar, M., Rademaker, R. & Maat, L. Web-based database for facial
expression analysis. In Proc. IEEE International Conference on Multimedia and
Expo. 5 pp (2005).

144. Yi, L. et al. Abnormality in face scanning by children with autism spectrum
disorder is limited to the eye region: evidence from multi-method analyses
of eye tracking data. J. Vis. 13, https://doi.org/10.1167/13.10.5 (2013).

145. Yi, L. et al. Do individuals with and without autism spectrum disorder scan
faces differently? A new multi-method look at an existing controversy. Autism
Res 7, 72–83 (2014).

146. Wang, S. et al. A typical visual saliency in autism spectrum disorder quantified
through model-based eye tracking. Neuron 88, 604–616 (2015).

147. Rudovic, O., Lee, J., Mascarell-Maricic, L., Schuller, B. W. & Picard, R. W. Mea-
suring engagement in robot-assisted autism therapy: a cross-cultural study.
Front. Robot. AI 4, https://doi.org/10.3389/frobt.2017.00036 (2017).

148. Baltrusaitis, T., Robinson, P. & Morency, L.-P. Constrained local neural fields for
robust facial landmark detection in the wild. In Proc. IEEE International Con-
ference on Computer Vision Workshops. 354–361.

149. Palestra, G., Pettinicchio, A., Del Coco, M., Carcagnì, P., Leo, M., Dis-
tante, C. Improved Performance in Facial Expression Recognition
Using 32 Geometric Features. In Image Analysis and Processing—
ICIAP 2015 (eds Murino V. & Puppo E.) ICIAP 2015. Lecture Notes in
Computer Science, vol 9280. (Springer, Cham, 2015). https://doi.org/
10.1007/978-3-319-23234-8_48.

de Belen et al. Translational Psychiatry          (2020) 10:333 Page 20 of 20

https://doi.org/10.1167/13.10.5
https://doi.org/10.3389/frobt.2017.00036
https://doi.org/10.1007/978-3-319-23234-8_48
https://doi.org/10.1007/978-3-319-23234-8_48

	Computer vision in autism spectrum disorder research: a systematic review of published studies�from 2009 to 2019
	Introduction
	Materials and methods
	Eligibility criteria
	Search process
	Data items and analysis

	Results
	Overview of behavioural/biological markers used in eligible papers
	Magnetic resonance imaging (MRI)/functional MRI (fMRI)
	Facial expression/emotion
	Eye gaze data
	Motor control/movement pattern
	Stereotyped behaviours
	Multimodal data

	Datasets used in eligible papers
	Magnetic resonance imaging datasets
	Autism spectrum disorder detection dataset
	DE-ENIGMA dataset
	Multimodal behaviour dataset
	Saliency4ASD dataset
	Self-stimulatory behaviour dataset
	Other datasets

	Limitations

	Discussion
	Acknowledgements




