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Abstract
Antidepressant therapy is still associated with delays in symptomatic improvement and low response rates.
Incomplete understanding of molecular mechanisms underlying antidepressant effects hampered the identification of
objective biomarkers for antidepressant response. In this work, we studied transcriptome-wide expression followed by
pathway analysis in lymphoblastoid cell lines (LCLs) derived from 17 patients documented for response to SSRI
antidepressants from the Munich Antidepressant Response Signatures (MARS) study upon short-term incubation
(24 and 48 h) with citalopram. Candidate transcripts were further validated with qPCR in MARS LCLs from responders
(n= 33) vs. non-responders (n= 36) and afterward in an independent cohort of treatment-resistant patients (n= 20)
vs. first-line responders (n= 24) from the STAR*D study. In MARS cohort we observed significant associations of GAD1
(glutamate decarboxylase 1; p= 0.045), TBC1D9 (TBC1 Domain Family Member 9; p= 0.014–0.021) and NFIB (nuclear
factor I B; p= 0.015–0.025) expression with response status, remission status and improvement in depression scale,
respectively. Pathway analysis of citalopram-altered gene expression indicated response-status-dependent
transcriptional reactions. Whereas in clinical responders neural function pathways were primarily up- or
downregulated after incubation with citalopram, deregulated pathways in non-responders LCLs mainly involved cell
adhesion and immune response. Results from the STAR*D study showed a marginal association of treatment-resistant
depression with NFIB (p= 0.068) but not with GAD1 (p= 0.23) and TBC1D9 (p= 0.27). Our results propose the
existence of distinct pathway regulation mechanisms in responders vs. non-responders and suggest GAD1, TBC1D9,
and NFIB as tentative predictors for clinical response, full remission, and improvement in depression scale, respectively,
with only a weak overlap in predictors of different therapy outcome phenotypes.

Introduction
The molecular pathophysiology of depression is to date

not fully deciphered nor are the molecular mechanisms of
antidepressant effects. This intricacy of depression has
resulted in suboptimal treatment outcomes, leaving one

to two-thirds of patients without adequate response to the
first prescribed treatment1. Concrete means to predict
clinical response are lacking. Genome-wide association
studies (GWAS) conducted so far have not established
solid predictors for antidepressant response2–4. Therefore,
research on factors other than stable germline genetic
variants explaining clinical response are currently in
focus. Peripheral expression biomarkers have been subject
of extensive research due to sampling feasibility in
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comparison to brain tissues. Peripheral gene expression
was found to have significant similarities with multiple
CNS tissues. In a study of transcriptional profiling of 79
human tissues for 33,698 genes the group median corre-
lation between whole blood and 16 CNS tissues was
intermediate (ρ= 0.52) lying higher than the correlation
with muscle and peripheral nervous tissues (ρ= 0.48,
0.36, respectively) but below that with the immune system
(ρ= 0.64)5. Consequently, expression profiling in blood
cells has emerged as a promising tool for the identification
of markers for psychiatric diseases6,7. EBV-transformed
lymphoblastoid cell lines (LCLs) were shown to reliably
maintain inter-individual variation in gene-expression
levels8, resulting in their successful use in antidepressant
response-predicting biomarkers research. In earlier stu-
dies, we investigated baseline gene expression of target
genes in LCLs from patients with depressive episodes and
identified ITGB3 and CHL1 to be candidate predictive
biomarkers for clinical remission i.e. full clinical recov-
ery9. Recently, we investigated functional neuroplasticity
biomarkers by studying ex vivo proliferation rates and
gene expression profiles of LCLs from patients with
depressive episodes after long-term (21-day) in-vitro
incubation with fluoxetine. Cell proliferation was found
to correlate with treatment resistance i.e. when comparing
responders to treatment-resistant patients, but not with
response, i.e. when comparing responding to non-
responding patients. Additionally, we identified tran-
scriptional biomarkers for treatment resistance and
response. Expression levels ofWNT2B, ABCB1, and FZD7
were found predictive for treatment resistance while
expression of WNT2B, SULT4A correlated with response
suggesting WNT2B as in common predictor10,11.
The aim of the current study was to identify candidate

transcriptional response biomarkers in LCLs from strati-
fied patients specifically diagnosed with major depressive
disorder (MDD) and treated with serotonin-transporter-
inhibiting antidepressants. We compared transcriptional
profiles in responding and non-responding patients LCLs
upon short-term incubation with the serotonin-selective
reuptake inhibitor citalopram. Candidate genes were
determined using whole-transcriptome analysis of LCLs
from an exploratory cohort of SSRI-treated patients from
Munich Antidepressant Response Signature (MARS)
study. Differences in deregulated pathways and functional
characteristics of asymmetrically expressed candidate
genes were identified. Validation of candidate genes was
done in a larger MARS cohort. Moreover, in an inde-
pendent analysis, we investigated the candidate genes for
associations with therapy resistance status in LCLs from
response edge groups i.e. first-line responders and
treatment-resistant patients recruited in the Sequenced
Treatment Alternatives to Relieve Depression (STAR*D)
study. Our results propose the existence of distinct

pathway regulation mechanisms in responders vs. non-
responders and suggest GAD1, TBC1D9, and NFIB as
tentative predictors for clinical response, full remission,
and improvement in depression scale, respectively, with
only a weak overlap in predictors of different therapy
outcome phenotypes.

Materials and methods
Cell lines and study population
Munich Antidepressant Response Signature (MARS) cohort
MARS study was an observational, open-label clinical

study with the aim to analyze pharmacogenetics of ther-
apy response in hospitalized patients with depressive
episodes12. Patients were treated according to the psy-
chiatrist choice for 8 weeks and were interviewed on a
weekly basis to document therapy and clinical progress.
Depression severity was measured using the 21-item
Hamilton depression score (HAMD). Clinical response
and clinical remission were defined as ≥50% reduction in
baseline HAMD score, and as a score <8, respectively.
EDTA blood samples from 150 MARS patients were
received from Max-Plank-Institute for Psychiatry and
underwent transformation with Epstein-Barr virus in the
German Federal Institute for Drugs and Medical Devices
(BfArM) as previously described11. Transformation to
LCLs was successful in 144 samples with success rate
of 96%.
To obtain a homogenous cohort for investigating bio-

markers for response to serotonin-transporter-inhibiting
antidepressants, donor patients were stratified on their
clinical diagnosis and therapy profiles. Bipolar disorder
patients (n= 13), patients with missing data at more than
two visits (n= 38) and cell lines with insufficient growth
(n= 9) were excluded. Patients were included if had been
treated with at least one serotonin-transporter-inhibiting
antidepressant form the classes: serotonin selective reup-
take inhibitors (SSRIs), serotonin norepinephrine reuptake
inhibitors (SNRIs) or tricyclic antidepressants (TCAs) for
≥6 weeks. A cohort of 69 LCLs: 36 non-responding (NR)
and 33 responding patients (RESP), of which 16 were full
remitters resulted and was designated the “validation
cohort”. Out of this cohort, an exploratory cohort of SSRI-
treated patients-derived LCLs (n= 17, 9 RESP, 8 NR) was
used for RNA-microarray analysis of candidate genes,
which were later validated in the validation cohort (Fig. 1,
Table 1a; Supplementary Tables 1, 2).

Response edge groups of Sequenced Treatment Alternatives
to Relieve Depression (STAR*D) study
STAR*D was an interventional, multi-center, rando-

mized controlled clinical study on response genetics in
major depression disorder (MDD) outpatients13. Patients
were treated according to a sequential 4-level-treatment
protocol. At level 1 all patients were treated with
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individually adjusted doses of citalopram. Patients without
response or with severe treatment-intolerance in each
level entered the next level where the therapy was swit-
ched or augmented with additional psychotropic drugs or
with psychotherapy. Disease severity was assessed using
QIDS score14 along 14 weeks in 2–3-week intervals.
Clinical response was defined as ≥50% reduction in
baseline score. In the current work, LCLs (n= 50) col-
lected by G. Laje were purchased from NIMH Center for
Collaborative Genetic Studies, Rodgers repository
(Bethesda, MD, USA). Included LCLs were derived from
response edge groups of the STAR*D patients with 24
first-level responders and 20 treatment-resistant patients
(level-4-non-responders; Fig. 1, Table 1b, Supplementary
Table 3). Six LCLs had insufficient growth to be included
in the analysis. Analyses in the STAR*D cohort aimed to
test the expression of the candidate genes for association
with treatment resistance as a distinct clinical outcome
phenotype. LCLs acquisition, culture, and qPCR valida-
tion are provided in Supplementary Methods 1.

Genome-wide expression analysis
Whole-genome expression analyses were done using

Agilent Single Color platform of 8 × 60 K microarrays.
Data were analyzed using GeneSpring software (v.14.1.9,
Agilent). Signal quality was maintained by filtering probes
with compromised flags out. Differential gene expression
was calculated in fold-change (FC) in sets of pairs: non-
responders vs. responders (NR/RESP) or citalopram vs.

control (CTP/ctrl., in both RESP and NR groups). Path-
way analysis was done in pathway database imported from
GenMAPP Pathway Markup Language15.
Gene-expression datasets from the exploratory MARS

cohort (n= 17) were analyzed using a hypothesis-free
algorithm designed to detect cardinal differences
between the two response subgroups. Here, genetic
features coding for autosomal genes and being over 2-
fold differentially expressed in NR vs. RESP (FC ≥ 2)
with Benjamini–Hochberg-corrected p value (p-corr. ≤
0.05) under CTP incubation were determined at each
time point, 24 and 48 h. Features with consistently differ-
ential expression (FC ≥ 2 NR/RESP) at both time points
were further considered. Cardinality was ensured by com-
puting a mean FC value (NR/RESP) over both incubations at
both time points for each gene. Top ten features ranked for
mean FC were considered candidate for qPCR validation.
A further, independent pathway-guided algorithm was

designed to detect reactional transcriptomic differences
between the response groups. Here, changes in gene
expression before and after CTP incubation were analyzed
by identifying genetic features that reacted to CTP incu-
bation (hence, reactional) with a FC ≥ 2 (CTP/ctrl.) in
RESP and NR groups at each time point, 24 and 48 h.
These features underwent pathway-enrichment analysis
(p-corr. ≤ 0.05) to determine altered functions in each
response group. Features enriched in responders’ path-
ways were identified and filtered on FC cutoff NR/RESP ≥
2. It is noteworthy that changes in gene expression before

Fig. 1 Stratification chart of LCLs derived from depression patients of MARS and STAR*D studies. MARS LCLs were stratified according to the
diagnosis and clinical treatment profiles of the donor patients to obtain a homogenously SSRI-treated “exploratory cohort” and a “validation cohort”
of SSRI-, SNRI- and TCA-treated patients. LCLs purchased from the STAR*D study were derived from 24 first-line-treatment responders and 20
treatment-resistant patients. Study setup is depicted as experimental steps done on each cohort. LCLs lymphoblastoid cell lines, RESP responding
patient, NR non-responding patient, TR treatment-resistant patient, qPCR quantitative PCR.
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and after CTP incubation were not considered in the
hypothesis-free algorithm.

Statistical analysis
Descriptive analysis of the study cohorts was done using

Fisher exact test and Student’s t-test. Gene expression
data obtained from microarray experiments were analyzed
using the statistical tools in GeneSpring software. Here,
differences in gene expression were tested for significance
using two-way ANOVA test adjusted for multiple testing
using Benjamini–Hochberg FDR (p-corr. ≤ 0.05). P-values
for pathways were computed using a hypergeometric
computation intrinsically corrected for number of genetic
features in the microarray, in genes of interest and of
matched features in a pathway. qPCR results were tested
for association with response and remission status in
MARS population and with treatment-resistance in the
independent STAR*D cohort using unpaired Welch’s
t-tests (unadjusted p ≤ 0.05). Furthermore, ΔCp values
were tested for correlations with clinical improvement,
calculated as HAMD8w/HAMDbaseline and QIDSend/
QIDSbaseline, using Pearson’s correlation test. Remaining
hits were further analyzed on effects of the response status
of donor-patients on the gene expression levels in more
details. Linear mixed effects (LME) model with respect to
the replicated block design of the experiment was con-
ducted. The continuous gene expression levels were
modelled as a combination of fixed and random effects
thereby adjusting for possible confounders. Age, gender,
depression baseline score, and the response/remission
status were treated as fixed effects for the cell lines
whereas the experimental units, incubation and time of
measurement were included as nested random effects.
The random effects were modelled with variable intercept
but without variable interaction effects for the experi-
mental factors treatment and time of measurement to
avoid over-parameterization. The Model design was
confirmed by visual inspection of the trellis plots of the
gene expression levels and by Akaike information criter-
ion (AIC) indicating no benefits in case of modeling
additionally the slope of the experimental factors. Tests
were performed with R v3.5.1 including the libraries coin
v1.1-2 and survival 2.39-5 (R Foundation for Statistical
Computing, Vienna, Austria). Data are presented as mean
± SEM unless otherwise indicated.

Results
Variability in genome-wide gene expression profiling in
LCLs of clinical responders and non-responders after
incubation with citalopram: exploratory cohort
Whole-transcriptome was studied in LCLs from

exploratory SSRI-treated MARS patients who were

clinically characterized as responders (≥50% decrease in
HAMD score), and non-responders (<50% decrease in
HAMD score) after 8-week SSRI-treatment (n= 17; 9
RESP, 8 NR). Details on patients’ characteristics are given
in Table 1. For biomarker analyses, LCLs from patients
were cultivated and gene expression profiles were mea-
sured at baseline and after incubation with CTP for 24
and 48 h. Data were analyzed using a hypothesis-free and
a pathway-guided algorithm designed to detect cardinal
and reactional transcriptomic differences, respectively,
between the two response subgroups.

Hypothesis-free analysis in exploratory MARS cohort
In the hypothesis-free algorithm 55 and 28 genetic

features were found significantly differentially expressed
between responders vs. non-responders after 24 and 48 h,
respectively (FC ≥ 2, p-corr. ≤ 0.05; Supplementary Table
4). Twenty-one features were consistently differentially
expressed (FC ≥ 2, NR/RESP) over 24 and 48 h. Cardin-
ality was ensured by computing a mean FC value averaged
over incubations and time points for each gene. After
ranking for calculated mean FC values, top ten features,
coding for nine genes (Fig. 2a; Table 2), were considered
candidate for qPCR validation.

Pathway-guided analysis in exploratory MARS cohort
CTP effects on gene expression were analyzed using the

pathway-guided algorithm. After 24 h, CTP altered the
expression of 94 and 185 and after 48 h of 1198 and 158
features in NR and RESP, respectively (Supplementary
Tables 5, 6). Pathway-enrichment analysis revealed 25
different enriched pathways (p ≤ 0.05) in each response
group after 24 h incubation, while after 48 h 139 and 14
pathways were enriched in NR and RESP, respectively
(Supplementary Table 7). The top 10 significant enriched
pathways altered in RESP were involved, among others, in
neurotransmitter metabolism, drug addiction, Parkinson’s
disease, neuroprotection, and serotonin receptor signal-
ing. On the other hand, the most significant pathways in
NR were involved in cellular adhesion and junction,
integrin interactions, in addition to immunological path-
ways like signaling through T-cell receptor, B-cell recep-
tor, IFNγ, CD28 co-stimulation and MHC-II antigen
presentation (Table 3).
For candidate gene selection, 40 genetic features enri-

ched in pathways deregulated in responders (p ≤ 0.05)
were considered. Features were then filtered on differential
expression in response groups (FC ≥ 2 NR/RESP). Out of
the resulting 14 features, 8 genes with functional relevance
were considered for further qPCR validation (Fig. 2a; Table
2). Interestingly one gene, GAD1, emerged as a hit in both
the hypothesis-free and the pathway-guided algorithm.
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Fig. 2 Expression of the candidate genes obtained from the whole-transcriptome profiling in the exploratory MARS cohort (n= 17; 9 RESP, 8 NR):
shown as a Heat-Map of the microarray data (a) and as ΔCp values after 24 (b) and 48 (c) hours of incubation with CTP (TBP -normalized qPCR
measurements; mean ± SEM). Expression of RBPMS and CTNNA2 was below the detection limit. NB lower ΔCp indicates higher expression; *p ≤ 0.05,
#p ≤ 0.2 by unpaired t-test.
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qPCR validation of the candidate genes in MARS cohort
(n= 69)
After identifying candidate genes, microarray results

were validated via qPCR upon incubation with CTP and
ctrl. for 24 and 48 h. Firstly, in the exploratory MARS
cohort 4 out of the 16 candidate genes (from 18 features),
showed significantly different expressions (p ≤ 0.05)
between the response groups at least under one of the
incubation conditions: glutamate decarboxylase 1
(GAD1), FYN binding protein (FYB), receptor activity
modifying protein 1 (RAMP1), TBC1 domain family
member 9 (TBC1D9), while other four genes showed a
trend (p ≤ 0.2): paired like homeodomain 1 (PITX1),
nuclear factor I B (NFIB), glutamate ionotropic receptor
NMDA type subunit 2A (GRIN2A), aminoadipate ami-
notransferase (AADAT) (Fig. 2b, c, Supplementary Table
8). Expression of RNA-binding protein with multiple

splicing (RBPMS) and catenin alpha-2 (CTNNA2) was
below the detection limit (Cp values > 40).
Expression of the resulting 8 candidate genes was further

investigated in LCLs from MARS validation cohort of
depression patients characterized for response upon treat-
ment with a serotonin-transporter-inhibiting anti-
depressant of the classes SSRIs, SNRIs and TCAs (n= 69;
33 RESP, 36 NR). Bivariate statistics (Welch’s t-test)
showed an association of TBC1D9 with remission status
under all incubation conditions (p= 0.014–0.021) while
GAD1 showed marginal to significant association with
response status (p= 0.038–0.069, Supplementary Table 9).
Pearson’s analyses showed significant correlations
between NFIB expression (ΔCp) and clinical improve-
ment (p= 0.015–0.025, r=−0.123 to −0.295, Supple-
mentary Table 10). In addition to the bivariate statistics,
clinical response and remission were tested for effects on

Table 2 Cardinal and reactional candidate genes obtained from the whole-transcriptome profiling using hypothesis free
and pathway-guided algorithms.

Hypothesis-free algorithm

Gene Averaged FC

(NR/ RESP)

p-corr. value Functional relevance

TBC1D9 −3.59 0.043 Linked to ADHD46.

UNC13C −4.07 0.049 Might be involved in PTSD75.

RAMP1 −4.63 0.043 Activity modifying protein for CGRP-receptor76. CGRP has been linked in depression patients

CSF and plasma77.

FYB −3.49 0.043 Adapter for FYN, which in turn was associated with long term potentiation78.

CTNNA2 −3.55 0.043 Found related to bipolar disorder79.

NFIB +3.75 0.049 Found involved in depression and antidepressant effects in animal models41.

GAD1 +3.10 0.020 Linked to depression and antidepressant response29,30.

PITX1 +4.12 0.049 SNPs were associated with autism80

RBPMS +6.47 0.047 Loss of function leads to decreased arborization of axons81.

Pathway-guided algorithm

Gene Averaged FC

(NR/ RESP)

p-corr. value Functional relevance

NRP1 +2.75 0.046 Upregulated in postmortem brains from depressed patients82.

FGF7 −2.10 0.013 Involved in inhibitory synapse formation83.

EPHB2 +2.36 0.018 linked to depression-like behaviors in animal models84.

ITGB6 −2.40 4.66E−03 Linked to antidepressant response in MARS cohort9.

AADAT +2.60 9.44E−03 Polymorphism was found to modulate SSRI response85.

GRIN2A −2.69 3.05E−04 Found to be hypermethylated in the hippocampus of MDD patients86.

NINL −2.75 0.031 Quantitative traits-associated susceptibility loci for brain development87.

GAD1 +3.10 0.043 Expression and variants were linked to depression and antidepressant response29,30.

Fold-change differential expression in the response groups and functional relevance of each gene are shown.
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gene expression in a linear mixed-effects (LME) model
taking baseline depression severity (baseline HAMD
score), gender, age, incubation and incubation period as
covariates. The multivariate analysis showed an associa-
tion of GAD1 expression with response status (p= 0.045)
but only a tendency toward association with remission
status (p= 0.088). Expression of TBC1D9 and NFIB could
not reach significance for association with response (p=
0.63 and 0.53, respectively) nor with remission (p= 0.29
and 0.181, respectively).

Expression of the candidate genes in response edge
groups of the STAR*D study
After identifying candidate biomarkers for anti-

depressant response in MARS cohort, we tested the 8
candidate genes from the whole-transcriptome analysis
for validity in differentiating patients from the two clinical
extremes: first-line responders and treatment-resistant
patients. Expression of GAD1, FYB, RAMP1, TBC1D9,
PITX1, NFIB, GRIN2A, and AADAT was validated after
incubation with citalopram (3 µM, for 24 and 48 h) with
qPCR in LCLs from 24 first-line-treatment responders
and 20 treatment-resistant patients from the STAR*D
cohort. While bivariate tests could not detect associations
with clinical outcomes (Supplementary Table 9), multi-
variate analysis showed a remarkable tendency toward
association with the expression of NFIB (p= 0.068).
TBC1D9 and GAD1 expression showed no association
with treatment resistance (p= 0.27 and 0.23, respectively).

Discussion
Early identification of patients expected not to respond

to specific antidepressant classes would help in early
decision on treatment with other antidepressants or
therapeutic interventions. In search for tentative, early
biomarkers for antidepressant outcome we studied tran-
scriptional differences in LCLs from depression patients
documented for clinical response status to serotonin-
transporter-inhibiting antidepressants upon in-vitro

incubation with citalopram (CTP). Studies on drug utili-
zation in Europe showed serotonin-transporter-inhibiting
antidepressants (SSRIs, SNRIs, and TCAs) to be the most
frequently prescribed antidepressant classes16–18 with
citalopram leading antidepressants prescribed in Ger-
many19,20. LCLs use for investigating functional bio-
markers for antidepressant response prediction has been
established9–11. However, in contrast to earlier works, we
focused on studying short-term transcriptional changes
occurring after 24 and 48 h of in-vitro incubation with
CTP. Differential expression regulation persistent through
both-time points should indicate higher robustness of
identified candidate genes. CTP concentration used
(3 µM) was 10-fold higher than therapeutic plasma con-
centration21 in line with earlier studies on antidepressants
in LCLs22. However, being a racemic mixture of the active
S- and inactive R-enantiomers, the concentration is
comparable to brain–blood ratios reported in rodents23

and humans24. Moreover, in-vitro data suggest that CTP
concentration of 12.5 µM up to 96 h are not cytotoxic for
LCLs (Supplementary Methods 2). Whole-transcriptome
data were analyzed using a hypothesis-free and a pathway-
guided algorithm designed to detect cardinal and reac-
tional transcriptomic differences, respectively, between
the responding and non-responding patients-derived
LCLs.

Identification of transcriptional antidepressant response
biomarkers
Cardinal and reactional transcriptomic differences

between the responders and non-responders of MARS
exploratory cohort were determined and 16 candidate
genes were selected. Interestingly, top features from the
hypothesis-free algorithm have been previously reported
to be involved in neuropsychiatric disorders (see Table 2).
The emergence of GAD1 as a hit in both algorithms
implies a major role in depression pathophysiology as well
as in the serotonergically mediated antidepressant action.
This suggestion was further supported by the qPCR

Table 3 Ten most significantly deregulated pathways in responders (n= 9) and non-responders (n= 8) LCLs from the
exploratory SSRI-treated patients after incubation with CTP.

Deregulated pathways in RESP p-corr. value Deregulated pathways in NR p-corr. value

Hs_Role_of_Osterix_and_miRNAs_in_tooth_development_WP3971_91525 1.17E−03 Hs_Focal_Adhesion_WP306_94849 3.60E−10

Hs_Elastic_fibre_formation_WP2666_76849 0.005 Hs_Integrin_cell_surface_interactions_WP1833_77019 6.68E−10

Hs_Hypothetical_Network_for_Drug_Addiction_WP666_68893 0.005 Hs_Vitamin_D_Receptor_Pathway_WP2877_94793 8.02E−10

Hs_Melatonin_metabolism_and_effects_WP3298_91618 0.005 Hs_MHC_class_II_antigen_presentation_WP2679_76872 1.38E−09

Hs_Neurotransmitter_Receptor_Binding_And_Downstream_Transmission_
In_The_Postsynaptic_Cell_WP2754_77001

0.007 Hs_TCR_signaling_WP1927_76950 1.41E−09

Hs_Parkinsons_Disease_Pathway_WP2371_87374 0.007 Hs_TYROBP_Causal_Network_WP3945_90843 3.45E−09

Hs_NO-cGMP-PKG_mediated_Neuroprotection_WP4008_92677 0.009 Hs_Interferon_gamma_signaling_WP1836_77096 3.96E−09

Hs_Tryptophan_metabolism_WP465_94086 0.009 Hs_Cell_junction_organization_WP1793_77057 4.23E−09

Hs_Serotonin_Receptor_2_and_STAT3_Signaling_WP733_74441 0.013 Hs_Costimulation_by_the_CD28_family_WP1799_77064 4.84E−09

Hs_Lung_fibrosis_WP3624_92327 0.013 Hs_B_Cell_Receptor_Signaling_Pathway_WP23_92558 5.00E−09
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validation results. GAD1 expression was associated with
response status and, to less extent, with remission in
MARS exploratory and validation cohorts. GAD1 encodes
glutamate decarboxylase 1, an enzyme responsible for the
last and rate-limiting step in the synthesis of the inhibi-
tory neurotransmitter GABA from the excitatory gluta-
mate25. This suggests that GAD1 may act as a link
between the two opposing circuits in the brain. GABA
and glutamate control the vast majority of inhibitory and
excitatory signaling in the brain and, hence, influence
emotional stability and control the pathophysiology of
mood disorders26. The GABAergic signaling was also
found to tightly control the hypothalamic-pituitary-
adrenal (HPA) axis which is known to mediate the
body’s neuroendocrine response to stress, and there is
growing evidence that GABAergic imbalance exacerbates
stress impact on depression27. Indeed, interaction
between rs769407 of GAD1 and rs173365 of the
corticotrophin-releasing-hormone-receptor 1 CRHR1
gene was described in a subgroup of depression patients
with sleep disturbance symptoms28. The antidepressant
response has also been found to correlate with GAD1
genetic variants. A SNP in GAD1, rs11542313, was found
in interaction with two other SNPs in GABAA receptor
subunits delta and epsilon genes, GABRD and GABRE,
modulating antidepressant therapeutic response29.
Expression studies found reduced GAD1 expression in
brain samples from depression patients30,31. However,
GAD1 expression in blood showed an opposite regulation
to that in the brain. Lin et al. found increased GAD1 in
drug-naïve patients than in medicated patients and heal-
thy individuals32. Suitably, our results of higher expression
of GAD1 in non-responders LCLs are in a better accor-
dance with results from peripheral lymphocytes than with
those from brain samples.
NFIB expression showed significant correlations with

clinical improvement as tested with Pearson’s correlation
in MARS cohort. LME analysis did not, however, detect
associations with response or remission status. NFIB
belongs to the nuclear factor one (NFI) family, a tran-
scription factors family essential for normal development
of several organs including central nervous structures like
the spinal cord33, cerebellum34, and the hippocampus35.
Specifically, NFIB coordinates gliogenesis in embryos33

and stimulate the differentiation of astrocytes36,37 and
oligodendrocytes38. Glial cells implication in MDD raised
from observations of their decreased numbers in post-
mortem samples from regions of the brain including
hippocampus39 and prefrontal cortex (PFC)40 in depres-
sed patients. NFIB expression has been related to the HPA
axis function as animal studies found that chronic mild
stress increased NFIB expression in the frontal cortex in
rats and in the PFC and amygdala in mice while phar-
macological treatment normalized NFIB levels41–43.

Moreover, NFIB expression was found to be responsive to
changes in plasma cortisol concentration44.
Expression of TBC1D9 was stably associated with

remission status in MARS cohort und both incubation
status and time points. Similar to NFIB, the association
did not survive correction for covariates in LME model.
TBC1D9 belongs to the Tre‐2/Bub2/Cdc16 (TBC)
domain-containing proteins family. Members of this
family possess a GTPase-activating activity with affinity to
the Rab family, the largest intracellular membrane traf-
ficking proteins family in eukaryotes45. Little is known on
the function of TBC1D9. Relation to neuropsychiatric
disorders emerged as a de-novo missense mutation
(His1179Tyr) in TBC1D9 was observed in individuals
with ADHD cases lacking family history46. Further
members of TBC family were repeatedly found to be
involved in intraneuronal vesicle trafficking and, hence, in
neuropsychiatric disorders. TBC1D12, for example, was
found to modulate neuron morphology by stimulating
neurite formation47. Links to depression have also been
previously reported. Expression of TBC1D10C and
TBC1D5 in blood has been found elevated in mice48 and
patients7, respectively.
In order to investigate potential resistance-related

molecular profiles, an independent cohort of patients-
derived LCLs was analyzed which reflects the extremes of
treatment resistance and primary response to the first try
with CTP as an antidepressant drug. Analyzing candidate
genes in this cohort showed solely a tendency toward an
association of NFIB expression with the treatment resis-
tance. Associations with GAD1 and TBC1D9 were not
replicated in the STAR*D cohort. These findings come in
line with the growing evidence of lacking or partial
overlap between biomarkers tested for different clinical
outcome phenotypes. Our previous investigations on
neuroplasticity biomarkers for antidepressant response
identified cell proliferation to be predictive for treatment-
resistance status, but not for response status. Moreover,
whole-transcriptome biomarkers for treatment resistance
were only partially reproducible for response. While
WNT2B, ABCB1, and FZD7 expression correlated with
treatment-resistance status, expression of WNT2B,
SULT4A correlated with response status, suggesting
WNT2B as a common predictor10,11. The few available
results on genetic biomarkers draw up a similar course.
The European Group for the Study of Resistant Depres-
sion (GSRD) correlated variants of rs10501087 and rs6265
in BDNF to non-response, while 5HTR2A rs7997012 and
CREB1 rs7569963 were found to correlate with treatment
resistance (reviewed by Schosser et al.49). Likewise, in a
prospective study with 220 depression patients char-
acterized for response, remission, non-response, non-
remission, and treatment resistance, Fabbri et al. identi-
fied different genetic variants for each phenotype of
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treatment outcome. Only MAPK1 rs6928 G/GG-alleles
additively associated with better treatment outcomes,
response and remission, respectively50. Although a later
meta-analysis of three independent samples (ntotal=
3225) found no single genetic predictor, two gene-sets
(GO:0000183 chromatin silencing and GO:0043949 reg-
ulation of cAMP-mediated signaling) were enriched in
treatment resistance versus the compiled group of
responders and non-responders2. Our results, taken
together with earlier finding, suggest the existence of
distinct neurobiological etiologies of different treatment
outcomes.
Noteworthy is the absence of findings from our earlier

research9–11 in the hits from the current transcriptome-
wide analysis. This absence might be attributed to several
aspects that mark up the present study. First, earlier
findings were largely driven by the proliferation rate of
LCLs as a surrogate ex-vivo biomarker for neuroplasticity,
while the current study stratified donor patients on
diagnostic (only unipolar depression) and therapeutic
(SERT-inhibiting ADs) profiles to obtain an as homo-
genous cohort as feasible. Secondly, the incubation time
in earlier studies was 3 weeks, resembling the usual time
needed for reliable evaluation of treatment efficacy51,
whereas in this study cell lines were incubated for 24 and
48 h in an approach closer to real-life biomarker
applicability.

Pathway analysis of CTP-deregulated features in
RESP and NR
Our results from the exploratory cohort (MARS) indi-

cate a profoundly response-status-dependent transcrip-
tional reaction to short-time incubation with CTP in
LCLs. While the reaction in responders’ cells highlighted
involvement of neurotransmitters metabolism, serotonin
receptor and other neurological and neuropathological
pathways, non-responders cells showed less neural-
specific reaction with most significant pathways being
involved in cell adhesion and immune response. Unlike
the hypothesis-free analysis in which straight comparisons
between gene expression levels in the two response
groups (RESP/NR), the pathway analysis focused on genes
that were deregulated by CTP incubation in each response
group (CTP/ctrl.). Pathway analysis have been suggested
to increase power in detecting associations with anti-
depressant response in comparison to approaches study-
ing single genetic signatures52,53. However, lack of solid
findings in antidepressant pharmacogenetic studies might
have led to fewer reports on pathways associated with
antidepressant response54. Additionally, very few studies
investigated the pathway regulation elicited by anti-
depressants in association with the clinical outcome. In an
earlier proteomic analysis of mononuclear cells in
depression patients before and after 6-week

antidepressant treatment, de Souza et al. suggested that
antidepressant medication affects similar biological path-
ways in responders and non-responders but in different
direction6. This seems to come in conflict with our results
of RESP and NR deregulating different pathways in
reaction to CTP. Several technical differences can explain
the discrepancy in results. While our study focused on
identifying applicable, short-term biomarkers in homo-
genous cell lines derived from one leucocyte subtype, the
B lymphocytes, de Souza et al. investigated mononuclear
cell populations after a long-term 6-week antidepressant
therapy. Additionally, our study did not consider post-
transcriptional events, including the proteome, which was
in focus of de Souza’s study.
The findings of neurotransmitters metabolism pathways

(dopamine, serotonin, and other biogenic amines) recall
the conventional hypothesis on involvement of neuro-
transmitter imbalance as an underlying biological
mechanism of depression55. The hypothesis emerged in
parallel to the successful use of monoamine oxidase
inhibitors (MAOi) in managing depression before
deprioritizing them in later guidelines due to drug–food
and drug–drug interactions56. In line with our results, a
previous pharmacometabolomic study reported involve-
ment of neurotransmitter metabolic pathways in response
to the SSRI sertraline. Peripheral baseline levels of dihy-
droxyphenylacetic acid (DOPAC), a metabolite of dopa-
mine, and serotonin, seen as a metabolite of tryptophan,
were found among other metabolites with a binary
response-discriminant ability57. Further studies identified
alterations in expression of serotonin biosynthesis path-
way genes to correlate with SSRI response58 and
decreased metabolism of tryptophan to be associated with
response to ketamine59.
There is growing evidence that the immune system

plays a major role in depression pathophysiology and
therapy response which resulted in the emergence of the
immunological hypothesis of depression60. Genetic var-
iants and expression of inflammatory blood markers
including chemokines, cytokines, and acute-phase pro-
teins were associated with depression and/or poor therapy
response61–63. In this context, our results come in analogy
with previous findings of B cell receptor signaling pathway
being associated with clinical outcome in two indepen-
dent cohorts of depression patients64. Further studies
reported increased soluble IL-2 receptor, a T cells activity
marker, in peripheral blood in depression patients65.
Treatment with interferons, on the other hand, was
repeatedly found to induce depressive episodes66–68.
Cellular adhesion molecules (CAMs) are cell surface

proteins involved in cell–cell or cell–extracellular matrix
binding, a process important for immune response,
inflammation, and neurogenesis69. Polymorphisms and
expression of several CAMs were linked to autistic
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spectrum disorders70, schizophrenia71 and depression. In
a large-scale GWAS (n= 3394) investigating molecular
mechanisms involved in depression etiology cell adhesion
molecules and focal adhesion pathways were found to be
among the top 5 enriched pathways. Further pathways
were found related to neurotransmitters and the immune
system72. Lately, two CAMs, CHL1 and ITGB3, were
repeatedly reported to be candidate predictors of anti-
depressant response. Associations between SNPs
rs4003413 (CHL1) and rs3809865 (ITGB3) with response
could be significantly replicated in two independent
depression samples73 while expression data found asso-
ciations with early remission9.
Results from animal studies on pathway regulation in

response models are spars. In a study in rats, animals that
responded to escitalopram treatment after chronic mild
stress showed differential expression to non-responding
littermates in genes related to apoptosis, hippocampal
neurotransmission and TNF signaling, coming in good
accordance with our enriched pathways74.
Thus, our findings show that deregulated pathways

underline a molecular profile of antidepressant drug
effects that differs between responders and non-
responders (Top 10 significantly enriched pathways in
RESP involved in neurotransmitter metabolism, drug
addiction, Parkinson’s disease, neuroprotection, and ser-
otonin receptor signaling, while in NR most significant
pathways involved in cellular adhesion, integrin interac-
tions, in addition to immunological pathways). Although
altered pathways in both response groups are involved in
depression biology and/or antidepressant response
mechanism, the complex, less specific reaction seen in NR
could either imply a more complicated underlying mole-
cular pathophysiology in these patients or an indefinite
reaction to antidepressant therapy in which some path-
ways oppose the sought healing effects provoked by the
others.
It should be noticed, however, that unlike the expres-

sion of the candidate genes which was validated in a larger
sample size using a distinct technical methodology and
multivariate statistical analyses corrected for, among
others, age and gender, data from the pathway analysis
were based on a limited sample size which was unba-
lanced for gender.

Limitations
Several limitations have to be considered while inter-

preting our results. First, the gene-expression profiling
was conducted in a homogenous in-vitro model based on
patients-derived LCLs. Nevertheless, results in patients
might deviate from that observed from in vitro cell
models. A further limitation that should be seriously
considered is the heterogeneity of the MARS cohort
which results from its observational character. Although

we tried to address this problem with a tight stratifica-
tion before gene expression profiling, we cannot rule out
that effects in gene expression might be overlooked due
to this fact.

Conclusion
To our best knowledge, this is the first study to investi-

gate treatment-outcome-predicting transcriptional bio-
markers in depression patients recruited in two
independent studies. Our results suggest that biological
pathways reacting to citalopram are different in responding
and non-responding patients LCLs. In our biomarker
analysis, expression of GAD1, NFIB, and TBC1D9 showed
associations with response status, remission status, and
improvement in depression scale, respectively, but not with
treatment resistance. This supports the notion of the
existence of distinct neurobiological etiologies of different
treatment outcomes and stresses the emerging need to
decipher the molecular mechanisms and biomarkers in the
different clinical outcomes phenotypes severally. Being
functionally involved in the glutamatergic/GABAergic
systems and in neurogenesis, GAD1, NFIB, and TBC1D9
are promising candidates for further pharmacogenetic
variability studies in larger patients cohorts.
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