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Abstract
The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal
neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at
reducing bias and overfitting by invoking simulated data in the design process and analysis in two independent
machine-learning approaches, one based on a single algorithm and the other incorporating an ensemble of
algorithms. We aimed to (1) classify patients from controls to establish the framework, (2) predict short- and long-term
treatment response, and (3) validate the methodological framework. We included 138 antipsychotic-naïve, first-
episode schizophrenia patients with data on psychopathology, cognition, electrophysiology, and structural magnetic
resonance imaging (MRI). Perinatal data and long-term outcome measures were obtained from Danish registers. Short-
term treatment response was defined as change in Positive And Negative Syndrome Score (PANSS) after the initial
antipsychotic treatment period. Baseline diagnostic classification algorithms also included data from 151 matched
controls. Both approaches significantly classified patients from healthy controls with a balanced accuracy of 63.8% and
64.2%, respectively. Post-hoc analyses showed that the classification primarily was driven by the cognitive data. Neither
approach predicted short- nor long-term treatment response. Validation of the framework showed that choice of
algorithm and parameter settings in the real data was successfully guided by results from the simulated data. In
conclusion, this novel approach holds promise as an important step to minimize bias and obtain reliable results with
modest sample sizes when independent replication samples are not available.

Introduction
Schizophrenia is a severe and heterogeneous brain dis-

order. Patients exhibit a great variety of symptoms, which
span in severity from barely noticeable to completely
dominating the patient’s mental state and behavior. Cor-
respondingly, the course of illness varies from sympto-
matic recovery to treatment resistance with marked
impairments in social functioning. Approximately half of
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all schizophrenia patients do not respond adequately to
current antipsychotic medication, and estimates of treat-
ment resistance vary greatly (14−60%)1,2. The large
variability in biological measures and clinical manifesta-
tions of schizophrenia has complicated estimations of an
individual patient’s prognosis.
Already at the onset of disease, schizophrenia patients

display abnormalities in neuroanatomical3,4, electro-
physiological5,6, and cognitive measures7. Changes are
subtle and only apparent on the group level, and anti-
psychotic medication as well as duration of illness are
potential confounders8,9. Antipsychotic-naïve patients are
challenging to recruit, and most studies in antipsychotic-
naïve schizophrenia patients are relatively small, clinically
heterogenous, and apply a limited number of modalities.
Machine learning (ML) is a powerful computational

approach to unravel patterns in complex, multivariate
datasets. Emerging ML studies based on neuroimaging
data have successfully classified schizophrenia patients
from healthy controls and, to some degree, predicted
outcome10,11. However, replicability of clinical findings
has been challenging, and it is increasingly recognized
that rigorous methodology is crucial to reduce bias and
overestimations12–14.
In recent years, advances have been made towards

combining data from multiple modalities in order to
improve prediction. Clinical studies applying multimodal
approaches are scarce, but may improve classification of
schizophrenia patients from healthy controls compared to
unimodal approaches15, although findings are equivocal16.
We recently reported that the treatment response of
psychopathologically indistinguishable patient subgroups
was significantly predicted by an ML model based on
cognitive and electrophysiological data17.
In the current study, we expand on our previous

approach17 by including additional modalities and pooling
data from several comparable cohorts of antipsychotic-
naïve, first-episode schizophrenia patients. Different ML
algorithms have varying predictive capabilities when
applied to different tasks and different types of data18.
Some investigators may only have tested one arbitrarily
chosen model10,14, or may not have reported all tested
models, thereby increasing the possibility of a type 1 error.
To minimize bias in algorithm selection and parameter
settings, we selected algorithms for the analysis on our
real data based on their performance on simulated data-
sets. This novel approach reduces the risk of overfitting
and provides transparency in the algorithm selection
process. Furthermore, we thoroughly describe our pipe-
line to enable reproducibility and detail how we avoided
data leakage from the training set to the test set.
Robustness of results was ensured by running two

independent ML approaches in parallel. One ML approach
was a conventional learning approach, using a single

carefully chosen and optimized ML algorithm, and the
other was a more flexible approach, which allowed mul-
tiple algorithms to be combined in an ensemble. As input
data we used cognitive, electrophysiological, brain struc-
tural, and psychopathological data, as well as perinatal
register data. In order to establish the framework, we
aimed to predict diagnostic status. Furthermore, we aimed
to predict short- and long-term treatment response. We
hypothesized that our setup applied on baseline data
would be able to significantly classify schizophrenia
patients from healthy controls. Furthermore, we hypo-
thesized that ML models based on multimodal data would
be superior to unimodal models at predicting treatment
response. Finally, we validated our methodological fra-
mework by testing if the ranking of algorithm performance
on the simulated data was maintained in the real data.

Methods
Participants and interventions
All included patients were antipsychotic-naïve and

experiencing their first episode of psychosis. Patients were
recruited from in- and outpatient clinics in the Capital
Region of Copenhagen, Denmark. Patients were recruited
as part of three comparable, consecutive cohorts (cohorts
A (1998–2002), B (2004–2008), and C (2008–2014))
(Table 1). Results from previous studies on these cohorts
have been published elsewhere (e.g. refs. 16,19,20), and a
complete list of publications is provided at www.cinsr.dk.
Patients in cohort A had been randomized to treatment
with either risperidone or zuclopenthixol for 3 months. In
cohort B patients received treatment with quetiapine for
6 months. In cohort C patients were treated with ami-
sulpride for 6 weeks. In all three cohorts, medication
dosage was increased until a clinical antipsychotic effect
was evident, while taking side effects into account.
Diagnoses were ascertained using the Schedule for Clin-

ical Assessment in Neuropsychiatry Version 2 (SCAN)21.
Included patients met the diagnostic criteria of schizo-
phrenia (n= 138) according to the ICD-10 Classification of
Mental and Behavioural Disorders. Exclusion criteria were
any previous exposure to antipsychotics or methylpheni-
date. Antidepressant treatment was not allowed within
1 month prior to baseline examinations, and all assessments
were carried out before treatment was initiated. At baseline,
patients underwent physical and neurological examinations.
Recreational substance use was accepted, but patients with
current substance dependency were excluded. Symptom
severity was assessed with the Positive and Negative Syn-
drome Scale (PANSS)22.
Healthy controls (HCs) (n= 151) were recruited from

the community in the Capital Region of Copenhagen
through online advertisement. Healthy controls were
matched to patients on age, gender, and parental socio-
economic status. For HCs, the exclusion criteria were
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current or previous psychiatric illness, drug abuse, and
a family history of psychiatric illness in a first-degree
relative.
Based on an individual assessment, patients and HCs

were excluded if they had serious physical illness or a
history of head injury with unconsciousness for more than
5min. Obvious pathology on MRI scans resulted in
exclusion from the study.
All procedures were approved by the Ethical Committee

of Copenhagen and Frederiksberg/The Capital Region (KF
01-078/97 01-012/98) and the Danish National Committee
on Biomedical Research Ethics (H-D-2008-088). Permis-
sion to retrieve data from registers was granted by the
Danish Data Protection Agency (CSU-FCFS-2017-012). All
participants provided written informed consent.

Definitions of treatment response
Treatment response was determined at two time-points:

The short-term treatment response was a continuous

variable and defined as the relative change in PANSS total
score from baseline to short-term follow-up, calculated as
(PANSSFollow-up− PANSSBaseline)/PANSSBaseline. Short-
term follow-up examinations were conducted after
3 months (cohort A), 6 months (cohort B), and 6 weeks
(cohort C).
The long-term treatment response was a binary, cate-

gorical variable and defined using the criteria presented in
Wimberley et al.23, which are based on data from the
Danish National Prescription Registry, the Danish Psy-
chiatric Central Research Register, and the Danish
National Patient Registry. Accordingly, poor long-term
responders fulfilled at least one of the following criteria
from inclusion to December 12, 2016 based on data from
the Danish National Health Service Prescription Database
and the Danish Psychiatric Central Research Register
linked to participants via their unique personal identifi-
cation number: (1) Clozapine prescription, defined as at
least one pharmacy redemption of clozapine; (2) Eligibility

Table 1 Demographic and clinical characteristics of patients with schizophrenia and healthy control subjects.

Schizophrenia patients Healthy controls Statistics p

N Distribution N Distribution

Subjects, cohorts A/B/Ca 138 31/46/61 151 27/53/71 χ2= 0.95 0.623

Age, years, Mean (SD)b 135 25.36 (5.88) 146 25.48 (5.61) U= 9535 0.638

Gender, Male/Femalea 138 94/44 151 99/52 χ2= 0.21 0.645

P-SES, High/Moderate/Lowa 134 39/73/22 146 61/70/15 χ2= 5.72 0.057

Years of education, Mean (SD)b 103 11.47 (2.61) 71 13.95 (3.86) U= 1741.5 <0.001

Handedness according to EHI Score, Right/Ambidextrous/Leftc 134 115/3/16 138 124/1/13 – 0.459

Estimated premorbid intelligence (Danish Adult Reading Test (DART)),

Mean (SD) [Mean Z-score]d
122 22.11 (8.51) [−0.59] 139 26.65 (7.63) [0.0] t=−4.54 <0.001

Estimated intelligence based on WAIS, Mean Z-scoree,f 69 −1.26 79 0.0 – –

Estimated intelligence based on WAIS-III, Mean Z-scoree,g 52 0.73 59 0.0 – –

PANSS, positive, Mean (SD) 134 20.12 (4.36) – – – –

PANSS, negative, Mean (SD) 134 21.00 (6.69) – – – –

PANSS, general, Mean (SD) 134 39.20 (9.57) – – – –

PANSS, total, Mean (SD) 134 80.32 (16.45) – – – –

DUI, weeks, Mean (SD)h 96 113.51 (163.64) – – – –

Analyses were performed on subjects with available data. Some variables were not available for all cohorts, hence the varying N. Significant p-values (p < 0.05) are in
bold. Handedness was determined with The Edinburgh Handedness Inventory (EHI)58.
Duration of untreated illness (DUI) was registered and defined as the time from initial decline in functioning estimated as a consequence of unspecific symptoms
related to psychosis59.
P-SES parental socioeconomic status, EHI Edinburgh Handedness Inventory score, PANSS Positive and Negative Syndrome Scale, DUI duration of untreated illness.
aPearson χ2 test.
bMann−Whitney U test.
cFisher’s exact test.
dTwo-sample t test with pooled variance estimates.
eA combined score based on the Similarities and Vocabulary subtests from WAIS/WAIS III: Wechsler Adult Intelligence Scale (Wechsler Adult Intelligence Scale®),
presented as Z-scores standardized from the mean and standard deviation of the healthy control sample.
fOnly data from cohorts A and B.
gOnly data from cohort C.
hOnly data from cohorts B and C.
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for clozapine, defined as two nonoverlapping periods of
minimum 6 weeks duration treated with different anti-
psychotics followed by hospital admission; (3) Poly-
pharmacy, defined as >90 consecutive days of treatment
with at least two different antipsychotics. The definition of
poor long-term treatment response overlaps with treat-
ment resistance, but is not identical to the criteria speci-
fied by Howes et al.2. The average time for assessment of
long-term response was 16.9 years (standard deviation
(s.d.)= 1.1 years) for cohort A, 10.8 years (s.d.= 1.0 years)
for cohort B, and 6.0 years (s.d.= 1.4 years) for cohort C.
The overall average was 10.1 years (s.d.= 4.2 years).

Explanatory variables
Cognition
A Danish version of the National Adult Reading Test

(DART) was used to estimate premorbid intelligence24.
Verbal intelligence was estimated using the Vocabulary and
Similarities subtests from either WAIS25 or WAIS-III26, and
nonverbal intelligence was estimated using the Block
Design and Matrix Reasoning subtests from WAIS-III.
Selected tests from the Cambridge Neuropsychological Test
Automated Battery (CANTAB) were used to obtain mea-
sures of spatial span (SSP), spatial working memory (SWM),
spatial planning (Stockings of Cambridge [SOC]), intra-
extra dimensional set shifting (IED), sustained attention
(Rapid Visual Information Processing [RVP]), and simple
reaction and movement times (RTI)27. The Brief Assess-
ment of Cognition in Schizophrenia (BACS) was used to
assess fluency, working memory, verbal memory, motor
skills, processing speed, and planning28. Buschke Selective
Reminding Test29 was used to assess verbal memory, the
Symbol Digit Modalities Test30 and Trail Making tests A
and B31 were used to assess processing speed. Wisconsin
Card Sorting Test32 was used to assess set shifting, and the
Speed and Capacity of Language Processing Test33 was used
to assess speed of verbal processing.

Magnetic resonance imaging data
High-resolution T1-weighted structural magnetic reso-

nance images (sMRI) were acquired on three different
scanners. In cohort A we used a 1.5 T Siemens Vision
scanner with the scanner’s birdcage transmit/receive head
coil (Siemens Healthcare, Erlangen, Germany). In cohort
B we used a 3.0 T Siemens MAGNETOM trio scanner
(Siemens Healthcare) with an eight-channel SENSE head
coil (Invivo Corporation, Gainesville, FL), and in cohort C
we used a 3.0 T Philips Achieva scanner (Philips Health-
care, Best, The Netherlands) with a SENSE eight-channel
head coil (Invivo Corporation).
FreeSurfer Version 5.3.0 was used to process all images as

described in Jessen et al.34 and in the FreeSurfer doc-
umentation35–37. Regional measures of cortical thickness,
surface area, and mean curvature were identified using the

Desikan−Killiany atlas38. Subcortical volumes were iden-
tified using the anatomical processing pipeline (fsl_anat)
(FSL version 5.0.10, FMRIB, Oxford, UK)39. Details on
scanner settings and image processing are provided in
Supplementary Text S1.1.

Electrophysiology data
All participants were examined using parts of the

Copenhagen Psychophysiology Test Battery (CPTB).
The CPTB consists of the prepulse inhibition (PPI),
P50 suppression, mismatch negativity (MMN), and
selective attention (SA) paradigms. Methods have pre-
viously been described in detail40–44 (see also Supple-
mentary Text S1.2 and Supplementary Table S1).

Register data
Register data on all participants were obtained from The

Danish Medical Birth Register hosted at the Danish
Health Data Authority by data linkage using the unique
personal identification number as key. We used data on
maternal and paternal age at birth, gestational age in
weeks, birth length and weight, and Apgar scores after 1
and 5min.

Covariates
In all analyses, the conventional covariates: sex, age,

cohort, and handedness were used. The cohort covariate
primarily accounts for differences in the time of assess-
ment, differences in antipsychotic compound, and differ-
ent MRI scanners.

Missing data
In this study we have pooled data from three compar-

able cohorts. The pooled sample had both block-wise and
randomly missing data.
To handle block-wise missing data, we divided each

modality into submodalities. Subsequently, we integrated
the predictions of each submodality, i.e. late integration.
An overview of submodalities and their features is pro-
vided in Fig. 1. We tested two different integration
schemes on the simulated data (for details see Supple-
mentary Text S1.3).
Randomly missing data were handled by applying

imputation45. To reduce bias in our results, we tested two
different imputation methods on the simulated data:
median imputation and probabilistic principal component
analysis (PPCA) imputation46,47.
Details on handling of missing data can be found in

Supplementary Text S1.3.

Analysis strategy
Simulated data
In order to minimize bias in algorithm selection and

parameter settings, we produced simulated datasets. The
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simulated data facilitated unbiased choices in the sub-
sequent learning process (e.g. late data integration and
imputation). The simulated data resembled the actual
data with respect to dimensionality, multimodality, and
pattern of missing data. Tunable noise levels allowed us to
evaluate performance and robustness across different

signal-to-noise ratios (SNRs). The simulated data were
matched to the real data by creating a “simulated patient”
for each true patient.
We simulated data by sampling from a latent variable

model48. The underlying assumption of our model was that
each subject has a latent variable, which reflects his/her
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Fig. 1 Radial dendrogram depicting our data model. Modalities were divided into submodalities, each with a set of features. The nodes
closest to the center (depicted as a brain) represent the modalities. Distal to these are the submodalities, and along the circumference are the leaves
representing the features (i.e. the variables). MRI magnetic resonance imaging, LH left hemisphere, RH right hemisphere, MMN mismatch negativity,
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Assessment of Cognition in Schizophrenia, Buschke Buschke Selective Reminding Test, DART Danish version of the National Adult Reading Test, IED
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Wechsler Adult Intelligence Scale, WCST Wisconsin Card Sorting Test. For a description of electrophysiology features, see Supplementary Table S1.
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capability of responding to treatment. Based on two
common hypotheses of the underlying nature of treatment
response of schizophrenia patients, we imposed two
restrictions on the one-dimensional latent variable2,17,49.
This resulted in two datasets, denoted cluster data and
spectrum data, respectively (see Supplementary Text S1.4).
The pattern of missing data extracted from the real data

was applied to the simulated data. In total, 180 simulated
datasets were generated by varying the SNR from −20 to
20 dB in steps of 5 dB, using two data types, and by
initiating the data generation process using ten different
random seeds.
Details on the generation of simulated data can be

found in Supplementary Text S1.4.

Machine-learning framework
The overall ML framework is outlined in Fig. 2.
In order to ascertain the robustness of the ML framework,

we applied it using two independent approaches denoted
“single algorithm approach” and “ensemble approach,”

respectively (code available from https://lab.compute.dtu.dk/
cogsys_lundbeck_cnsr/schizophrenia_treatment_resistance/).
The single algorithm approach was implemented in

Matlab Release 2018a (The MathWorks, Inc., Natick,
Massachusetts, USA). For prediction of the continuous
short-term treatment response, we tested nine Matlab
built-in regression algorithms with different settings
resulting in 32 configurations. The regression algo-
rithms tested were linear regression algorithms, support
vector machines (SVMs) with different kernels, Gaus-
sian Processes, regression trees, generalized linear mod-
els, ensemble regression algorithms, and random forest.
For prediction of the binary long-term treatment
response and diagnostic classification, we tested eight
Matlab built-in classification algorithms with different
settings, resulting in 21 configurations. The classifica-
tion algorithms tested were logistic regression, Naïve
Bayes, random forest, decision trees, ensemble of trees,
SVMs with different kernels, and k-nearest neighbor. In
some configurations, one or more of the parameters
were optimized with Bayesian optimization in the inner

Synthe�c data genera�on

Outer Cross Valida�on Spli�ng

Spli�ng into Submodali�es
Missing Data Imputa�on

Standardizing

Test (25%) Training (75%)

Single 
Algorithm
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Simulated data pipeline

Machine Learning Framework
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Training (75%) Test (25%)

Late integra�on

Explora�ve Analysis

Real data pipeline
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Missing Data Imputa�on
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Single
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Fig. 2 Overall machine-learning framework using both simulated and real data. In the outer CV loop, the data were randomly split, leaving out
25% of the subjects for testing with 10 replications for the simulated data and 100 replications for the real data. The subjects were stratified with
respect to cohort (short-term treatment response) or outcome (long-term treatment response and diagnostic classification). Values missing at
random were imputed using estimates derived from the training set. The training and test sets were standardized by the mean and standard
deviation derived from the training set. Both training and test data were split into submodalities. We used the following conventional covariates: sex,
age, cohort, and handedness. In the inner CV loop, the training data were further split into a training and test set using threefold CV. Threefold CV was
selected as a tradeoff between limited sample size and computation time. Algorithm parameters and ensembles were optimized in the inner CV loop
with two different approaches (see text). The best performing model was applied to the outer CV loop test set and the prediction of each
submodality was combined in a late integration scheme to provide the prediction. The analysis of the real data followed the same framework as the
simulated data, except that only the best, median and poorest performing algorithms, parameter settings, and methods learned from the simulated
data were applied on the real data. CV cross-validation.
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cross-validation (CV) loop, while in others the default
settings were used. To validate our methodological
framework, we identified the best, the median, and the
poorest performing algorithms in the single algorithm
approach, to investigate if the performance ranking of
the algorithms on the simulated data were kept in the
real data.
The ensemble approach was implemented in Python

(version 2.7.15+) using auto-sklearn (version 0.4.1)50.
Auto-sklearn is an open-source ML framework, which
automatically performs ML algorithm selection, hyper-
parameter tuning and builds an ensemble of the selected
algorithms. Each algorithm in the ensemble, as well as the
ensemble itself, was fine-tuned automatically using
Bayesian optimization. The impact of two main para-
meters in auto-sklearn was tested on simulated data,
specifically the time limit in seconds to search for
appropriate algorithms and the optimal ensemble (deno-
ted training time), and the maximum number of algo-
rithms included in the final ensemble (denoted maximum
ensemble size), respectively. We tested the performance
in a grid search using 20, 60, and 180 s, as well as max-
imum ensemble sizes of 1, 4, and 40, to find the optimal
combination of training time and maximum ensemble
size. Validation of the ensemble approach consisted of
testing if the combination of short training time and small
maximum ensemble size worsened our results and like-
wise, if the combination of long training time and large
maximum ensemble size improved our results when
applied to the real data.

Model performance measures
The performance of the classification algorithms (for

diagnostic classification and estimation of long-term
treatment response) was calculated as the balanced
accuracy (BACC). Balanced accuracy is useful when the
classes are of unequal sizes. For random classification the
BACC will give a score of 0.5, whereas a BACC of 1 means
perfect classification.
The performance of the regression algorithms (i.e.

estimation of short-term treatment response) was asses-
sed by normalized mean square error (NMSE). An NMSE
of 0 means perfect prediction, whereas an NMSE of 1
equals chance level. Details on model performance mea-
sures can be found in Supplementary Text S1.5.

Statistical analyses
Demographic and clinical data were analyzed using the

Statistical Package for the Social Sciences software (ver-
sion 25, SPSS Inc., USA). The distribution of continuous
data was tested for normality with the Shapiro−Wilk test
and by visual inspection of histograms. Depending on the
distribution and type of the data, the group differences
were tested using a two-sample t test, the Mann−Whitney
U test, Pearson’s χ2 test, or Fisher’s exact test (Table 1).

Results
Group differences
For a flow diagram of the study, refer to Fig. 3.
In total, 51.1% of the subjects had a relative decrease in

PANSS score of minimum 20% (for details see Fig. 3).

Cohort A
Patients (n=31)
Healthy controls (n=27)
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Loss to follow-up Loss due to no prescriptions in  
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C
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Fig. 3 Flow diagram of subject inclusion into diagnostic classification and prediction of short- and long-term treatment response. ΔPANSS
mean relative change in Positive And Negative Syndrome Score, s.d. standard deviation, LTR long-term treatment response.
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In the definition of long-term treatment response, 25
patients were classified as poor long-term responders
based on the aforementioned criteria: clozapine pre-
scriptions (n= 4), eligible for clozapine (n= 5), and
polypharmacy (n= 16).
Patients and controls differed in estimated premorbid

intelligence and years of education (Table 1). No other
group differences were identified.

Simulated data results
The results of the simulated data are shown in Sup-

plementary Fig. S1. As expected, the higher the SNR, the
higher prediction accuracy. In the extreme cases with
either very high or very low SNR, all algorithms per-
formed equally well or poorly. However, in the low SNR
range, it was possible to differentiate between the algo-
rithms and parameter settings and select the best per-
forming combination (i.e. low error and stable
performance across the SNR interval) for the given pro-
blem. For each combination of data type (i.e. cluster or
spectrum), seed, and SNR in the range [−20, 0], we found
the best performing algorithm in the single algorithm
approach and the best combination of training time and
maximum ensemble size in the ensemble approach. The
models that performed best on average was subsequently
applied to the real data.

Single algorithm approach
Diagnostic classification
The best performing algorithm across the simulated

datasets when classifying patients from HCs was the
ensemble of trees algorithm with Bayesian optimization of
the hyperparameters (fitcensemble in Matlab). Applying
this algorithm on real data yielded a BACC of 64.2%
(confidence interval (CI): [51.7, 76.7]).
To validate our methodological framework, we tested if

the ranking of the algorithms from the simulated data was
kept in the real data. We did this by identifying the best,
the median, and the poorest performing algorithms,
namely the ensemble of trees algorithm with Bayesian
optimization (top performance), a logistic regression
algorithm (middle performance), and an SVM with radial
basis function kernel function (poorest performance).
Their performances and CIs on the real data are listed in
Table 2. The ranking of the algorithms was kept in the
real data; however, there was no significant difference
between the ensemble of trees algorithm with optimization
and the logistic regression algorithm (p= 0.52).
Post-hoc analyses showed that the classification was

primarily driven by the cognitive data (see Supplementary
Table S2). Classifying patients from controls based on
cognition only yielded a BACC of 67.8% (CI: [54.7, 81.0]),
which was significantly higher than using all modalities
(p < 0.01, Supplementary Table S2).

Long-term treatment response
For prediction of the long-term treatment response, we

selected a logistic regression algorithm developed for high-
dimensional data (fitclinear in Matlab). The average
BACC across 100 CV splits was 50.30%, which is indis-
tinguishable from random guessing.

Short-term treatment response
When predicting the short-term treatment response, we

selected an SVM with L1 regularization, which yielded a
nonsignificant prediction (NMSE= 0.96).

Ensemble approach
Diagnostic classification
When classifying patients from HCs, the best per-

forming combination of parameters across the simulated
datasets was a maximum ensemble size of 4 and a training
time of 180 s. Applying this combination on the real data
yielded a significant BACC of 63.8% (CI: [50.8, 76.7]).
Decreasing the training time and maximum ensemble size
worsened model performance on the real data and
increasing the maximum ensemble size to 40 did not
improve the result (BACC= 63.6%) either. Post-hoc
analyses showed that correct classification was driven by
the cognitive data with a BACC of 63.8% (CI: [52.0, 75.5],
see Supplementary Table S3).

Long-term treatment response
For prediction of the long-term treatment response, the

best performing combination of parameters on the
simulated data was a maximum ensemble size of 1 and a
training time of 60 s. The average balanced accuracy
across 100 CV splits was 50.0% (Supplementary Table S3).
Neither decreasing nor increasing the training time and
maximum ensemble size changed the results when
applied to the real data.

Short-term treatment response
When predicting the short-term treatment response,

the best performing combination of parameters on the
simulated data was a maximum ensemble size of 40 and a
training time of 180 s, which was the maximum training
time and maximum ensemble size tested. This combina-
tion yielded a nonsignificant prediction (NMSE= 1.04).
Reducing the training time and maximum ensemble size
insignificantly increased the NMSE when applied to the
real data.

Discussion
Here, we have presented a novel and robust framework

for applying ML to multimodal data, while accounting for
missing data and reducing bias in model selection and
fine-tuning. Our single algorithm and ensemble approa-
ches produced consistent results, and both approaches
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were able to significantly classify schizophrenia patients
from HCs above chance level. However, neither approach
predicted the treatment response.
Additional calculations performed on unimodal data

revealed cognition to be the primary driver of the sig-
nificant results, and cognition alone was, in the single
algorithm approach, superior to using multimodal data
(Supplementary Tables S2, S3). The strong cognitive sig-
nal is in line with our recent findings16, which were
reported on data partly overlapping with the data in the
current study (cohort C). Interestingly, Doan et al. found
that a random forest classifier performed better when
combining cognition data and MRI data from a linked
independent component analysis rather than using cog-
nition data alone15. Even so, no direct comparison can be
made to our study, since the schizophrenia patients

included in the study by Doan et al. were not anti-
psychotic-naïve, which may have enhanced the MRI signal
in their data.
We strived to be unprejudiced and “agnostic” in our

selection of input data by including comprehensive data
from several modalities. This was done to minimize the
risk of leaving out data that could improve model per-
formance, but also meant that we risked reducing the SNR
by adding data that would primarily introduce noise. It
could be speculated that use of “domain knowledge,” i.e.
to include only submodalities and features which have
been clearly implicated in schizophrenia in the literature,
may have provided different results.
In the current study, schizophrenia patients and HCs

differed significantly in completed years of education and
estimated premorbid intelligence, but not in parental

Table 2 Performance and confidence intervals of the selected algorithms when predicting the three different problems.

Single algorithm approach

Diagnostic classification BACC (%) 95% confidence interval

Best performance: Ensemble of trees with Bayesian optimization 64.2 [51.7, 76.7]

Medium performance: Logistic regression 63.8 [50.7, 77.0]

Worst performance: SVM with radial basis function kernel 50.4 [44.0, 56.8]

Long-term treatment response (classification)

Best performance: Logistic regression for high-dimensional data 50.3 [39.4, 61.2]

Medium performance: Random forest 49.7 [44.7, 54.6]

Worst performance: Linear SVM 50.0 [50.0, 50.0]

Short-term treatment response (regression) NMSE 95% confidence interval

Best performance: SVM with L1 regularization 0.96 [0.43, 1.49]

Medium performance: Linear regression with L1 regularization 0.96 [0.42, 1.51]

Worst performance: SVM with polynomial kernel 14.86 [0, 35.09]

Ensemble approach

Diagnostic classification BACC (%) 95% confidence interval

Chosen settings based on simulated data results: maximum ensemble size= 4, training time= 180 s 63.8 [50.8, 76.7]

Small maximum ensemble size (=1) and short training time (=20 s) 56.8 [48.1, 65.4]

Large maximum ensemble size (=40) and long training time (=180 s) 63.6 [50.7, 76.5]

Long-term treatment response (classification)

Chosen settings based on simulated data results: maximum ensemble size= 1, training time= 60 s 50.0 [50.0, 50.0]

Small maximum ensemble size (=1) and short training time (=20 s) 50.0 [50.0, 50.0]

Large maximum ensemble size (=40) and long training time (=180 s) 50.0 [50.0, 50.0]

Short-term treatment response (regression) NMSE 95% confidence interval

Chosen settings based on simulated data results: maximum ensemble size= 40, training time= 180 s 1.04 [1.04, 1.04]

Small maximum ensemble size (=1) and short training time (=20 s) 1.06 [1.06, 1.06]

Balanced accuracy and NMSE are averaged across 100 cross-validation splits. Values in bold are significant on a 95% confidence level. BACC, balanced accuracy.
NMSE normalized mean squared error, SVM support vector machine.
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socioeconomic status. This was expected since illness
onset impacts educational attainment, and a large
majority of schizophrenia patients function at a lower
cognitive level than that predicted by their parental
socioeconomic status51,52.
Theoretically, the selection of only one algorithm in the

single algorithm approach could be problematic when the
dimensionality of the submodalities vary, because the
same algorithm may not be the optimal choice for all
submodalities. In contrast, the ensemble approach could
optimally account for each submodality separately, and
one would expect the more flexible approach to perform
better on a highly complex multimodal dataset, though
possibly at the expense of interpretability. Regardless of
the differences between the two approaches, their overall
predictions on our dataset were very similar.
Observational multimodal studies are often limited by

the number of participants. In turn, a limited number of
observations leaves less independent clinical data to test
the ML models on. To overcome this limitation, CV can be
performed. Using randomized splits of the data, CV sta-
bilizes algorithm performance. However, to reduce biases
in the CV average, this can only be done once, i.e. multiple
algorithms cannot be tested without biasing the result.
The methodological framework presented herein,

incorporating simulated data, two parallel ML approa-
ches, and nested CV, helps to reduce bias in algorithm
and parameter selection and to obtain reliable results with
modest sample sizes when independent replication sam-
ples are not available.
The application of simulated data in our framework also

provided an unbiased way of evaluating algorithm per-
formance before the test phase. Furthermore, the per-
formance ranking of the models on simulated data was
robustly translated to the real data. Still, we cannot know
the actual performance of every model on real data
without having tested it but doing so would increase the
risk of type 1 errors. Likewise, we only applied the top
performing model from the multimodal analyses on
simulated data when conducting post-hoc analyses on
unimodal data (see Supplementary Tables S2, S3).
Due to block-wise missing data, modeling submodalities

rather than complete modalities allowed us to retain a
larger number of subjects in the analyses without per-
forming massive imputation. The late integration
approach also facilitated clinical interpretation of the
results. A drawback of late integration is that correlations
between submodalities are not considered. However,
intra-submodality correlations are still preserved.
We handled randomly missing data by using imputation

(for details see Supplementary Text S1.3). Imputation may
introduce noise to a dataset53 and could be part of the
reason our framework was not able to predict treatment
response.

We used a one-dimensional latent variable to reflect the
capability of treatment response of each subject, which
may have been too restrictive to effectively model the
disease. Though we applied two different models of the
latent variable, more complex data could have been gen-
erated. However, the choices were made for simplifica-
tion, while still capturing characteristics of the real data.
In the SNR interval [−20; 0] we found a discernible span

in algorithm performance in the single algorithm approach.
The true SNR could lie outside of this interval, in which
case our framework would not provide any meaningful
guidance regarding choice of algorithm.
Included patients were moderately ill at baseline (aver-

age total PANSS of 80.3). As such, this study, like all
studies of voluntary participants suffering from schizo-
phrenia, may be limited by selection bias, since the most
severely psychotic and agitated patients will not be able to
provide informed consent, let alone undergo e.g. MRI.
Although the relative change in total PANSS score is

commonly considered a relevant measure of treatment
response, other more specific symptom domains might
have been informative. However, to limit the number of
tests, we restricted our analyses to this measure.
About 25% of the subjects originally included in the

cohorts had not redeemed any prescriptions at the time of
evaluation of long-term treatment response. Possible
explanations for this include patients that have gone into
remission or have discontinued their medication. More-
over, patients that are hospitalized or attending specia-
lized outpatient clinics (OPUS clinics54) do not have their
medication registered in the Danish prescription database.
We could not use treatment resistance as outcome,

since we did not have data regarding e.g. adherence2.
Using the “Wimberley criteria” in the definition of poor
long-term treatment response, the poor responders in our
sample primarily consisted of patients on polypharmacy.
The low percentage of clozapine eligible patients in our
sample could indicate that some aspects of psychosis are
less represented as compared to a general clinical popu-
lation. Still, part of the patients without prescriptions
could be undiscovered poor long-term responders if, for
instance, they discontinued their medication due to psy-
chotic symptoms. We did not have information as to what
degree patients responded to antipsychotic treatment
after the initial trial intervention period. Some patients
may, despite symptom improvement, have changed
medication due to side effects.
In some cases, patients develop treatment resistance after

years of previously effective antipsychotic treatment. This
could also be the case with our definition of long-term
treatment response. A proportion of the patients will most
likely change status to poor long-term responders at some
point after the inclusion date for the present study. This
entails an implicit cohort bias since patients included in the

Ambrosen et al. Translational Psychiatry          (2020) 10:276 Page 10 of 13



first cohorts will have had longer time to become poor long-
term responders than those recruited later. Even so, all
patients had been ill for >2 years prior to inclusion in this
study, compared to the minimum 12 weeks of illness that
are required to meet the TRRIP criteria for treatment
resistance2. We also sought to mitigate cohort bias by
including cohort as a covariate in our analyses.
Since all our input data were collected cross-sectionally

at baseline, we could not account for any changes in the
neuropsychiatric measurements. Dynamic changes in e.g.
brain structure in first-episode schizophrenia patients
may compromise the utility of cross-sectional neuroima-
ging data to function as a biomarker and measurement
trajectories may be better suited for this purpose55.
However, by applying cross-sectional neuropsychiatric
data from multiple modalities, we aimed to leverage this
potential source of variability.
Using sparse canonical correlation analysis, Doucet

et al.56 found correlations between baseline functional
connectivity in several brain networks and clinical
response after antipsychotic medication. They did not find
any significant associations between clinical outcome and
cortical thickness, subcortical volumes, or a combination
of structural and resting-state functional MRI measure-
ments. This suggests that our multimodal setup might
have benefitted from incorporating functional MRI data.
However, the participants in the study by Doucet et al.
were not antipsychotic-naïve and included patients past
their first psychotic episode; hence part of the signal may
be attributable to the more chronic patient sample.
In order to maximize sample size, we combined data

from three different cohorts. In the case of the MRI
modalities, this meant pooling data from scanners of
variable field strengths and from different manufacturers.
Cohorts also varied with regards to which antipsychotic
compound patients were treated with, exact dosage, and
the length of the treatment period before short-term
follow-up. These variations may in turn have increased
sample heterogeneity and “diluted” the signal necessary
for the ML algorithms to effectively solve the three
problems.
In future work, there are several other mechanisms that

could be tested. These include alternative late integration
schemes, as well as other imputation types, such as mul-
tiple imputation and imputation with reject option17,57.
In summary, our rigorous modeling framework invol-

ving simulated data and two parallel ML approaches
significantly discriminated patients from controls. How-
ever, our extensive neuropsychiatric data from anti-
psychotic-naïve patients were not predictive of treatment
response. Validation of the framework showed that the
ranking of the algorithms and parameter settings in the
simulated data was maintained in the real data. In

conclusion, this novel framework holds promise as an
important step to minimize bias and obtain reliable
results with modest sample sizes when independent
replication samples are not available.
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