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Abstract
The accuracy of previous genetic studies in predicting polygenic psychiatric phenotypes has been limited mainly due
to the limited power in distinguishing truly susceptible variants from null variants and the resulting overfitting. A novel
prediction algorithm, Smooth-Threshold Multivariate Genetic Prediction (STMGP), was applied to improve the
genome-based prediction of psychiatric phenotypes by decreasing overfitting through selecting variants and building
a penalized regression model. Prediction models were trained using a cohort of 3685 subjects in Miyagi prefecture and
validated with an independently recruited cohort of 3048 subjects in Iwate prefecture in Japan. Genotyping was
performed using HumanOmniExpressExome BeadChip Arrays. We used the target phenotype of depressive symptoms
and simulated phenotypes with varying complexity and various effect-size distributions of risk alleles. The prediction
accuracy and the degree of overfitting of STMGP were compared with those of state-of-the-art models (polygenic risk
scores, genomic best linear-unbiased prediction, summary-data-based best linear-unbiased prediction, BayesR, and
ridge regression). In the prediction of depressive symptoms, compared with the other models, STMGP showed the
highest prediction accuracy with the lowest degree of overfitting, although there was no significant difference in
prediction accuracy. Simulation studies suggested that STMGP has a better prediction accuracy for moderately
polygenic phenotypes. Our investigations suggest the potential usefulness of STMGP for predicting polygenic
psychiatric conditions while avoiding overfitting.

Introduction
Recent genome-wide association studies (GWAS)

revealed that the genetic influences on many psychiatric
conditions are based on the aggregation of a large number
of small effects, which is referred to as a polygenic model1–3.
In a polygenic model, building high-performance prediction
models based on GWAS in training data is challenging
because selecting only truly (weakly) associated variants

based on a single GWAS with the currently available largest
sample size is difficult due to limited statistical power (Fig.
1a)4,5. The limited statistical power could cause overfitting
in the genetic prediction models, which is characterized by
apparent high prediction accuracies when it is calculated
using the training dataset and low prediction accuracies
when it is calculated using independent test datasets. One of
the main reasons for overfitting is the inclusion of a large
number of variants with no effect on the target disease in
the prediction models. In this paper, these variants that do
not influence the target phenotype will be referred to as null
variants in accordance with the previous article6. When the
statistical power was limited, the variants with P values
lower than the genome-wide significance level include both
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null variants and true susceptibility variants, and Dudbridge
et al.6 showed that the inclusion of too many null variants
by setting the P-value cutoff of the prediction model too
high would decrease the prediction accuracy calculated in
independent test datasets.
There have been two frequently utilized prediction

methods for complex diseases following a polygenic
model: polygenic risk scores (PRS) and genomic best
linear-unbiased prediction (GBLUP). PRS, proposed by
Purcell et al.7, is calculated as a sum of the number of trait-
associated alleles, defined based on an arbitrary P-value
cutoff multiplied by their regression coefficients (Fig. 1b).
Although PRS has been frequently utilized for the pre-
diction of polygenic diseases, the prediction accuracies
have been low2,6,8,9. In the study of genetics related to
polygenic psychiatric condition, the low prediction accu-
racy of PRS was mainly due to limited statistical
power2,3,10. Another limitation of PRS is the utilization of

only independent SNP datasets following a clumping
procedure, and the information of a group of SNPs in
linkage disequilibrium (LD) is limitedly considered for
prediction. Although limitations of statistical power need
to be solved by a larger sample size, the effective utilization
of the SNP group in LDs could be considered by building a
multiple-regression model. In addition, the overfitting
from null variants of PRS could be decreased to some
extent by building a penalized regression model.
Another frequently utilized genomic prediction method

for complex traits is GBLUP, which fits all the variants
simultaneously by building linear mixed models, treating
the effects of the variants as random effects (Fig. 1c)11–13.
Unlike PRS, GBLUP can utilize a group of variants cor-
related with each other effectively for prediction. How-
ever, the prediction accuracy of GBLUP is also low14. One
of the limitations of GBLUP models is that the method
does not select specific variants, and includes a large

a   Distribution of variants in polygenic models

P-values in GWAS
 (-log) Training

Number of variants (log)

Test

True susceptibility variants (Independent)
True susceptibility variants (correlated)

Random and not replicated

b   PRS

Clumped

Setting arbitrary or 
by CV with huge 
computer costs 

Cutoff 

Summing the number of 
risk variants multiplied by 
their regression coefficients

Training
P-values in GWAS
 (-log)

Number of variants (log)

c   GBLUP

Linear Mixed Model

Training
P-values in GWAS
 (-log)

Number of variants (log)

d   STMGP

Training

Optimal Cutoff 

Setting by estimating 
prediction error 
without CV Generalized

Ridge
Regression

Weighting

P-values in GWAS
 (-log)

Number of variants (log)

Test

Test Test

Included in prediction models
True susceptibility variants (Independent)
True susceptibility variants (correlated)
Null variants

True susceptibility variants (Independent)
True susceptibility variants (correlated)
Null variants
Included in prediction models

True susceptibility variants (Independent)
True susceptibility variants (correlated)

Null variants

Null variants
Included in prediction models

Fig. 1 The concept of genetic architecture and predictive models for polygenic diseases. a The distribution of P values in GWAS for polygenic
disease models in training and test datasets. To depict the concept of genetic architecture and predictive models for polygenic disease, the
simulated distribution of variants analyzed in GWAS for a certain target phenotype is shown in the figures. The Y axis indicates the negative logarithm
(−log) of P values, and the X axis indicates the logarithm (log) of the number of variants. While the P values of variants with true susceptibility to the
disease of interest (depicted in orange and yellow) tend to be small, some of them can be large due to insufficient power. Likewise, while the
majority of the P values of null variants (variants with no effect on the susceptibility to the disease, depicted in blue) tend to be large, some of them
can be small by random chance due to a large number of statistical tests. The variants with true susceptibility to the disease can be divided into a set
of variants that are independent of each other (depicted in orange) and a set of remaining variants that are dependent on the former variants due to
the linkage disequilibrium (depicted in yellow). While true susceptibility variants increase prediction accuracy, null variants decrease prediction
accuracy when the variants are included in the prediction model because associations between the null variants and the target phenotype are not
replicated in the validation cohort, which is referred to as overfitting. Distinguishing true susceptibility variants and null variants in single GWAS is
difficult with currently available sample-size data. b Concepts of PRS. PRS intends to select variants with true susceptibility and avoid influence from
null variants by setting a cutoff of P values in GWAS; however, the model decreases prediction accuracy because the model (i) still includes and
overestimates a large number of the null variants, and (ii) incorporates clumping and excludes correlated true susceptibility variants, which can
contribute to prediction accuracy. c Concepts of GBLUP. GBLUP utilizes true susceptibility variants correlated with each other for better prediction
accuracy; however, the model includes a large number of null variants and results in decreasing prediction accuracy due to overfitting. d Concepts of
STMGP. STMGP decreases overfitting by weighting selected variants to decrease overestimation of null variants, utilizes correlated true susceptibility
variants effectively by building generalized ridge regression, and sets an optimal cutoff for the P value with low computer costs by avoiding CV.
GWAS genome-wide association study, PRS polygenic risk score, CV cross-validation, GBLUP genomic best linear-unbiased prediction, STMGP
Smooth-Threshold Multivariate Genetic Prediction.

Takahashi et al. Translational Psychiatry          (2020) 10:294 Page 2 of 11



number of null variants, which could decrease prediction
accuracies through overfitting, as observed in PRS.
To overcome the above-mentioned problems, Smooth-

Threshold Multivariate Genetic Prediction (STMGP)
was proposed by Ueki and Tamiya15. Similar to PRS,
STMGP also builds prediction models based on variants
selected by the threshold P value of GWAS. However,
STMGP overcomes the problems of PRS in the following
two aspects. First, STMGP can avoid overfitting by
weighting variants by the strength of marginal associa-
tion reflecting the certainty of inclusion, which increases
and stabilizes prediction accuracies16. Second, in
STMGP, all the selected variants are utilized as predictor
variables to build a penalized regression model, gen-
eralized ridge regression, which enables the effective
utilization of correlated susceptibility variants for better
prediction accuracy (Fig. 1d). The STMGP algorithm
shares similarity with Elastic net, a penalized regression
machine learning. Elastic net, Lasso, and other shrinkage
machine-learning methods were reported to have high
prediction accuracy17,18, but they require huge computer
costs due to cross-validation for setting tuning para-
meters, and cannot be applied to large-scale genome-
wide data19. In contrast, STMGP does not utilize cross-
validation by estimating prediction error utilizing an
unbiased Cp-type model selection criterion, and can be
utilized for large-scale genome-wide data with lower
computational costs.
Considering the performance of STMGP previously

reported by Ueki and Tamiya15, we hypothesized that
STMGP would have good performance in predicting
polygenic psychiatric phenotypes. In this study, we first
evaluated the performance of STMGP in predicting
depressive symptoms based on real GWAS data, including
3685 training and 3048 validation cohorts. Depressive
symptoms are one of the most polygenic phenotypes
according to the previous GWAS2,3,20, whose SNP-based
heritability has been estimated to be 0.04 (SE 0.01)21.
Then, we also evaluated the performance of STMGP using
simulated phenotypes with varying degrees of complexity
and various effect-size distributions. The performance of
STMGP was evaluated in terms of prediction accuracy and
the degree of overfitting, and compared with that of other
state-of-the-art methods, which included, in addition to
PRS and GBLUP, summary-data-based best linear-
unbiased prediction (SBLUP)22, BayesR (a Bayesian hier-
archical model for complex trait analysis)23, and ridge
regression (penalized regression model) using clumped
SNP data.

Materials and methods
Study population, genotyping, and quality control
The genome-wide SNP data for a total of 9966 sub-

jects, including 4974 training cohort subjects living in

Miyagi prefecture recruited by Tohoku University and
4992 validation cohort subjects living in Iwate prefecture
recruited by Iwate Medical University, were available at
the time of the current analysis24,25. Both cohorts were
collected in an effort to survey the health condition of
residents in the prefectures affected by the 2011 Great
East Japan Earthquake and Tsunami. HumanOmniEx-
pressExome BeadChip Array (Illumina Inc., San Diego,
CA, USA) was utilized for genotyping for both cohorts.
Subjects with a low call rate (<0.98, n= 2 in the training
cohort and n= 3 in the validation cohort) were excluded.
We detected 2156 close-relationship pairs (620 in the
training cohort and 1536 in the validation cohort) using
the identity-by-descent method in PLINK software
(PI_HAT > 0.09375)26 among the training cohort, the
validation cohort, or between these cohorts. Then, in
each of these pairs, a subject with lower call rates was
excluded. Variants with low call rates (<0.99), low
Hardy–Weinberg equilibrium exact-test P values (<1 ×
10−4), or low minor-allele frequencies (<0.01) were fil-
tered out. Subjects without outcome or covariate infor-
mation (n= 669 in the training cohort and n= 408 in
the validation cohort) were excluded. Finally, 3685 sub-
jects in the training cohort and 3048 subjects in the
validation cohort with 615,386 variants were subjected to
prediction analyses. The imputed genome datasets were
used in the additional analyses, and the imputation
method is shown in the Supplementary Methods. All
protocols of our studies were approved by the Ethics
Committees of Tohoku University and Iwate Medical
University. Written informed consent was obtained from
all subjects. This study was carried out according to the
principles expressed in the Declaration of Helsinki.

Outcome measures (depressive symptoms)
Depressive state was evaluated by the Center for Epi-

demiological Studies-Depression (CES-D) score27. The
CES-D contains 20 items, each of which is rated on a 4-
point scale ranging from 0 to 3 based on the frequency of
feelings and behaviors over the past 7 days, with a higher
score suggesting a severe depressive state. There were
2.0% and 0.7% missing data in CES-D items in the training
and validation cohorts, respectively, and listwise deletion
was performed for missing data.
The distributions of CES-D scores in the current data-

sets are shown in Supplementary Fig. 1. Since the dis-
tribution of the raw CES-D scores was different from a
normal distribution, we evaluated the influence of phe-
notype distributions and outliers on the prediction
accuracies by performing two additional analyses and
checking the consistency of the results. In the first addi-
tional analysis, the CES-D scores were transformed using
a Box–Cox transformation. In the second additional
analysis, we excluded the CES-D scores that were outliers.
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The outliers were detected based on boxplots adjusted for
skewed distributions28. The samples with CES-D scores of
0 or greater than 33 (3.5% and 4.7% in the training and
test datasets, respectively) were determined to be outliers
and excluded in this additional analysis.
The demographics of the members of each dataset are

shown in Table 1. Because the training and validation
cohorts were recruited independently, the percentage of
females, age, educational background, house damage from
the 2011 Great East Japan Earthquake and Tsunami, and
the time between the disaster and the measurement of
CES-D significantly differed between cohorts, which could
have made genetic prediction of depressive state more
challenging.

Outcome measures (simulated phenotypes)
We prepared simulated phenotypes based on our

actual SNP data following the previous study22, and
compared the prediction accuracy of STMGP and those
of other prediction models. We set the number of true
variants at 100, 200, 500, 2000, and 5000. We set
the effect-size distribution for susceptibility SNPs by the
normal and Laplace distribution29,30. We also con-
sidered the normal–exponential gamma (NEG) dis-
tribution based on previous studies31–33. The NEG
distribution can be modeled as a Laplace distribution
with a gamma-distributed rate, and it has thicker tails
than both the normal and Laplace distributions.
Decreasing the gamma-shape parameter leads to thicker

Table 1 Demographics of the members of the discovery and validation datasets.

Discovery dataset Validation dataset P valuea

Subjects 3685 3048

Percent of females 70.1% 65.3% 3.31 × 10−5

CES-D, mean (SD) 13.6 (7.2) 13.4 (6.9) 0.226

Age, mean (SD) 58.5 (12.1) 62.0 (10.1) 1.35 × 10−38

Educational background 6.54 × 10−37

Elementary/junior high school 640 (17.4%) 946 (31.0%)

High school 1852 (50.3%) 1260 (41.3%)

Junior college 903 (24.5%) 649 (21.3%)

College 279 (7.6%) 187 (6.1%)

Graduate school 11 (0.3%) 6 (0.2%)

House damage from the 2011 Great East Japan Earthquake and Tsunami 1.09 × 10−278

Total collapse 561 (15.2%) 218 (7.2%)

Large-scale damage 248 (6.7%) 61 (2.0%)

Half-scale damage 302 (8.2%) 75 (2.5%)

Small-scale damage 1534 (41.6%) 522 (17.1%)

No damage 1040 (28.2%) 2172 (71.3%)

Previous psychiatric history

Depression 104 (2.8%) 81 (2.7%) 0.708

Bipolar disorder 9 (0.2%) 6 (0.2%) 0.798

Family historyb

Depression 203 (5.5%) 167 (5.5%) 1.00

Bipolar disorder 27 (0.7%) 26 (0.9%) 0.583

The gap time between the 2011 Great East Japan Earthquake and measurement of CES-D

(months), mean (SD)

28.5 (2.0) 30.8 (1.3) 9.88 × 10−324

Prefectures Miyagi, Japan Iwate, Japan

CES-D Center for Epidemiologic Studies-Depression Scale, SD standard deviation, GEJE Great East Japan Earthquake.
aP values were calculated using Student’s t tests for CES-D, age, and the time gap between the 2011 Great East Japan Earthquake and measurement of CES-D and
Fisher’s exact tests for the percentage of females, educational background, house damage from the 2011 Great East Japan Earthquake and Tsunami, previous
psychiatric history, and family history.
bFamily history refers to the previous psychiatric history of first-degree relatives (i.e., parents, siblings, or children).
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tails, whereas increasing this parameter restores the
distribution to the Laplace distribution. We set the
shape parameter at 2, 3, and 10. In each analysis, 20
replications were performed, and the mean predictive
correlation coefficients (PCCs), standard deviations, and
P values for the PCCs were calculated.
To prepare the phenotype, we randomly selected the

above-mentioned number of SNPs that were in
approximate linkage equilibrium (r2 < 0.05). Then, we
simulated a phenotype across all individuals, including
the training and test datasets, with the selected SNPs as
follows:

yj ¼
Pk

i¼1 wijbi þ ej, where wij ¼ xij�2pið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pi 1�pið Þ

p , with bi the

allelic effect of the ith causal variant and ej the residual
(environmental effect) of the jth sample. Furthermore,
bi was simulated from the Laplace, normal, or NEG dis-
tribution with mean= 0 and variance= 1, and ej was
simulated from a normal distribution with mean= 0 and

variance= σ2Pk

i¼1
wijbi

´ 1=h2 � 1ð Þ
� �

, where h2 is the her-

itability of the trait. h2 was set at 0.05 and 0.10, based on
the SNP heritability of CES-D in the current analysis (0.05)
and the SNP heritability in the previous large GWAS for
depressive phenotype (0.047–0.102)1–3,20. Similar to the
analysis regarding the CES-D scores, the prediction models
were built based on the 3685 training samples and eval-
uated on 3048 independent validation samples.

Performance metrics
We estimated the partial correlation coefficients con-

trolling for covariates (age, sex, and principal components)
in the models for the prediction of depressive symptoms.
The PCC was used for the prediction of simulated phe-
notypes. To test the significance of the difference between
the partial correlation of STMGP and those of the tested
methods, we used William’s test34, which tests the differ-
ence between two dependent correlations sharing one
variable, implemented in the psych package of R.

Packages and parameters used for prediction models
The program code for STMGP (STMGP v1.0),

including the stmgplink function, was available via
CRAN, the official R package archive35. For the inputs of
stmgplink function, we prepared SNP data, phenotype
data, and covariate data for both the training and test
datasets, as well as two tuning parameters, τ and γ.
STMGP requires individual-level SNP data, not summary
statistics, for calculating the correlation between SNPs.
The stmgplink function sequentially (1) computed
GWAS P values, (2) identified an optimal P-value cutoff
using Mallows’ Cp criterion, (3) built the prediction
model from the STMGP model (i.e., computation of the

regression coefficients for SNPs by weighting based on
GWAS test statistics and correlations among SNPs in a
generalized ridge-regression model with the weights) of
the training dataset, and (4) predicted the phenotypes in
the test dataset15.
In addition to the P-value cutoff, there are two tuning

parameters for STMGP, τ and γ. τ controls the extent of
the overall penalization. Specifically, τ regulates the loss
function ||y−XAβA||

2, where y, XA, and βA indicate the
vector of the phenotype, the matrix of the predictor
variables (standardized allele numbers of screened SNPs),
and the vector of the regression coefficients. A denotes
the set of selected SNPs (i.e., the nonnull variants) at a
given P-value cutoff. Thus, τ must be adjusted depending
on the sample size (N) because the loss function is the
residual sum of squares, and thus increases proportionally
to N when N is large. The previous study by Ueki and

Tamiya15 suggested N=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNÞp

as a τ parameter based
on a study of simulated and real genomic data. In this
study, in addition to the main analysis setting τ equal

to N=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNÞp

, additional analyses in which τ was set to
N/0.1, N/1, and N/10 were also performed.

γ controls the influence of the input GWAS test sta-
tistics on the SNP weight for the generalized ridge-
regression model, and the magnitude of the P value is
incorporated by smooth thresholding rather than the hard
thresholding utilized in PRS. Because of the equivalence
to the γ parameter in the adaptive Lasso36 shown in ref. 16,
we set γ to the commonly used value 1 for the adaptive
Lasso used herein37–40.
Packages and parameters used for genetic predictions

other than STMGP are shown in the Supplementary
Methods section.

Covariate adjustment for STMGP
The covariates of sex, age, and the significant principal

components to control population stratification were
included in the prediction models. The principal com-
ponent analyses were performed for the SNP data,
including the training and test data (6733 subjects), and
the P values for all the principal components (i.e., the
first principal component ~the 6733rd principal com-
ponent) were calculated based on the Tracy–Widom
distribution using the Eigensoft package41,42. The com-
ponents with P values < 0.05 (i.e., the first principal
component ~the 26th component) were used as covari-
ates. The SNP data, including the training and test
datasets, were used for calculating the principal com-
ponents, to ensure that the same set of principal com-
ponents was used for the training and test datasets. The
scatterplot generated by principal component analysis is
shown in Supplementary Fig. 2. The prediction model
including covariates was trained from the training
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samples by the following model:

ytrain ¼ b0 þ b1 ´AGEtrain þ b2 ´ SEXtrain þ b3 ´PC1train
þb4 ´PC2train þ � � � þ SNPtrainbSNP þ etrain

ð1Þ

The regression coefficients (b0, b1, b2, b3, b4,… bSNP) were
obtained by the STMGP method, and the values were
used to calculate the predicted score of each test sample
by the following formula:

μtest ¼ b0 þ b1 ´AGEtest þ b2 ´ SEXtest þ b3 ´PC1test
þb4 ´PC2test þ � � � þ SNPtestbSNP

ð2Þ
in which y, AGE, and SEX represent an individual’s
phenotypic score (CES-D), age, and sex, and PC1, PC2, …
are the principal components that must be adjusted for.
etrain is an error term. SNP represents the vector of the
standardized allele number of the selected SNPs. Covari-
ate adjustment for genetic predictions other than STMGP
is shown in the Supplementary Methods section.
Because the method for adjusting for confounding

covariates can affect the prediction accuracy, we investi-
gated the consistency among the results under different
methods of handling the covariates. We considered three
additional approaches in addition to calculating the partial
correlation coefficient adjusted for age, sex, and principal
components. In the first approach, we regressed out age
and sex, and evaluated the prediction accuracy of our
genetic scores against the residuals of the regression. In
the second approach, we calculated the predictive corre-
lation coefficient without adjusting for the covariates. The
third approach was the inclusion of the degree of damage
from the 2011 Great East Japan Earthquake and Tsunami
into the covariates, because depressive phenotypes may
have been affected by this event43–45. The damage was

coded based on house damage as determined by the local
government43 following the national damage certification
standards of disasters: 4= total collapse (uninhabitable),
3= large-scale damage (requires major repairs), 2= half-
scale damage (habitable with repairs), 1= small-scale
damage, and 0= no damage.

Evaluation of the SNPs selected by STMGP
To investigate the relationship between the SNPs

selected by STMGP and the risk alleles suggested by
previous GWAS studies, we referred to the results from
the genome-wide meta-analysis by Howard et al.3. This
genome-wide meta-analysis was one of the largest meta-
analyses related to depression, and included 170,756 cases
and 329,443 controls, from 33 cohorts of the Psychiatric
Genomics Consortium as described in Wray et al.2 and
the broad depression phenotype in the full release of the
UK Biobank as described in Howard et al.20.
We first selected the proxy SNPs from phase 3 of the

1000 Genome Project46,47 within a 100-kilobase window
around the 102 SNPs selected by STMGP using prox-
ysnps software (https://github.com/slowkow/proxysnps).
Then, we calculated r2 values between these proxy SNPs
and the SNPs included in STMGP, and we checked the P
values of the proxy SNPs in the previous genome-wide
meta-analysis3. To evaluate the MAFs of the SNPs used in
the STMGP algorithm among different ethnic groups, the
Genome Aggregation Database (gnomAD)48 was utilized.

Results
We first evaluated the performance of the models in

predicting depressive symptoms. When the prediction
accuracies of all conducted models were calculated using
the independent validation cohort, the STMGP prediction
model showed the highest partial correlation (Table 2), but
it was not significantly different from that of the other
prediction models (P values > 0.05). When the training

Table 2 Prediction accuracy for depressive states.

Partial correlations in the independent

validation datasets (SE)

P value Partial correlations in the training

datasets (SE)

Number of variants included in

prediction models

STMGP 0.0530 (0.0180) 3.424 × 10−3 0.3230 (0.0151) 102

PRS 0.0247 (0.0178) 0.1724 0.9025 (0.0076) 13,421

GBLUP 0.0211 (0.0178) 0.2431 0.9623 (0.0017) 601,239

SBLUP 0.0134 (0.0178) 0.3663 0.9554 (0.0019) 599,149

BayesR 0.0190 (0.0185) 0.2871 0.9633 (0.0015) 615,386

Ridge 0.0160 (0.0178) 0.4321 0.9998 (0.0000) 30,333

PCC predictive correlation coefficient, SE standardized error, STMGP Smooth-Threshold Multivariate Genetic Prediction, PRS polygenic risk scores, GBLUP genomic best
linear-unbiased prediction, SBLUP summary-data-based best linear-unbiased prediction, SNP single-nucleotide polymorphism, PC principal component.
Partial correlations were adjusted by covariates such as sex, age, and PC1 ~26.
Since ridge regression based on raw SNP data was difficult to implement in our environment due to the substantial computational cost, the genome data were
clumped into approximately 30,000 SNPs in a manner similar to a previous study for these analyses51.
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cohort was used both for building the model and calculating
the prediction accuracy, i.e., the apparent (resubstitution)
prediction accuracy, the partial correlation of STMGP was
less optimistic than that of the other models, and the degree
of overfitting successfully decreased in STMGP (Table 2).
The Manhattan plot and QQ plot of GWAS are shown
in Supplementary Fig. 3. The computational time and
consumed memory at peak time for the STMGP calcula-
tions were 107min and 13 GB, respectively, which can be
handled by common computer servers.
Information about the variants used for STMGP and the

related information from a previously published genome-
wide meta-analysis3 are shown in Supplementary Table 1
and Supplementary Fig. 4. Among the P values from the
previous meta-analysis on the SNPs in strong LD (r2 > 0.8)
with the SNPs selected by STMGP, the smallest P value
was 0.00112 (rs2678198). The highest r2 value between
the SNPs selected by STMGP and the risk alleles sug-
gested by the previous meta-analysis (P value < 5e–5) was
0.0722 (rs4977974 and rs1758737). Information about
ethnicity for the selected 102 SNPs is shown in Supple-
mentary Fig. 5 and Supplementary Table 2.
The P-value cutoff obtained by STMGP was 2.7 × 10−4,

which was lower than the P-value cutoff obtained by PRS
(0.022). We also analyzed PRS using the same cutoff of
that used for STMGP, and the partial correlation of this
modified PRS was 0.0230, which was not higher than that
of the original PRS (0.0247).
The slope of the regression of the phenotype (CES-D)

on predicted values was calculated to compare the dif-
ference in the predicted score and the difference in the
phenotype. The slope values of the regressions (SE) for
STMGP, PRS, GBLUP, SBLUP, BayesR, and ridge
regression were 0.591 (0.137), 0.100 (0.055), 0.097 (0.055),
0.063 (0.057), 0.050 (0.055), and 0.050 (0.033), respec-
tively. The slope of the regression and scatterplots of the
true and predicted scores are shown in Supplementary
Fig. 6. The regression of STMGP was closer to 1 than
other prediction models, which showed that STMGP
would be a less-biased predictor and useful when com-
bined with different information for prediction23.
The prediction accuracies of STMGP using different

τ parameters are shown in Supplementary Table 3. The
prediction power was still higher than that of the compe-
titors over various τ values, and setting τ=N/10 showed
the best partial correlation (0.0964) in the current datasets.
The performance of the models predicting the phenotype
with different distribution (Box–Cox-transformed pheno-
type/the outlier-excluded dataset) is shown in Supple-
mentary Table 4. The prediction accuracies of alternative
methods of handling covariates (regressing out the cov-
ariates, using damage from the Great East Japan Earth-
quake, and PCC not adjusted for covariates) are shown in
Supplementary Tables 5 and 6. The performance of the

prediction models based on the imputed genome datasets
is shown in Supplementary Table 7. Although the partial
correlation of STMGP based on the imputed genome data
(0.0628) was not significantly higher than the partial cor-
relation of STMGP based on raw SNP data (0.0530,
P value > 0.05), STMGP showed better prediction accuracy
than the other methods by decreasing overfitting.
Following the prediction analyses for depressive symp-

toms, studies using simulated phenotypes based on the
current SNP data were performed to evaluate the per-
formance of STMGP in predicting phenotypes with
varying complexities and various effect-size distributions
of risk SNPs. The results of the simulation studies (the
risk SNP effect-size distribution was based on the normal
and Laplace distributions) are shown in Tables 3 (herit-
ability= 0.05) and 4 (heritability= 0.10). The results from
the scenarios that set the effect-size distribution based on
the NEG distribution are shown in Supplementary Tables
8 and 9. The STMGP tended to have better prediction
accuracy than the other prediction models in scenarios in
which (i) the SNP effect-size distribution was based on the
Laplace or NEG distribution, not the normal distribution,
and (ii) the complexity of the phenotype was moderate
(2000 or fewer-risk SNPs).

Discussion
The current study showed that STMGP is useful for

predicting psychiatric polygenic phenotypes. In predicting
depressive phenotypes, STMGP showed the highest pre-
diction accuracy, and in the simulation study, STMGP
tended to have better performance in predicting moder-
ately polygenic phenotypes. The strategy of STMGP (i.e.,
screening and building penalized regression models) suc-
cessfully reduced overfitting. The computational cost of
STMGP was relatively low for our imputed genome data.
The prediction for depressive symptoms in the current

datasets was a challenging situation, with low prediction
correlations for all state-of-the-art methods, in which
only STMGP showed significant prediction accuracy, but
the difference in accuracy between STMGP and the
other models was not significant. The largest standar-
dized regression coefficient of the susceptibility variants,
which was calculated by PLINK using the standard beta
option, for the depressive phenotype in the current
study, was only 0.057. The GWAS results in the training
dataset of the current study yielded no genome-wide
significant variants (P value < 5 × 10−8), with only 11
variants with P value < 5 × 10−5. The top 11 variants
explained only 3.6 × 10−3% of the variance in the target
phenotype in the validation dataset. This small effect size
of the susceptibility variants and difficulty in genetic
prediction for depression were consistent with previous
findings1,2,14, which may confirm that depression is one
of the most difficult target diseases for genetic
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prediction. Even in such a challenging situation, STMGP
successfully avoided overfitting and yielded the highest
prediction accuracy.
Following the prediction for depressive phenotype, we

investigated the predictive performance of STMGP using
simulated phenotypes with various complexities and dif-
ferent effect-size distributions of risk SNPs. STMGP
tended to have better performance compared with other
prediction models when predicting the phenotype with
moderate complexity (number of susceptible SNPs≦ 2000
and Laplace or NEG distribution), which could be due to
the following reasons. First, the heritability was set to a
low value (0.05 or 0.10) in the simulation study, and the
effect size of each risk SNP was so small in the highly
complex phenotypes that any prediction model, including
STMGP, could not effectively use the genetic effects for
prediction. Second, the strategy of STMGP to screen
SNPs and to adaptively penalize the regression coeffi-
cients of each SNP depending on the effect size would be
more effective in predicting phenotypes in which the SNP
effects have a heavy-tailed distribution than a normal
distribution. Considering the finding that STMGP tends
to have better performance in moderately polygenic sce-
narios, it is possible that STMGP could also have good
prediction accuracy in predicting less polygenic psychia-
tric conditions than depression (e.g., schizophrenia and
bipolar disorder)49. As a result, we are planning a study
using STMGP to predict other psychiatric phenotypes.
When the slopes of the regression of the phenotype for

the predicted values were evaluated, the slope of the
regression (SE) with STMGP was 0.591 (0.137), and those
with the other prediction models were even lower. These
relatively low slope values would be due to low prediction
accuracy rather than bias of the prediction models
because the slope values calculated in the training datasets
were close to 1 in all the models (0.959–1.032) (Supple-
mentary Fig. 6). It is also possible that the low slope values
were due to outliers in the datasets. The regression slope
of GBLUP was 0.097 in the current test datasets, but 0.351
in outlier-excluded test datasets, which is close to the
slope value in the previous study to predict major
depression disorder based on GBLUP models (0.304)14.
This study was intended to compare the STMGP algo-

rithm with other prediction models, rather than to discuss
the significance of the associations between depression
and the individual SNPs selected by STMGP. Although the
selected SNPs may have included SNPs that were asso-
ciated with the CES-D in both independent cohorts in this
study after controlling for population stratification, the P
value of each SNP in the GWAS in the training datasets
was relatively large, and no SNPs were genome-wide sig-
nificant. Furthermore, the selected SNPs did not show
strong linkage disequilibrium with the risk SNPs suggested
by the largest meta-analysis in Europe. This could have

been due to the differences in phenotype (i.e., depression
and CES-D), ethnicity (i.e., European and Japanese), and a
limited sample size. In fact, the MAFs of the selected SNP
were substantially different between the East Asian and
European populations. This study succeeded in showing
superior performance of STMGP compared with the other
prediction models in the current datasets in which all the
participants were Japanese. To apply the STMGP model to
a different dataset with different ethnicities, such as Eur-
opean and African samples, updates for the training data
would be needed, i.e., including samples of close ethnicity
to the target population.
The SNP heritability estimated by GREML based on

3,685 training samples was calculated to be 0.05 (SE 0.07)
in this study. This heritability value was consistent with
the result of one of the largest genome-wide association
meta-analyses using 70,017 subjects and depression
scores (SNP heritability of 0.04 (SE= 0.01))21. The higher
SE in the current study relative to that in the previous
meta-analyses could be due to the smaller sample size.
The expected prediction accuracy could in theory (i.e.,

the proportion of phenotypic variance explained by all
SNPs based on linear mixed models) be calculated to be
6.61 × 10−3% (PCC= 8.13 × 10−3)50 if all marker effects
are assumed to come from the same normal distribution.
The STMGP showed better prediction accuracy than the
above-mentioned theoretical prediction accuracy, which
suggested that the generalized ridge-regression models
would better fit the current genome and phenotype data
than linear mixed models.
BayesR was developed with a similar rationale as

STMGP, which tries to reduce the inclusion of noise, and
refine the true association between the phenotype and
SNPs by setting multiple mixture distributions of a point
mass at zero and normal distribution with different var-
iances. BayesR showed the second highest prediction
accuracy in the simulation study based on SNPs only,
while the prediction analyses for CES-D scores or the
simulation study based on SNPs and covariates did not
show the superior performance of BayesR compared with
other prediction models. It is possible that our regression
models to make use of covariates to increase the predic-
tion accuracy of BayesR were not as effective as with other
prediction models with covariate options in the package.
Furthermore, it is possible that the sample size was rela-
tively small for BayesR.
There are several limitations related to the study design

and the current STMGP implementation. For study
design, this study builds and evaluates prediction models
based on limited data. The generalization of the results
and scalability of prediction models needs to be discussed
in the context of larger samples of GWAS data in the
future. The lack of information about interventions
regarding depression is another limitation of the current
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study. Information about medication was available only
for the discovery cohort at the time of the current ana-
lysis. In the discovery cohort, 56 (1.5%) subjects were
taking antidepressant drugs. The equivalent number of
subjects in the validation cohort may have been taking
antidepressant drugs because the prevalence of previous
psychiatric history was similar between the discovery and
validation cohorts, as shown in Table 1.
There are two limitations to the current STMGP

implementation. The STMGP algorithm is essentially a
variant of the generalized linear model with an added
weighted L2 penalty, meaning that the scalability is
comparable with that of the linear/logistic regression with
predictor variables screened by a P-value cutoff. However,
the current implementation is suitable for using a few
thousand individuals for training data with an SNP array,
imputed genome data, or whole-genome sequencing data.
In addition, STMGP can currently handle only individual-
level SNP data, not summary statistics, for calculating the
correlation between SNPs. We are planning to improve
the scalability and develop options for using summary
statistics.
In conclusion, this study showed the potential useful-

ness of STMGP in predicting polygenic psychiatric phe-
notypes using real GWAS- and simulated data. The
strategy to reduce overfitting through screening and
building penalized regression models was suggested to be
effective in genetic prediction, especially for moderately
polygenic phenotypes. Considering its predictive perfor-
mance and lower computer costs compared with other
penalized regression models, STMGP is recommended for
the genetic prediction of psychiatric conditions with a
polygenic model.
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