
Nunes et al. Translational Psychiatry          (2020) 10:299 

https://doi.org/10.1038/s41398-020-00986-0 Translational Psychiatry

REV I EW ART ICLE Open Ac ce s s

The definition and measurement of heterogeneity
Abraham Nunes 1,2, Thomas Trappenberg2 and Martin Alda 1

Abstract
Heterogeneity is an important concept in psychiatric research and science more broadly. It negatively impacts effect
size estimates under case–control paradigms, and it exposes important flaws in our existing categorical nosology. Yet,
our field has no precise definition of heterogeneity proper. We tend to quantify heterogeneity by measuring
associated correlates such as entropy or variance: practices which are akin to accepting the radius of a sphere as a
measure of its volume. Under a definition of heterogeneity as the degree to which a system deviates from perfect
conformity, this paper argues that its proper measure roughly corresponds to the size of a system’s event/sample
space, and has units known as numbers equivalent. We arrive at this conclusion through focused review of more than
100 years of (re)discoveries of indices by ecologists, economists, statistical physicists, and others. In parallel, we review
psychiatric approaches for quantifying heterogeneity, including but not limited to studies of symptom heterogeneity,
microbiome biodiversity, cluster-counting, and time-series analyses. We argue that using numbers equivalent
heterogeneity measures could improve the interpretability and synthesis of psychiatric research on heterogeneity.
However, significant limitations must be overcome for these measures—largely developed for economic and
ecological research—to be useful in modern translational psychiatric science.

Introduction
Psychiatric discussions of heterogeneity are largely

motivated by limitations of the case–control paradigm:
ignorance of (A) inter-individual differences within
groups, and (B) the fact that some group differences may
be larger than others. These assumptions may compro-
mise effect size estimation1, thereby impeding progress in
understanding psychopathology and its treatment. For
example, a recent study showed that clinical features
could predict lithium response in bipolar disorder with an
area under the receiver operating characteristic curve of
0.80 (95% CI 0.78–0.82) in a pooled international sample
of 1266 subjects2. However, this result was limited by the
fact that predictively relevant features differed based on a
subject’s site of origin, which limits our ability to develop
broadly generalizable treatment prediction models.
More broadly, the psychiatric literature has discussed

heterogeneity in terms of meta-analysis, the combinatorial

enumerations of symptom profiles (i.e., the “number of
ways” disorder X can present)3–7, cluster analyses8,9,
dimensional models10, concentration or inequality mea-
sures11,12, time-series complexity13, and recently in terms
of “normative models”14,15. Unfortunately, we have nei-
ther a unified operational definition nor clear measure for
this concept16. If we are to seriously tackle the problem of
heterogeneity in psychiatry, we believe it is necessary to
have a consistent, easily interpretable, and problem-
agnostic framework for its definition and measurement.
For example, in the case of multi-site machine learning
studies, establishment of such a measurement framework
could facilitate decomposition of heterogeneity into that
originating from pathology-intrinsic factors and those due
to between-site pooling and other sources of nuisance
variation.
In this paper, we define heterogeneity as the degree to

which a system diverges from a state of perfect conformity
(Eliazar17) and undertake a focused review of more than
100 years of research concerning its measurement. Mea-
sures developed in ecology, economics, statistical physics,
and more are reviewed along with some of their known
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psychiatric research applications. We broadly, though
somewhat artificially, split these measures into those that
operate on categorical or non-categorical data. We high-
light that generalizable and well-behaved heterogeneity
measures share a set of units known in ecology and eco-
nomics as the numbers equivalent18–22, which allow these
measures to roughly capture the “size” of a system’s
sample/state space (or the number of states that a random
variable can take). However, we identify several problems
to be overcome before these measures can be widely
applicable in modern translational psychiatric science.

Methods
The Scopus database (which also has 100% MEDLINE

coverage) was searched from inception until 16 July 2019
using the search queries detailed in the Supplementary
Materials. As mentioned above, our paper is a focused
review, since comprehensive exposition of heterogeneity
statistics and their applications is not possible within the
allotted constraints. We focus on the relevant axioms of
heterogeneity measurement encountered across the lit-
erature. For each axiom, we highlight indices for which it
is satisfied, then motivate additional heterogeneity axioms
based on the limitations of those indices. Methodological
papers were reviewed in detail if they included derivation
or technical analysis of heterogeneity indices. Applied
papers were reviewed if they described application of a
heterogeneity index for the purpose of quantifying het-
erogeneity in a psychiatric research study. Reference lists
of all reviewed papers, along with the bibliographies of the
most prominent authors were further reviewed for

additional papers. Owing to the large quantity of research
discussing heterogeneity over many decades, we regret-
tably could not include every study encountered in our
search.

A definition of heterogeneity and measurement in
categorical systems
A system’s heterogeneity is the degree to which it

diverges from a state of perfect conformity. A “system”
has three components (Fig. 1a): (A) a set, “event space”, or
“sample space” X of distinct potential observations which
one can also think of as “elements”, “partitions”, “groups”,
or “categories”, (B) a measure of distance dðxi; xjÞ between
any two potential elements xi and xj in X , and (C) a
measure of abundance of each element in X . If the
abundance function sums to 1 over the entire set X , then
the abundance measure is a probability distribution.
In this section, we consider only categorical systems

since they are an excellent starting point for developing
intuition about the measurement of heterogeneity. Cate-
gorical systems are effectively defined by the following
distance function (the discrete metric):

Dij ¼ d xi; xj
� � ¼ 0 i ¼ j

1 i ≠ j

�
ð1Þ

Like the case–control assumptions, this function states
that (A) there are no inter-individual differences within a
category, and (B) all categories are maximally different,
thus meaning no two categories are more similar than any
other two.

Fig. 1 Illustration of system components and influence on heterogeneity of samples. Panel a depicts a categorical system comprised of a set
four categories (equivalently “elements” or “partitions”) connected by undirected edges whose lengths are proportional to the distance between
categories. In this case, the distances between categories are all equal (symmetric), and the within-category distance is 0 (as evident in the depicted
distance matrix). These properties define the set as categorical. The size of the nodes represents their relative abundance, which is also shown in the
corresponding bar chart. Panel b demonstrates samples from nine categorical systems with varying number of categories (2, 3, and 4) and varying
levels of inequality in the abundance distribution. Systems in the upper row have the highest level of inequality in abundance, whereas the systems
shown in the bottom row have perfectly even abundance distributions. Together, these plots demonstrate that heterogeneity increases with both (A)
increases in the number of categories and (B) more evenly distributed abundance across categories.
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Measuring heterogeneity by partition counting
A system in a state of perfect conformity is one whose

event space X effectively has only one element. All obser-
vations from this system will be identical. All else being
equal, systems that deviate further from perfect conformity
will thus have larger event spaces (Fig. 1b). Partition
counting methods work on the assumption that the size or
“cardinality” of X—the number of distinct partitions or
elements it contains—measures that system’s heterogeneity.
Partition counting methods are often used to quantify a

disorder’s clinical heterogeneity by the number of criteria-
satisfying symptom combinations3–7,23,24. Here, one
assumes that the “system” is the disorder in question. For
each diagnosis, the set X ¼ 1; 2; ¼ ; n�c

� �
consists of a

total of n�c (the asterisk denotes that this is the “true”
value, which may or may not be known) categorically
unique symptom combinations or “presentations”. Esti-
mating n�c amounts to estimating the system’s hetero-
geneity. The next few sections will describe several
approaches for this estimation problem.

Combinatorially estimating an upper bound for n�c
Many studies estimate an upper bound for n�c using

combinatorial methods. In these cases, one is not
obtaining n�c from empirical data; rather, one directly
calculates the total number of unique configurations that
may be realized by that categorical system. Hence, this is
an upper bound on n�c since empirical data could not
exceed the computed value. For example, a diagnosis of
generalized anxiety disorder (GAD) under the Diagnostic
and Statistical Manual of Mental Disorders (5th edn)25,
requires three or more of six symptoms. If we denote the
total number of available symptoms as N and the number

of required symptoms as K, the number of unique
symptom combinations is

S N ;Kð Þ ¼
XN
k¼K

N !

k! N � kð Þ! ð2Þ

One calculates that GAD has at most S 6; 3ð Þ ¼ 42 unique
presentations. Similarly, one can verify that for borderline
personality disorder Sð9; 5Þ ¼ 256, for catatonia
Sð12; 3Þ ¼ 4017. For major depressive disorder (MDD),
which has mandatory symptoms of either low mood or
loss of interest, one can show that there are 227 symptom
combinations.

Estimating nc empirically from data
Zimmerman et al.4 found a total of 170 unique symp-

tom combinations in a survey of 1500 MDD patients,
suggesting that 25% of theoretical symptom combinations
do not occur. Similarly, Park et al.5 found 119 unique
combinations in 853 subjects further highlighting that
empirical estimates of n�c are important complements to
combinatorial enumeration. Unfortunately, any sample
short of a complete census will underestimate n�c , parti-
cularly if many of the categories in X are rare.
The simplest, but most biased (lower limit), estimator of

n�c is the observed richness (also known as species rich-
ness to ecologists)16,26, which is the observed number of
categories in the sample. We denote this quantity as Π0 ¼
nc (the lack of asterisk denotes it is an estimate).
A less biased approach for estimating n�c is to compute a

lower bound26,27, using the Chao estimators. These indi-
ces, which are standard in ecology, use information about
the frequency of rare categories to speculate on how many

Fig. 2 Illustration of the distribution of major depressive disorder symptom combinations and analysis of inequality via Lorenz curves. a
Distribution of symptom presentations in patients with major depressive disorder as reported by Zimmerman et al.4 and Park et al.5 (data extracted
from their published tables). b Lorenz curves for the empirical distributions shown in (a). Curve colors are matched between panels. In this case, the
Lorenz curve demonstrates the proportion of symptom combinations PCombinationsð Þ that account for at least PSamples proportion of observed
presentations in the datasets. The diagonal (black) line represents the line of perfect equality, which would occur only if all symptom combinations
accounted for the same proportion of observed presentations. The closer a Lorenz curve is to the upper corner, the more inequality exists in the
abundance distribution, which in this case would indicate greater homogeneity of symptom presentations. Geometric calculation of the Gini
coefficient and Pietra indices is also demonstrated. The Gini index is the ratio of (A) the area between the Lorenz curve and the line of perfect equality
to (B) the total area above the Lorenz curve. The Pietra index is the maximum distance from the Lorenz curve to the line of perfect equality, and
represents the proportion of observations that would need to be transferred from the most common to the least common symptom combinations
in order to reach the line of perfect equality.
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further rare categories may exist who have not yet been
sampled. If we denote fK as the number of categories
observed only K times, then the corresponding Chao
estimator is as follows28:

Chao1 fð Þ ¼ Π0 þ f 21
2f2

f2 > 0

Π0 þ 1
2 f1 f1 � 1ð Þð Þ f2 ¼ 0

(
: ð3Þ

The observed richness values reported by Zimmerman
et al.4 and Park et al.5 underestimate the true number of
MDD presentations. After abstracting the presentation
frequency tables from these papers (Fig. 2a), we used the
Chao estimator to recalculate lower bound estimates on
the number of MDD symptom combinations. In the
Zimmerman et al.4 data, this was 189.8 (95% confidence
interval, CI [189.3, 190.2]), compared to 144.1 (143.4,
144.9) for the Park et al.5 data, and 200.6 (200.4, 200.9) in
the pooled sample. Thus, the heterogeneity of symptom
combinations in MDD may be larger than previously
estimated using empirical data.
Observed richness and the Chao estimator have been

used to quantify gut microbiomic heterogeneity in psy-
chiatric samples, finding no difference between healthy
controls and males with attention deficit-hyperactivity
disorder (ADHD)29, but lower microbiome diversity in
patients with MDD30.
The Chao estimators are notably related to

capture–recapture methods26,31, which estimate the size of
difficult-to-sample population by examining overlap in
repeated samples. Applications include estimation of the
prevalence of alcohol-related disorders32, opioid addiction33,
and other conditions34–40. Krebs41 reviews these approaches.

Limitations of partition counting approaches
Partition counting methods ignore abundance inequal-

ities. For example, imagine 99.999% of all patients showed
a single presentation of MDD, with the remaining 0.001%
spread across the other 226 symptom combinations. This
system is effectively close to perfect conformity, yet par-
tition counting methods would nonetheless overestimate
a heterogeneity value of 227 presentations.

Measures accounting for inequality in category abundance
Consider a scenario in which 99.999% of all patients

have the same presentation of MDD, with the remaining
0.001% evenly spread across the other 226 symptom
combinations. In this section, we compute how far this
system diverges from perfect conformity given the highly
skewed abundance distribution. We restrict our search to
those indices that satisfy the axiom of monotonicity to set
size (heterogeneity must increase if a system’s event space
grows in size), but also further satisfy the axiom of
transfers42,43. That is, any transfer of abundance from a
more abundant category to any less abundant category

(thereby making the abundance distribution more even)
must increase heterogeneity. This is sensible, since in the
opposite scenario—progressively stacking all abundance
onto a single category—would push the system toward
perfect conformity.
The most common of these heterogeneity indices are

the Tsallis family entropies44, most notably the Shannon
entropy45,

HðpÞ ¼ �
Xnc
i¼1

pilog pi ð4Þ

which measures the average amount of uncertainty in the
system. If the logarithm is taken with base 2, then
Shannon entropy gives the average number of yes/no
questions required to classify an observation from the
system.
The Gini–Simpson index (GSI)46 is another historically

important entropy:

GSI pð Þ ¼ 1�
Xnc
i¼1

p2i ð5Þ

The GSI is the probability that two observations from
our system (sampled with replacement) will belong to
different categories.
The GSI is related to a concentration index commonly

attributed to Simpson47 or Herfindahl48:

Simpson pð Þ ¼
Xnc
i¼1

p2i ¼ 1� GSI pð Þ ð6Þ

which gives the probability that two samples from our
system will belong to the same category. Psychiatric
researchers have used this to measure the homogeneity of
physicians’ and health systems’ prescription
repertoires11,12.
Olbert et al.3 used the GSI and a normalized version of

the Shannon entropy to empirically quantify symptom
heterogeneity in MDD and PTSD. Using data from ns ¼
84; 103 subjects with MDD in the National Comorbidity
Survey Replication (NCS-R)49, they found an observed
richness of 137 unique symptom combinations. The
probability of sampling two individuals with MDD whose
symptom profiles were different (i.e., the GSI) was 0.96,
suggesting a high degree of symptomatic diversity in
MDD. However, their Shannon entropy index (with base
2) was 3.9 bits, meaning that approximately four yes/no
questions could precisely identify a typical subject’s spe-
cific symptom profile given only knowledge of their MDD
diagnosis.
If one accepts that the GSI and Shannon entropy are

both measures of heterogeneity, then the results obtained
by Olbert et al.3 are puzzling. On the one hand, the GSI
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suggests that most pairs of MDD patients will have dif-
ferent symptom profiles (GSI= 96%). Conversely, the
Shannon entropy amounted to 55% of its theoretical
maximum (3.9 of 7.09 bits), suggesting less heterogeneity
than the GSI, illustrating the problem of multiple mean-
ings between entropic-based heterogeneity indices. Syn-
thesizing the results from such indices with different
meanings can be challenging, and thus we seek measures
with conceptually standard units.
Entropy-based heterogeneity indices also fail to satisfy

the axiom of replication (also known as the replication
principle in ecology)18,21,22,50. The replication principle
states that if we pool K completely unique independent
systems with equal amount of heterogeneity, h, then the
heterogeneity should measure K × h. Jost22 noted this is
akin to merging two spheres, each with volume V; the
resulting volume of the pooled sphere should be 2V,
which would not be the result if we treated the sphere’s
radius (a mere index of volume) as a measure.

Numbers equivalent measures of heterogeneity
One family of indices satisfy the replication principle,

and its units are the same units as partition counting
methods: the (effective) number of distinct elements in an
event space. We call this family the Rényi heterogeneity
since it is the exponential function of Rényi entropy51,

Πq pð Þ ¼
Xnc
i¼1

pqi

 ! 1
1�q

; ð7Þ

also known as the Hill numbers in ecology20, and the
Hannah–Kay indices in economics52, with elasticity
parameter q ≥ 0. When q= 0, the abundances are ignored,
and we recover the observed richness:

Π0 pð Þ ¼
Xnc
i¼1

p0i ¼ nc ð8Þ

Taking the limit as q→ 1 yields the exponential of the
Shannon entropy, which is the perplexity53 or the effective
number of typical categories in the system:

Π1 pð Þ ¼ e�
Pnc

i¼1
pilog pi : ð9Þ

At q= 2, we have the inverse Simpson concentration16,

Π2 pð Þ ¼ 1Pnc
i¼1 p

2
i

ð10Þ
which is the effective number of common categories in
the system, known to political scientists as the effective
number of parties54. This measure has been used to
estimate the effective number of common bacterial
species in the microbiome of patients with MDD30.

The units of Rényi heterogeneity are known as numbers
equivalent18,19,55. These units can be intuitively under-
stood as follows: for any system A with a given abundance
distribution, we can find a “hypothetical” categorical sys-
tem B whose abundance distribution is perfectly even, and
whose heterogeneity is equal to that of A. The number of
partitions in this “equivalent” system B serves to measure
the heterogeneity of A. Numbers equivalent allow us to
account for inequality in the abundance distribution while
retaining the units of set size.
Rényi heterogeneity satisfies the axiom of replication

(see Supplementary Appendix A for the proof). Recall that
if we pool two equally heterogeneous systems that are
completely distinct (i.e., no overlap in their event spaces),
we are doubling the amount of heterogeneity. Any true
measure of heterogeneity should thus also double under
this circumstance. Only the Rényi heterogeneity family of
indices will reflect this doubling, which is the reason why
ecologists refer to it as the “true diversity”56. Satisfaction
of the replication principle alone (in addition to the
axioms previously identified) suffices to justify the Rényi
family as superior to other heterogeneity indices. Any
consistent argument against this point would be com-
pelled to also argue that a sphere’s radius is a measure of
its volume, since they are monotonically related, but only
volume itself obeys the replication principle.
The axiom of decomposability is also satisfied56. That is,

if a system is composed of K pooled groups, then the
overall heterogeneity (known as γ-heterogeneity) must be
decomposable into within- and between-group compo-
nents (“α-heterogeneity” and “β-heterogeneity”, respec-
tively). Decomposition of Rényi heterogeneity satisfies
some important criteria that are beyond are present scope
(see Jost56). Heterogeneity decomposition is commonly
employed in meta-analysis (via the I2 statistic), albeit not
using units of numbers equivalent.

Inequality indices for comparing heterogeneity of
differently sized sets
It is sometimes useful to measure abundance inequality

independently of the event space size (but see Jost57 for
counterpoints). For instance, let each individual in a
population be a “partition” in our system, and the abun-
dance measure his or her share of the total populations’
wealth. If we collect such data from two populations of
different sizes and compare their Rényi heterogeneity
values, our results will be confounded by the population
sizes; the larger population will tend to have a higher
heterogeneity despite potentially having more wealth
inequality. For this reason, isolated measures of inequality
tend to be invariant to the size of the event space: a
property known as non-extensivity or the population
principle58,59. There are two main approaches to compute
these inequality measures: methods based on the Lorenz
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curve60, and derivations based on normalization of the
Rényi heterogeneity57.
The Lorenz curve60 represents the percentage of total

abundance in a system belonging to the top x% of cate-
gories. For example, when examining the distribution of
abundance across presentations of MDD4,5, the Lorenz
curve (shown in Fig. 2b) shows that 50% of all observed
samples were attributable to only 7.1% of MDD symptom
combinations in the pooled sample. Several summary
indices can be computed from the Lorenz curve, such as
the Gini coefficient (which we also discussed above)46 or
the Pietra index61. Several Lorenzian inequality indices are
well reviewed elsewhere59,62.
The distribution and utilization of psychiatric resources

has been quantified with Lorenz curves63–66, although
other questions have also been addressed67–70. However,
(direct) Lorenzian inequality analysis is univariate, which
limits applicability to modern translational psychiatric
research.
An alternative to the Lorenzian approach is to define a

measure of “evenness” (conceptually the opposite of
inequality) by expressing Rényi heterogeneity relative to
its theoretical maximum (the observed richness):

~Πq pð Þ ¼ Πq pð Þ
nc

: ð11Þ

This is based on the more general concept of a diversity
profile discussed in detail elsewhere56. The range of Eq.
(11) is the ð0; 1� interval, and it can be used to derive many
well-known inequality indices such as Heip’s index71,
Pielou’s J72, and the generalized entropy index (GEI)58,59,
which is itself generalizes several important indices43,73,74.
This approach has not clearly been used for inequality
measurement in psychiatry.

Limitations of categorical heterogeneity measures
The main problem with categorical heterogeneity

measures are the assumptions of categorical data. First,
categories to which one’s data belong must be (A) known
a priori and (B) scientifically valid. In some cases, this will
be more problematic than in others. For example, defining
species as categories (as ecologists do) is likely of greater
validity than defining the categories as DSM-5 diagnoses.
Second, one must assume that all members of the same

category are identical in every way, and that all between-
category differences are equal. These assumptions about
the within- and between-category dissimilarity are surely
violated in most psychiatric research applications. For
example, the analyses of Zimmerman et al.4 and Park
et al.5 (and our reanalysis thereof) did not account for the
fact that different presentations will share symptoms in
common. Clearly, these are not categorical data.

Despite these limitations, categorical heterogeneity
measures—and particularly the Rényi heterogeneity
family—have advantages related to interpretation. The
“size” of a system’s event space is an intuitive and prin-
cipled measure of deviation from perfect conformity. In
our MDD example, we spoke in terms of the easily
understandable units of “number of symptom combina-
tions” rather than of bits or probabilities. Rényi hetero-
geneity also respects the replication principle and can be
decomposed into within- and between-group compo-
nents. We now seek a measure that retains these useful
properties without restriction to categorical data.

Non-categorical heterogeneity indices
The elements of non-categorical systems vary in the

degree to which they are similar to each other. Non-
categorical heterogeneity indices include those that split
the observations into categories defined a priori, and
those that either (A) do not assume such a stratification at
all or (B) attempt to learn it from the data.

Methods requiring a priori stratification
These methods first split observations from a system

into one of nc predefined categories (e.g., diagnoses or
species). However, (A) the within-category distance can
exceed 0 (e.g., acknowledging that “tall” people still vary in
height), and (B) the distance between pairs of categories
can be asymmetrical (e.g., lobsters are “further” from
elephants than they are from crabs).
The experimenter must choose a relevant distance

measure, which will significantly impact the heterogeneity
estimates. Returning to our reanalysis of the MDD
symptom combination data4,5, we clarify that each of the
227 unique symptom combinations is a distinct category
in the event space X . However, we now specify the dis-
similarity between symptom combinations xi and xj using
the Jaccard distance75:

Dij ¼ 1�#Symptoms occurring in both xi and xj
#Symptoms occurring in either xi or xj

ð12Þ
which takes values between 0 (complete overlap of
symptoms) and 1 (no symptoms in common). This results
in a 227 × 227 matrix, D, of distances between symptom
combinations.
To quantify heterogeneity, D must be summarized into

a single non-negative value. The most common approa-
ches are related to Rao’s Quadratic Entropy (RQE)76,

Q D; pð Þ ¼
Xnc
i¼1

Xnc
j¼1

Dijpipj ð13Þ
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which is the average pairwise distance between categories
in the system. For our present example, we have an RQE
= 0.35 for the Zimmerman et al.4 data, RQE= 0.38 for the
Park et al.5 data, and RQE= 0.37 in the pooled sample.
Note that the RQE of one of the subsets is greater than the
pooled sample’s heterogeneity5, which is problematic,
since pooling non-identical systems should monotonically
increase the overall heterogeneity. By using a different
distance metric (the Hamming distance), this problem
disappears; we obtain RQE estimates of 2.894, 3.045, and
3.05 (pooled). How are we to compare these estimates
which are on ostensibly different scales? Moreover, is one
set of estimates “more correct” than the other?
Researchers have thus sought to develop RQE-based

measures with units of numbers equivalent since they do
not appeal to the units of a given distance metric50,77–80,
and will obey the replication principle50,79. Unfortunately,
current RQE-based numbers equivalent measures have
some idiosyncratic limitations that virtually obviate their
psychiatric research applicability. For instance, the func-
tional Hill numbers77 become insensitive to distance
between categories when they are equally abundant
(Supplementary Appendix B). We are thus unaware of any
studies in the psychiatric literature that employ non-
categorical heterogeneity indices with a priori
stratification.
The RQE-based heterogeneity indices are unfortunately

dependent on the imposed stratification, which will be
problematic when strata are unreliable or invalid (such as
the case in which strata are DSM-5 psychiatric diagnoses).
There is also a problem with defining the distance

metric a priori. The distance metric chosen determines
which paths between points A and B in the data space are
“allowed”. An appropriate distance metric should allow
only realistic paths between these points (Fig. 3). For

example, the straight-line distance between Toronto and
Tokyo is irrelevant to travelers, since that path cannot be
traversed. In that vein, many real-world data are thought
to be embedded on lower dimensional manifolds in the
data space81. In such cases, the distance between points
should be measured on paths along that manifold, which
may be curved. Since the manifolds of support will vary
between datasets, it is unlikely that predefined distance
metrics (such as a global Euclidean distance) will accu-
rately describe the dispersion of one’s data. To our
knowledge, this problem remains unaddressed in the
heterogeneity measurement literature.

Methods that do not require a priori stratification
There are three main approaches to quantify hetero-

geneity when no compelling a priori stratification exists:
(A) treating heterogeneity as the “volume” of a space that
completely encloses one’s data points, (B) clustering-
based methods, and (C) dendrogram-based methods.

Heterogeneity as a convex hull volume
Roughly speaking, the space enclosed by the smallest

perimeter around all pairwise paths in one’s data is a
convex hull. The volume of this space is sometimes used
as a heterogeneity index82,83, but if data are not dis-
tributed uniformly within the convex hull, heterogeneity
will be overestimated (Fig. 4a–c). We know of no psy-
chiatric study using convex hull volume to quantify
heterogeneity.

Methods based on clustering and dendrogram construction
Psychiatric studies often characterize a heterogeneity as

the number of latent categories in some data. For exam-
ple, cluster analytic studies of MDD have reported dis-
covery of between 1 and 5 strata (depending on the data),

Fig. 3 Demonstration of how data in an observable space X can be concentrated along a manifold (here just a curve). Panel a shows how
the curve is simply an image of a latent space Z projected through a generator function xi ¼ gθðziÞ. Panel b demonstrates noisy data along the
circular curve illustrated in (a). Measurement of the Euclidean (straight-line) distance between points A and B implies traversal across a region of X in
which no data lie. The correct approach is instead to measure distance with respect to the data’s manifold of support.
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although these groups are qualitatively inconsistent84.
Similarly, cluster analyses in several psychopatholo-
gies8,9,85–110 have returned proposals for various stratifi-
cations, with heterogeneity implicitly “measured” by
cluster counting.
Aside from sensitivity to the clustering method, there

are three other prominent limitations of cluster counting.
First, cluster counting is a variation on observed richness,
since it does not capture inequality in the distribution of
subjects across clusters. Second, the clusters themselves
are consequently assumed to be internally homogeneous
and maximally dissimilar from the other clusters. Finally,
statistically optimal clustering portends neither biological
or scientific validity. To address this, many reports have
validated their inferred clusters using external data111–114.
Notwithstanding, there remain several open areas for

improvement in measuring heterogeneity using cluster
analysis, particularly with respect to (A) evaluation of
whether a clustering approach (i.e., mapping some data
onto a categorical space) is appropriate for some data in
the first place, and (B) accounting for uncertainty in the
number of clusters, which overlaps with our above dis-
cussion of partition counting methods.
An alternative approach involves measuring hetero-

geneity by first performing agglomerative clustering on a
pairwise distance matrix, and then computing the sum of
all branch lengths in the resulting hierarchical tree (also
known as a “dendrogram”; Fig. 4)115,116. It may be possible
to compute an effective number from dendrogram-based
analyses117. Whereas the convex hull approach defines
heterogeneity by the most extreme points in a dataset, the
dendrogram-based methods are sensitive to the density of

Fig. 4 Illustration of convex hull and dendrogram-based heterogeneity indices for non-categorical systems. Panel a illustrates the basic
concept of a convex hull on synthetic 2-dimensional data. The volume of the hull is taken as an index of heterogeneity. Panel b shows one problem
with the convex hull method, which occurs when data lie along a lower dimensional surface (here just a curve). In this example, the data are all
concentrated along the outer border of the hull, leaving the core unoccupied. However, the convex hull volume index will nonetheless count the
empty space toward the heterogeneity value. Panel c illustrates the effect of outliers on convex hull volume. Since a convex hull is found by creating
a “shell” around one’s data, outlying points will expand this shell in ways that leave much of the convex hull empty (though still counting toward the
heterogeneity value). Panel d shows the dendrogram computed using agglomerative clustering for a simple mixture of five 2-dimensional (2D)
Gaussians. The functional diversity (FD) measure, shown in the title, is the sum of all branch lengths in this tree. Panel e shows a simple simulation
with five 2D Gaussians (standardized to lie within the bounds [−1.5, 1.5] in both axes) that were progressively separated further. One can appreciate
that the FD measure decreases as the distributions become more distinct. This is the opposite effect demonstrated by the convex hull volume,
insofar as FD increases as the space becomes more densely populated with data points.
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sample space coverage. Unfortunately, this will create a
problem if there are truly multiple groups in one’s data,
since the dendrogram-based heterogeneity index increa-
ses if the groups’ feature distributions become more
similar (Fig. 4e). To our knowledge, there are no appli-
cations of dendrogram-based heterogeneity measures in
the psychiatric literature, although gene co-expression
studies are ostensibly immediate targets for these indi-
ces118–120.
Normative modeling is a recent development for char-

acterizing heterogeneity15. Briefly, this approach evaluates
the degree and uncertainty with which individual subjects
deviate from a distribution of normal variation, assuming
that pathological states tend to deviate more extremely.
Applications include (predominantly neuroimaging) stu-
dies of autism121,122, ADHD14,123,124, schizophrenia and
psychosis125,126, bipolar disorder125, and neurocognitive
disorders127,128. To our knowledge, no study employing
this method has offered a measurement of heterogeneity.
Thus, it would be of great interest to develop numbers
equivalent measures applicable within the normative
modeling framework.

A note on meta-analytic heterogeneity
Standard meta-analytic methods employ parametric

indices of heterogeneity on non-categorical spaces129. A
full discussion of this (likely familiar) topic is beyond our
present scope, but in Supplementary Appendix C we
demonstrate that meta-analytic heterogeneity can poten-
tially (A) be expressed in the units of numbers equivalent,
and (B) decomposed into within and between-group
components, such that the latter component has units of
“the effective number of distinct study effects”.

A note on heterogeneity indices for time-series and
dynamical systems
We briefly discuss measurement of heterogeneity in

time-series data by indices often known as “complexity”
measures. Psychiatric studies have employed geometric
indices (such as the Largest Lyapunov Exponent and
recurrence plot analysis)130,131, entropic indices (such as
Kolmogorov-Sinai or metric entropy132, approximate
entropy133, sample and multiscale entropies134–136, and
Lempel-Ziv complexity137,138), and various fractal
dimension indices to electrophysiological, functional
neuroimaging139, and other time series134,135,140. Numer-
ous clinical and technical reviews of these indices
exist13,133,141–145, so we merely note that numbers
equivalent can also be of use in this domain. For example,
the Shannon entropy of a time series’ normalized power
spectrum, also known as spectral entropy142, can be easily
converted to the “effective number of typical frequencies”
using Eq. (9); reporting such a measure in terms of the
effective number of frequency bands makes interpretation

and criticism more clear. If one reports that a time series
of mood recordings contains an effective number of three
frequency bands, we may more readily appraise whether
such information is useful, and how so. With such clear
units, one may decide that indices expressing the “effec-
tive number of trajectories” or “effective number of ‘mood
states’” might be more desirable.
Many conditions have been studied under this paradigm

using various modalities144,146,147. For instance, our group
has investigated the temporal dynamics of mood in
patients with bipolar disorder. The overall complexity of
mood fluctuations is ostensibly reduced among probands
and their unaffected relatives134,135, with increases
observed within 60 days of a mood episode140. Unfortu-
nately, on the whole, it can be difficult to interpret time-
series complexity between studies, since the large number
of indices (each with their own units), experimental
conditions, data modalities, and disorders can interact to
yield various conclusions.

Limitations of non-categorical heterogeneity indices
Non-categorical heterogeneity indices are pre-

dominantly based on RQE76. Unfortunately, the require-
ment of selecting a distance measure a priori introduces
problems comparing RQE across datasets with different
distance metrics. Moreover, for real-world datasets,
standard methods of measuring distance will likely fail to
respect data’s true underlying geometry. This problem
will be shared by dendrogram-based methods and
clustering-based approaches that demand pre-
specification of a distance measure.
The units of RQE-based heterogeneity indices are also

not clearly appropriate for thinking about heterogeneity,
although one may correctly argue that heterogeneous
systems have larger overall amounts of pairwise distance
between its elements148. Plainly, these indices violate the
replication principle which leads to unintuitive scaling
behaviors78,79. Numbers equivalent transformations of
RQE also have further limitations that preclude their
application to psychiatric research problems. First, they
continue to require prespecified categories on the data as
well as prespecified distance measures. Second, they have
problematic idiosyncratic limitations such as insensitivity
to distance under equally abundant categories77.
Meta-analytic heterogeneity is at present quantified by

variance, which we show in Supplementary Appendix C to
violate the replication principle.
Time-series complexity measures, too, can be difficult

to interpret and synthesize. In many cases, time-series
complexity measures based on numbers equivalent could
simplify interpretation. In the case of longitudinal self-
ratings of mood, for example, reporting heterogeneity as
“the effective number of mood states” could meaningfully
improve the broader clinical interpretability of such
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results. However, no such study has heretofore reported
time-series heterogeneity in numbers equivalent, and so
its evaluation in that context remains an interesting future
direction.

Discussion and conclusions
This paper defined heterogeneity as the degree to which

a system diverges from perfect conformity, and measures
it by the effective size of a system’s event space. A large
number of indices have been discovered (and redis-
covered) independently, the most important of which our
paper compared in a format that (A) highlighted the
important axiomatic properties of heterogeneity mea-
sures, and (B) motivated additional axioms/properties
based on the limitations of indices already discussed.
Ultimately, measures in units of numbers equivalent were
found to resolve many limitations of other indices.
Although each index has valuable features, their large
variety of units and differences in mathematical properties
impede (A) their synthesis across studies and (B) their
broader interpretability. However, we demonstrated that
numbers equivalent measures of heterogeneity—known in
different fields as the Rényi heterogeneity, Hill numbers,
or Hannah–Kay indices—are cross-cutting measures that
can potentially express the heterogeneity of any system as
the size of an equally heterogeneous uniform event space.
These measures satisfy most heterogeneity axioms
(especially the replication principle, which ensures that
the Rényi heterogeneity scales linearly with changes in the
true underlying heterogeneity) and are standard measures
of ecological biodiversity yet remain relatively absent from
the psychiatric literature. That being said, we also showed
that several limitations remain, particularly for measure-
ment of heterogeneity in non-categorical systems. In this
section, we re-highlight some of the roadblocks to their
psychiatric implementation and future directions of
research. Establishing a consistent, interpretable, and
well-behaved approach for measuring the amount of
heterogeneity in a system will be necessary to facilitate
rigorous quantitative research on the causes and impact of
heterogeneity in psychiatric research.
There are several conceptual obstacles remaining for

implementation of numbers equivalent-based hetero-
geneity measures in the psychiatric literature. Hetero-
geneity is often discussed in the psychiatric literature, but
it is rarely discussed as a concept independent of its
causes and consequences. It is also common for studies to
note that heterogeneity in clinical conditions can be
broken down along multiple dimensions, and proposing
methods for doing so123,125,149. However, this is not the
same as measuring the absolute quantity of heterogeneity,
which requires precise definition of units and establish-
ment of some level of calibration (as we demonstrated for
the Rényi family through axiomatic review).

Heterogeneous systems have many correlated properties
that, in the absence of precise definition, could easily be
mistaken for heterogeneity itself: they have more sampling
uncertainty and information, lower probability of sam-
pling identical pairs, lower modal probabilities, higher
variance, less inequality in their probability distributions,
and larger event spaces. If one cares simply about “more
vs. less” heterogeneity, then any of these properties will be
suitable indices, although we showed that conflicting
interpretations can result if this comparison is done
across different indices3. However, if one is interested in
“how much more/less” heterogeneity exists (such as when
comparing groups), then only numbers equivalent mea-
sures will show appropriate behavior under pooling or
decomposition (this was conceptually outlined above,
with more rigorous proof in the Supplementary Appen-
dix). The utility of such measures, including their easily
understandable units, must be appreciated through real-
world applications.
The chief technical obstacle for adopting numbers

equivalent measures in psychiatric research is their lim-
itations when applied to non-categorical data. Existing
non-categorical numbers equivalent measures satisfy the
replication principle50, but they still require imposition of
a priori stratification on the data, and assumption of a
distance metric (see also their idiosyncratic limitations in
Supplementary Appendix B and in ref. 150). Both limita-
tions preclude adoption in translational psychiatric
research. First, if psychiatric science had reliable and valid
strata to impose on some data, then we might not have
such concern with heterogeneity in the first place. Second,
the types of high-dimensional data often used in modern
psychiatric research might lie on latent spaces whose
geometries do not admit application of predefined dis-
tance functions81. In such systems, existing non-
categorical numbers equivalent measures may fail to
accurately measure heterogeneity.
Without a proper measure of heterogeneity, it is

impossible to precisely identify the impact of hetero-
geneity in psychiatric research. That being said, it is trivial
to show that heterogeneity is necessary for the occurrence
of the Yule-Simpson effect (also known as “Simpson’s
Paradox”), which is a straightforward example of impli-
cations on effect size estimates. However, it is not clear to
what extent this occurs, since one can also show that
heterogeneity may be present in the absence of a Yule-
Simpson effect. We have also previously recalled that
symptomatic heterogeneity is itself a feature of “great
imitator” conditions, such as syphilis, and that degree of
heterogeneity may be a central feature that differentiates
some psychiatric disorders151, although in the absence of
a proper measure this can only be assumed. To quantify
this, a proper measure of heterogeneity is required.
Finally, without operationalizing the definition of
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heterogeneity and understanding its measurable proper-
ties, our field will continue to conflate the concept of
heterogeneity itself with its causes and consequences,
thereby impeding the rigorous study of all three.
Numbers equivalent heterogeneity measures can be

relevant for modern translational psychiatric research, but
existing indices must be adapted to suit the nature of our
data and questions. We must do away with the require-
ment for a priori data stratification and distance function
specification. It will also be interesting to study if, how,
and under what circumstances existing measures of meta-
analytic heterogeneity and time-series complexity should
be expressed in numbers equivalent. Ultimately, devel-
opment of a rigorous approach for the measurement of
heterogeneity will facilitate further studies concerning its
causes and consequences in psychiatric research.
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