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Abstract
Rare copy number variants associated with increased risk for neurodevelopmental and psychiatric disorders (referred
to as ND-CNVs) are characterized by heterogeneous phenotypes thought to share a considerable degree of overlap.
Altered neural integration has often been linked to psychopathology and is a candidate marker for potential
convergent mechanisms through which ND-CNVs modify risk; however, the rarity of ND-CNVs means that few studies
have assessed their neural correlates. Here, we used magnetoencephalography (MEG) to investigate resting-state
oscillatory connectivity in a cohort of 42 adults with ND-CNVs, including deletions or duplications at 22q11.2, 15q11.2,
15q13.3, 16p11.2, 17q12, 1q21.1, 3q29, and 2p16.3, and 42 controls. We observed decreased connectivity between
occipital, temporal, and parietal areas in participants with ND-CNVs. This pattern was common across genotypes and
not exclusively characteristic of 22q11.2 deletions, which were present in a third of our cohort. Furthermore, a data-
driven graph theory framework enabled us to successfully distinguish participants with ND-CNVs from unaffected
controls using differences in node centrality and network segregation. Together, our results point to alterations in
electrophysiological connectivity as a putative common mechanism through which genetic factors confer increased
risk for neurodevelopmental and psychiatric disorders.

Introduction
A number of rare genetic variants occurring through the

deletion or duplication of chromosomal segments are
associated with significantly increased risk for a range of
neurodevelopmental disorders (ND), including schizo-
phrenia, autism spectrum disorder (ASD), and develop-
mental delay1. Although the underlying mechanisms
remain poorly understood, these copy number variants
(referred to hereafter as ND-CNVs) are thought to
increase the risk for psychopathology through alterations

in neural structure and function. Thus, neuroimaging
studies in participants with ND-CNVs provide a unique
opportunity to study intermediate phenotypes of mental
disorders.
Recent work suggests that CNV-specific phenotypic

outcomes are limited, pointing instead to a large degree of
similarity across phenotypes associated with different ND-
CNVs2,3. Focusing on convergent neural alterations
across different genotypes can thus help elucidate the
mechanisms linking ND-CNVs at different loci to a
shared psychopathology and increase in neurodevelop-
mental risk.
Failures of functional neural integration have long been

considered a hallmark of neurodevelopmental disorders
such as schizophrenia4,5. In recent years, evidence of
disrupted connectivity has also emerged in ASD
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populations6,7 and has been shown to transcend diag-
nostic boundaries8. ND-CNVs are thought to increase
disorder risk by acting on large-scale neural integration
through molecular and cellular mechanisms9. Studying
functional network alterations in participants with ND-
CNVs could thus help establish their reliability as bio-
markers of neurodevelopmental risk. Synchronous oscil-
latory activity thought to support communication
between brain areas is of particular interest as a potential
biomarker of neurodevelopmental risk, and can be mea-
sured at rest using electro- and magneto-encephalography
(EEG/MEG).
However, the rarity of ND-CNVs means that evidence

of their functional connectivity correlates is scarce. Of the
genetic imaging studies conducted so far, most have
focused on the 22q11.2 deletion syndrome. This deletion
is associated with a number of physical phenotype man-
ifestations as well as high risk for psychopathology10–13.
The presence of a 22q11.2 deletion has been linked to
alterations in brain structure and function14–17, including
disrupted structural connectivity18,19. Although fewer
studies have investigated functional connectivity, they
report similarly disrupted networks using functional
MRI20–22 and EEG23.
Despite emerging evidence of white matter alterations

associated with other ND-CNVs24–26, very few studies
have investigated their functional correlates. Recent
electrophysiological research reported increased beta-
band activity in participants with 15q11.2-q13.1 duplica-
tions27,28 and 16p11.2 deletions29, as well as delayed
evoked responses in the latter24,30. Based on current evi-
dence it is difficult to assess the extent of functional
connectivity alterations, especially for rarer ND-CNVs.
To address this, we investigated oscillatory connectivity

measured with MEG in participants with ND-CNVs at

nine different loci. Given the common phenotypic out-
comes associated with ND-CNVs2, this approach can
identify convergent endophenotypes of potentially higher
clinical relevance. Because a third of our cohort had
22q11.2 deletions, we also investigated alterations in
connectivity separately in this subgroup and in the group
of participants with other ND-CNVs. This allowed us to
assess the specificity of the effects, especially considering
previous findings of widespread neural alterations asso-
ciated with 22q11.2 deletions.
In both subgroups, we found evidence of disrupted

alpha and beta-band oscillatory connectivity in posterior
brain regions. Furthermore, using graph theory measures
of network topology and information transfer, we were
able to identify participants with ND-CNVs based on their
individual connectivity maps. The two approaches high-
lighted common patterns of dysconnectivity in partici-
pants with ND-CNVs, as well as specific network features
that might be linked to CNV pathogenicity.

Materials and methods
Participants
MEG data were acquired in 42 adults with ND-CNVs

targeted for their high penetrance for neurodevelop-
mental disorders (22 female; mean age 38.5 ± 12.5 years;
range 19–76). ND-CNVs at nine different loci were
represented in the cohort, with 14 (33%) participants
carrying 22q11.2 deletions (Table 1).
Recruitment was performed through NHS genetics

clinics and relevant support groups within the UK. Writ-
ten consent was obtained in accordance with The Code of
Ethics of the World Medical Association (Declaration of
Helsinki), and all procedures were approved by the South
East Wales Research Ethics Committee. Informed consent
was obtained from all subjects.

Table 1 Participant information (ND-CNV status, demographic information, number of psychiatric diagnoses, and IQ).

CNV and critical region (hg19) Total N N female Age (mean ± SD) N diag (mean ± SD) VIQ (mean ± SD) PIQ (mean ± SD) FSIQ (mean ± SD)

All CNV 42 22 38.53 ± 12.55 2.93 ± 2.54 88.72 ± 18.84 96.63 ± 14.63 91.24 ± 17.15

22q11.2del chr22:19,037,332–21,466,726 14 9 38.97 ± 16.43 3 ± 2.07 86.28 ± 21.23 95.28 ± 15.6 89.93 ± 17.88

22q11.2dup chr22:19,037,332–21,466,726 4 13 38.32 ± 10.44 2.89 ± 2.78 90 ± 17.77 97.33 ± 14.36 91.89 ± 17.08

17q12dup chr17:34,815,904–36,217,432 2

16p11.2del chr16:29,650,840–30,200,773 1

16p11.2dup (distal) chr16:28,823,196–29,046,783 1

15q13.1-13.3del (BP4-5) chr15:31,080,645–32,462,776 2

15q13.1-13.3dup (BP4-5) chr15:31,080,645–32,462,776 1

15q11.2del (BP1-2) chr15:22,805,313–23,094,530 7

15q11.2dup(BP1-2) chr15:22,805,313–23,094,530 1

15q11.2q12dup(BP2-3; PWS/AS) chr15:22,805,313–28390339 1

3q29del chr3:195,720,167–197,354,826 1

2p16.3del (NRXN1) chr2:50145643–51259674 1

1q21.1del chr1:146,527,987–147,394,444 5

1q21.1dup chr1:146,527,987–147,394,444 1

Controls 42 22 33.35 ± 9.58 – – – –

Note that the 22q11.2 deletion group included two atypical deletions and one adjacent deletion.
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All participants with ND-CNVs were assessed using the
Psychiatric Assessment Schedule for Adults with Devel-
opmental Disability (PAS-ADD; Moss et al.31). Twenty-
four participants were also assessed using the Structured
Interview for Prodromal Symptoms (SIPS; Miller et al.32),
and 26 participants using the Structured Clinical Inter-
view for DSM (SCID II; First and Gibbon33). Diagnoses
were assigned by research psychologists and verified by an
adult psychiatrist using the Diagnostic and Statistical
Manual for Mental Disorders, 4th and 5th Editions. Of the
42 participants, 34 had at least one diagnosis; 22 had
anxiety disorders, 15 had mood disorders, and 15 had
neurodevelopmental disorders (including six with intel-
lectual disability and six with autism spectrum disorders).
Five participants exhibited full or attenuated psychotic
symptoms, of whom four met the criteria for a psychotic
disorder, with two schizophrenia diagnoses in the 22q11.2
deletion group. There was no significant difference in
number of diagnoses between the 22q11.2 deletion group
and the other ND-CNV group (t(33.7)= 0.14, P= 0.89).
IQ tests were administered using the Wechsler Adult

Intelligence Scale (WAIS-III). We report verbal IQ (VIQ),
performance IQ (PIQ) and full scale IQ scores (FSIQ).
There was no significant difference in IQ between the
22q11.2 deletion group and the other ND-CNV group (t
(22.7–25.1) < 0.57, P > 0.58).
In the ND-CNV group, 62% of participants were taking

medication for physical, neurological or mood disorders
(e.g., high blood pressure, asthma, pain/migraine, and
depression/anxiety), with the most common medications
including gabapentin, co-codamol (combination of codeine
and paracetamol), and fluoxetine (N= 3). Given the high
variability of medications, their effects could not be sys-
tematically investigated; however, their impact was alleviated
in MEG analysis by tests of generalizibility (e.g., resampling).
Controls were selected among resting-state datasets

acquired at CUBRIC as part of the “100 Brains”’ and “UK
MEG Partnership” projects. These cohorts included
healthy participants with no history of neurological or
neuropsychiatric disorders, and 42 controls were chosen
to match the gender and age of the ND-CNV carriers as
closely as possible (22 female; mean age 33.3 ± 9.6 years;
range 22–71). These measurements were acquired under
protocols approved by the Cardiff University School of
Psychology Ethics Committee, and informed consent was
obtained from all participants.
Since a third of the ND-CNV cohort consisted of

participants with 22q11.2 deletions, we assessed the
impact of this subgroup by repeating all analyses on (1)
participants with other ND-CNVs (except 22q11.2
deletions) and their matched controls (N= 56), and (2)
participants with 22q11.2 deletions and their matched
controls (N= 28).

Genotyping
Participants with ND-CNVs were genotyped using the

Illumina HumanCoreExome whole genome SNP array,
which contained an additional 27,000 genetic variants at
loci previously linked to neurodevelopmental disorders,
including CNVs. The raw intensity data was processed
using Illumina Genome Studio software (version 2011.1).
PennCNV (version 1.0.3) was used to perform CNV
calling in order to confirm the presence of the ND-CNV
in each case sample, with each CNV being required to
span a minimum of ten informative SNPs and to be at
least 10 kb in length. CNV coordinates were specified
according to genome version hg19, and the boundaries of
each CNV were confirmed by manually inspecting the
Log R ratio and B allele frequency plots at each of the
genomic regions of interest (Table 1). Genetic informa-
tion was not available for control participants; given the
rarity of these genotypes in the general population, they
were assumed to carry no ND-CNVs.

Data collection
Five-minute resting-state MEG recordings were made

using a 275-channel CTF radial gradiometer system (CTF,
Vancouver, Canada) at a sampling rate of 1200Hz. Three of
the sensors were turned off due to excessive noise, and 29
reference channels were recorded to improve noise can-
cellation34. During the recordings, participants were seated
upright and fixated their eyes on a red fixation point pre-
sented centrally on either a CRT monitor or LCD projector.
Three electromagnetic coils were placed at fiducial loca-
tions (nasion and pre-auricular) for head localization.
To aid in source localization, structural T1-weighted

MRI scans were also acquired using a 3 T General Electric
or Siemens MRI scanner with a 1 mm isotropic FSPGR/
MPRAGE pulse sequence.

Data analysis
Pre-processing
To remove muscle artifacts, a semiautomatic procedure

was implemented using the FieldTrip toolbox35 and
MATLAB R2015a. Sensor time-series were bandpass-
filtered between 110 and 140 Hz and z-transformed; seg-
ments exceeding a participant-specific z-score threshold
were removed. Next, eye movement and cardiac artifacts
were projected out of the data using independent com-
ponent analysis (ICA). Noisy channels exhibiting high
variance were also removed from the data where neces-
sary. There was no significant difference in recording
duration after artifact rejection between the ND-CNV and
control groups (t(81.8) = 1.61, P= 0.11, mean duration
255.88 ± 29.31 s and 245.33 ± 30.86 s, respectively).
Head motion was monitored continuously in 18/42 ND-

CNV datasets and 40/42 control datasets, and head
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localization was performed at the start and end of the
recording in the remaining datasets. There was no sig-
nificant difference between the ND-CNV and control
groups in maximum head coil displacement between the
beginning and end of the recording (t(79.8) = 0.85, P=
0.39, mean displacement 2.07 ± 3.62mm and 2.7 ±
3.06mm, respectively). In datasets with continuous head
localization, the maximum distance of the head coils from
their average position across the entire recording did not
significantly differ between groups (t(39.4) = 1.44, P=
0.16, mean distance 4.74 ± 3.5mm and 3.21 ± 4.2 mm,
respectively).
Prior to source localization, coregistration was per-

formed by manually marking head coil locations on each
participant’s MRI using FieldTrip. The data were down-
sampled to 600 Hz and bandpass-filtered in six different
frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), low gamma (40–60 Hz), and
high gamma (60–90 Hz).

Estimating functional connectivity
To assess group differences in resting-state connectivity

(Fig. 1), we focused on amplitude–amplitude coupling of
source-localized oscillatory signals36. Continuous data in
each of the six frequency bands were projected into
source space using a linearly constrained minimum var-
iance (LCMV) beamformer. Sources were reconstructed
on a 6mm template grid warped to each participant’s
MRI, using a multiple local-spheres forward model37. To
alleviate the depth bias, beamformer weights were nor-
malized by their vector norm38.
Next, 90 nodes corresponding to cortical regions of

interest (ROI) in the automated anatomical labeling
(AAL) atlas39 were identified by performing a frequency
analysis on all sources within each ROI and selecting the
source with the largest temporal standard deviation.
Continuous virtual sensor timecourses corresponding to
the 90 nodes were then reconstructed and bandpass-
filtered into the frequency bands of interest.
To avoid spurious correlations, the node time-series were

orthogonalized using a multivariate symmetric orthogonali-
zation approach40. A Hilbert transform was used to calculate
oscillatory amplitude envelopes, which were then despiked
using a median filter, downsampled to 1Hz, and trimmed to
avoid filter and edge effects. To obtain connectivity matrices,
pairwise correlations were calculated between the 90 Hilbert
envelopes. Next, a Fisher transform was applied to obtain z-
scores with zero mean and unit variance across connections
in each participant’s map. This procedure corrected for
possible systematic differences across participants, for
example due to differences in data quality41.
Intracranial volume (ICV), quantified as the number of

1-mm isotropic voxels inside the brain, was smaller in the
ND-CNV group than the control group (t(65.5) = −2.19,

P= 0.03), in line with some previous reports42–44. The
potential impact of this difference on the MEG results was
alleviated through the source localization procedure and
the z-scoring of the connectivity matrices.
In addition to the six frequency bands listed above, a

combined measure of connectivity was obtained by cal-
culating the vector-sum of connectivity matrices across all
frequency bands45.

Group differences in resting-state connectivity
To reduce the impact of noise, a conservative ranking

procedure45 was used to threshold the connectivity maps for
the purposes of between-group comparisons. This consisted
of calculating the rank of each connection in participant-
level connectivity matrices and averaging the resulting rank
map across participants in each group. Only the top 20%
edges in the average rank map were considered “valid” and
selected for further analysis. To ensure that large differences
in signal across cohorts were not discarded by this proce-
dure, the rank-thresholding procedure was performed
separately in each cohort, and connections determined as
“valid” in either cohort were included in further analysis.
We report differences between groups using three sta-

tistical thresholds. First, Welch’s t-tests were conducted at
each valid edge, and initial patterns were identified using
an uncorrected α= 0.05. Second, correction for multiple
comparisons was applied using a randomization proce-
dure with 10,000 sign-shuffling iterations and maximal
statistic thresholding (omnibus α= 0.0546).
Third, the robustness of cohort differences was eval-

uated through a resampling procedure. Increases and
decreases in connectivity between groups were tabulated
using random samples of half of each group. This was
repeated across 10,000 iterations, and edges showing a
consistent effect direction across at least 95% of iterations
were considered robust.
Although few edges survived the conservative omnibus

correction across individual connections, we based our
conclusions on the resampling analysis, which converged
with the uncorrected t-test results and pointed to robust
patterns of differences in connectivity. Furthermore, we
performed a decoding analysis using graph theory metrics
to assess the discriminating information present at the
network level (see below).
To control for potential confounds (for example,

resulting from imperfect age matching between the ND-
CNV and control groups), an additional multiple regres-
sion analysis was performed. Combined-frequency con-
nectivity matrices were entered as response variables with
a categorical predictor (ND-CNV presence) and three
covariates (age, gender, and ICV). A resampling proce-
dure as described above was performed to assess the
robustness of between-group differences. The sign of the
regression slope associated with the main predictor was
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tabulated across 1000 split-half cohort randomizations.
Edges showing consistent effects across 95% of iterations
were considered robust.
This is an exploratory study with a limited sample size

due to the rarity of ND-CNVs. Although we are not aware
of similar MEG investigations, an EEG study in partici-
pants with 22q11.2 DS23 found resting-state connectivity
effect sizes ranging from moderate to large. Our sample
size can detect a large effect (Cohen’s d= 0.8) with 95%
power and a moderate effect (d= 0.5) with 62% power
according to a post-hoc power analysis.

Individual networks: identifying participants with ND-CNVs
using graph theory
Next, a data-driven graph theory approach was used to

assess whether participants with ND-CNVs could be
distinguished from unaffected controls using functional
connectivity features. To this aim, the cohort was divided
into training and test sets using an iterated cross-
validation procedure.
This analysis focused on individual networks by

selecting the top 20% of connections in each participant’s
normalized connectivity map as the basis for undirected
graphs. This approach avoided bias by ensuring the

independence of training and test sets, while at the same
time allowing us to detect any informative differences in
connection strength. Networks were then characterized
using six nodal graph theory metrics. These included
three measures of node connectedness: degree (the
number of connections linking each node to other nodes);
betweenness centrality (the fraction of shortest paths
between nodes containing a given node); and eccentricity
(the maximal shortest path from a node to any other
node). Global efficiency (the average inverse shortest path
between a node and all others) was evaluated as a measure
of network integration. Finally, two metrics captured
network modularity: local efficiency (the average inverse
shortest path between a node and its neighbors) and
clustering coefficient (the fraction of connected node
triplets around a node). All metrics with the exception of
node degrees were weighted by the inverse of the nor-
malized connectivity matrices; in other words, stronger
amplitude–amplitude coupling was taken to reflect
shorter paths between nodes. Graph theory analyses were
performed using the graph and network algorithms in
MATLAB R2019a and the Brain Connectivity Toolbox47.
To discriminate between groups, a linear support vector

machine (SVM) classifier48 was trained on each of the

Fig. 1 Overview of the analysis pipeline. Resting-state MEG data were preprocessed, filtered into six frequency bands, and projected into source
space. Hilbert envelopes were calculated at 90 AAL-atlas-based virtual sensor locations, and correlated to obtain functional connectivity matrices.
These were z-scored and rank-thresholded at the group level for between-group analyses, and at the subject level for data-driven prediction of ND-
CNV status using graph theory.
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node metrics. Additionally, a pooled feature vector was
created by combining the six metrics to maximize the
amount of complementary information input to the
classifier. This approach makes use of information across
all nodes, while avoiding the need for multiple testing.
Classification was performed between the ND-CNV and

control groups, as well as between the two ND-CNV
subgroups (22q11.2 deletions and other ND-CNVs) and
their matched controls. To avoid overfitting, model per-
formance was evaluated using 100 iterations of stratified
five-fold cross-validation. This entailed iteratively leaving
out a fifth of the data for testing and training the model on
the remaining data, whilst ensuring balanced group
representation in each fold. Performance was quantified
using accuracy (proportion correctly classified observa-
tions), sensitivity (true positive rate) and specificity (true
negative rate) in order to highlight any asymmetries in
ND-CNV and control identification. Furthermore, sig-
nificance was assessed by shuffling the true labels 5000
times and recomputing classifier accuracy to estimate the
empirical chance level and calculate a one-tailed p-value46.

Results
Connectivity alterations associated with ND-CNVs
The analysis of group differences in oscillatory con-

nectivity revealed the largest number of valid connections
(exceeding a rank of 0.8 in group average maps) in the
alpha and beta bands (Fig. 2). The uncorrected t-test
showed a pattern of decreases in oscillatory connectivity
between posterior, parietal and temporal nodes in the
ND-CNV group, with the exception of a few right-
hemisphere edges. More extensive cohort effects were
detected using the combined frequency maps (61 edges
exceeded the uncorrected threshold, compared to 1, 28,
and 42 in the theta, alpha, and beta bands). These patterns
were robust to random sub-sampling of the cohort, sug-
gesting that they were not driven by individual subjects.
Most connections did not survive omnibus correction for
multiple comparisons at the individual edge level, with the
exception of a small number of left-hemisphere connec-
tions, including the precuneus, early visual cortex, and
parietal regions.
Importantly, a similar pattern of hypoconnectivity was

observed even after excluding participants with 22q11.2
deletions and their matched controls (Fig. 2b, c). Both
ND-CNV subgroups showed decreased posterior con-
nectivity (Fig. 3; 18 connections decreased in both
groups), indicating that the overall pattern was not driven
by the 22q11.2 deletion group.
This pattern occurred despite higher heterogeneity in the

mixed ND-CNV group (Supplementary Fig. 1) and might
thus reflect convergent alterations across genotypes. On the
other hand, participants with 22q11.2 deletions exhibited
more right-hemisphere hyperconnectivity compared to

controls. These effects spanned the precuneus and parietal
cortex, as well as frontal regions, suggesting some overlap
with the default mode network (DMN).
To ensure that these differences were not affected by

potential confounds, the cohort resampling tests on
combined frequency maps were repeated as a multiple
linear regression with age, gender, and ICV as covariates.
This analysis revealed fewer connections (65 compared to
the original 92 in the whole cohort analysis), but largely
similar patterns of dysconnectivity (Fig. 3b).
Furthermore, although IQ scores could not be included

in this analysis because they were not available for the
control group, IQ scores in the ND-CNV group sig-
nificantly correlated with connectivity strength at only
four edges (Supplementary Fig. 2).

Network features as predictors of ND-CNV status
A graph theory framework was employed to identify

participants with ND-CNVs from their functional net-
works based on combined frequency maps. This approach
has the advantage of reducing dimensionality and com-
plements the edge-focused group testing approach
described above. Despite methodological differences
between the two analyses, a visualization of the nodal graph
theory features shows overlap with the nodes highlighted
in the group analysis (Supplementary Figs. 3–6).
Graph theory metrics were successful at identifying ND-

CNV participants relative to unaffected controls. The best
prediction accuracy was achieved by combining the six node
features (Supplementary Table 1 and Fig. 4a; maximum
accuracy 71.4% ± 2.98, p= 0.0002). However, participants
with 22q11.2 deletions were more consistently correctly
classified than those with other ND-CNVs (Fig. 4b).
This was confirmed by subgroup classification analyses,

which also pointed to subgroup differences. When
excluding participants with 22q11.2 deletions, the best
decoding accuracies were achieved using node eccentri-
cities (65.02% ± 4.28, p= 0.0022), node degrees, and a
joint feature model. On the other hand, all node features
were successful in discriminating participants with
22q11.2 deletions from their matched controls, with the
best performance obtained using the clustering coefficient
(89.02% ± 4, p= 0.0002). Furthermore, removing the
connectivity map thresholding step from this analysis did
not significantly affect the results. This suggests that
successful classification is not exclusively driven by dif-
ferences in edge selection (Supplementary Fig. 7).
These results point to commonalities in network fea-

tures (such as decreased centrality) that allow for the
successful classification of participants with ND-CNVs
across distinct genotypes. On the other hand, the features
are specific enough to allow successful discrimination
between participants with 22q11.2 deletions and other
ND-CNVs (Supplementary Table 1).
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Fig. 2 Group differences in resting-state connectivity. a Differences in resting-state connectivity (amplitude correlations) between participants
with ND-CNVs and controls. Connections are shown in blue if they are decreased in the ND-CNV group relative to controls, and in red if they are
increased in the ND-CNV group relative to controls. The rows show (top to bottom): valid connections after mean-rank thresholding in each
frequency band; uncorrected (P < 0.05) differences between groups; multiple comparison-corrected (omnibus P < 0.05) differences between groups;
and connections showing consistent increases/decreases in 95% of cohort resampling iterations. b As in a, for subgroups excluding participants with
22q11.2 deletions and their matched controls (left) or including only participants with 22q11.2 deletions and their matched controls (right). To
facilitate comparison, “valid” connections were the same as in a. Only frequency bands with surviving “valid” connections are shown. c Nodes
displayed in the circular plots, labeled and color-coded by region. Connections shown are the result of the conjunction analysis between the 22q11.2
deletion group and the other ND-CNV group (also see Fig. 3: blue connections are decreased in both groups; red connections have opposing signs).
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Given the higher overall burden of 22q11.2 deletions in
neurodevelopmental disorders1, this suggests that
increased neurodevelopmental risk may be associated
with more salient alterations in network function and may
underpin specific genotype effects.

Discussion
To our knowledge, the present study provides the first

insight into oscillatory connectivity alterations in people
with rare ND-CNVs. Using both an established group
analysis pipeline and a data-driven graph theory frame-
work, we uncovered a pattern of functional dysconnec-
tivity affecting posterior regions in participants with ND-
CNVs. Although individual connection effect sizes were
generally low, these patterns were robust to effects of age,
gender, and intracranial volume, and emerged despite a
conservative thresholding approach restricted to the most
reproducible connections. These patterns also allowed for
the successful classification of participants with ND-
CNVs using graph theory metrics.
Effects originated in the alpha and beta frequency bands,

which are thought to underpin long-range communication
between brain areas49. Connections linking parietal, temporal,
and occipital areas were most consistently affected in both the
22q11.2 deletion group and the other ND-CNV group. Similar
patterns have been previously reported in schizophrenia
patients50, including alpha-band parietal hypoconnectivity in
first-episode schizophrenia51. Furthermore, posterior struc-
tural network alterations have been identified as an early
marker of ASD52, suggesting a link between such alterations
and increased neurodevelopmental risk.
Similar connectivity changes in the visual processing

system and the default mode network have been shown in

people with 22q11.2 deletions using structural and func-
tional MRI53–55. Here, we found that these effects are not
restricted to the 22q11.2 deletion group, suggesting that
long-range connectivity could act as a common marker
across genetic variants. Although noninvasive measure-
ments cannot provide direct mechanistic insight, this is
consistent with potential alterations in excitatory-inhibitory
balance56,57 as a mechanism for pleiotropic genetic effects
underlying neurodevelopmental disorders58–60. This is
thought to occur through increased excitation or disin-
hibition caused by gene haploinsufficiency and mediated by
impaired GABA and NMDA receptor function61–63.
Despite sample size limitations, differences between the

two subgroups also point to effects specific to the highly
penetrant 22q11.2 deletions. Hypoconnectivity was more
extensive in people with other ND-CNVs, while the
22q11.2 deletion group exhibited more focused patterns;
these were robust to cohort resampling, suggesting that
they are unlikely to be driven by individual cases. These
differences were reflected in the graph theory analysis.
Although all network features were altered in the 22q11.2
deletion group, their increased modularity was particu-
larly discriminative, in line with previous reports of
increased structural network segregation in people with
22q11.2 deletions18,22,64. For other ND-CNVs, the only
predictive features were centrality measures (specifically
the node eccentricity and degree), reflecting hypo-
connectivity in the ND-CNV cohort. Between and within-
group classification results (Supplementary Table 1)
highlight the ability of graph theory metrics to capture
both convergent and specific network alterations, which
could help elucidate the link between CNV pathogenicity
and neural system function.

Fig. 3 Differences in connectivity are not driven by age, gender, and intracranial volume. Connections meeting the 95% confidence criterion
in the cohort resampling test are displayed for all group tests (first three columns). Connections are shown in blue if they are decreased in the ND-
CNV group relative to controls, and in red if they are increased in the ND-CNV group relative to controls. The last column shows supra-threshold
connections in both the 22q11.2 deletion group and the other ND-CNV group; here, connections are shown in blue if they are decreased in both
groups, and in red if they have opposite signs. Line width increases with effect robustness. a Connections exhibiting robust differences based on the
cohort resampling test of combined frequency matrices, plotted on the template brain. b As in a, after including age, gender, and intracranial volume
as covariates in a multiple linear regression with “ND-CNV presence” as a main categorical predictor.
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We alleviated concerns of potential systematic between-
group differences unrelated to genotype by using con-
servative approaches (e.g., rejecting weaker connections
that may introduce noise) and resampling procedures.
Despite generally low effect sizes which did not survive an
omnibus threshold across individual connections, we base
our conclusions on the robustness of the connectivity
patterns and their convergence across analyses. Although
head motion did not appear to differ between groups, this
was not continuously measured in all participants and so
we could only partially rule out its effects.

Although the present study was able to evaluate ND-
CNV effects independently of the contribution of highly
penetrant 22q11.2 deletions, the limited sample size
remains a concern common in CNV imaging research.
The high genotype variability within the cohort makes the
specificity of these effects difficult to assess, particularly
with regard to differences between the 22q11.2 deletion
group and other ND-CNVs. Variability within the het-
erogeneous ND-CNV group was higher than within the
22q11.2 deletion group (Supplementary Fig. 1), suggesting
that our focus on convergent alterations may obscure

Fig. 4 Classifying participants with ND-CNVs and unaffected controls from individual MEG functional networks using graph theory.
a Classification performance for the three groups, using different metrics to characterize the networks (eccentricity, degree, betweenness centrality,
global and local efficiency, clustering coefficient, and a pooled model combining all features). Above-chance accuracies (permutation testing) are
marked with 1, 2, and 3 dots respectively for p < 0.05, p < 0.01, and p < 0.001. b How well are different ND-CNVs classified? The plot shows the mean
predicted label for each of the 42 participants with ND-CNVs across 100 cross-validation iterations using pooled node features. Participants with
22q11.2 deletions are most consistently correctly identified. Two participants with schizophrenia diagnoses are marked with “S”. All error bars are ±SD.
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specific effects. However, the fact that we see differences
robust to resampling in this group, despite its hetero-
geneity, points to common connectivity alterations across
distinct genotypes. Studies recruiting larger samples of
participants with ND-CNVs, for example through large
multisite collaborations, are necessary to evaluate the
generalizability of connectivity patterns and graph theory
metrics as “fingerprints” associated with ND-CNV status.
In summary, the present study assessed oscillatory long-

range connectivity as a potential marker of pathogenic
genetic effects across a range of rare ND-CNVs. Occipital,
parietal, and temporal brain areas were characterized by
consistent hypoconnectivity across genotypes, which was
not exclusively driven by the presence of a large number
of participants with highly-penetrant 22q11.2 deletions.
Functional networks in the ND-CNV group exhibited
decreased node centrality and alterations in network
efficiency and structure. Furthermore, features specific to
highly penetrant variants were present alongside con-
vergent network alterations and enabled successful ND-
CNV classification. These results are consistent with a
common mechanism for genetic risk, based on an altered
balance between excitatory and inhibitory synaptic pro-
cesses and leading to network dysfunction. We propose
that these functional connectivity alterations are an
intermediate phenotype on the pathway from synaptic
molecular changes to disruption of cognitive function and
psychotic illness.
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