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Evidence that genes involved in hedgehog
signaling are associated with both bipolar disorder
and high BMI
Claudia Pisanu 1,2, Michael J. Williams1, Diana M. Ciuculete1, Gaia Olivo 1, Maria Del Zompo2,
Alessio Squassina 2 and Helgi B. Schiöth1,3

Abstract
Patients with bipolar disorder (BD) show higher frequency of obesity and type 2 diabetes (T2D), but the underlying
genetic determinants and molecular pathways are not well studied. Using large publicly available datasets, we (1)
conducted a gene-based analysis using MAGMA to identify genes associated with BD and body mass index (BMI) or
T2D and investigated their functional enrichment; and (2) performed two meta-analyses between BD and BMI, as well
as BD and T2D using Metasoft. Target druggability was assessed using the Drug Gene Interaction Database (DGIdb).
We identified 518 and 390 genes significantly associated with BD and BMI or BD and T2D, respectively. A total of 52
and 12 genes, respectively, were significant after multiple testing correction. Pathway analyses conducted on
nominally significant targets showed that genes associated with BD and BMI were enriched for the Neuronal cell body
Gene Ontology (GO) term (p= 1.0E−04; false discovery rate (FDR)= 0.025) and different pathways, including the
Signaling by Hedgehog pathway (p= 4.8E−05, FDR= 0.02), while genes associated with BD and T2D showed no
specific enrichment. The meta-analysis between BD and BMI identified 64 relevant single nucleotide polymorphisms
(SNPs). While the majority of these were located in intergenic regions or in a locus on chromosome 16 near and in the
NPIPL1 and SH2B1 genes (best SNP: rs4788101, p= 2.1E−24), five were located in the ETV5 gene (best SNP: rs1516725,
p= 1E−24), which was previously associated with both BD and obesity, and one in the RPGRIP1L gene (rs1477199,
p= 5.7E−09), which was also included in the Signaling by Hedgehog pathway. The meta-analysis between BD and
T2D identified six significant SNPs, three of which were located in ALAS1 (best SNP: rs352165, p= 3.4E−08). Thirteen
SNPs associated with BD and BMI, and one with BD and T2D, were located in genes which are part of the druggable
genome. Our results support the hypothesis of shared genetic determinants between BD and BMI and point to genes
involved in Hedgehog signaling as promising targets.

Introduction
Bipolar disorder (BD) is a chronic and disabling psy-

chiatric illness, with a prevalence of 0.8–1.2% in the
general population1, characterized by recurrent manic and
depressive episodes. Being characterized by high rates of

physical comorbidity and increased risk for suicide, BD is
associated with decreased life expectancy and increased
all-cause mortality, and therefore is a major socio-
economic burden2.
Patients with BD show increased frequency of over-

weight and obesity (41% compared to 27% in general
population in US)3,4. Additionally, patients with BD show
a three-fold higher risk of type 2 diabetes (T2D)5,6 com-
pared to the general population. These two conditions
greatly contribute to a higher risk of cardiovascular dis-
eases, which represent the leading cause for increased
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mortality in bipolar patients7. Indeed, obesity exerts a
negative impact on the course of BD, as this comorbidity is
associated with higher episode frequency8, rates of dis-
ability9, suicide attempts10, psychiatric and medical
comorbidities11 as well as cognitive impairment12 and white
matter abnormalities13,14. Conversely, a lower body mass
index (BMI) has been associated with positive response to
lithium treatment9, which represents the first line of treat-
ment in BD, being effective in preventing relapses of both
polarities15. These results suggest a potential interplay
between BMI and molecular targets involved in the
mechanism of action of this mood stabilizer. Although a
link between BD and BMI has been established, the mole-
cular mechanisms underlying this comorbidity have only
recently started to be investigated and are still largely
unknown16,17. Increasing our scarce knowledge of the fac-
tors predisposing patients with BD to develop metabolic
comorbidities such as obesity and T2D would be of great
importance, eventually allowing us to identify patients that
could benefit from early monitoring and/or intervention.
Although lifestyle factors and adverse effects of phar-

macotherapy play an important role in the increased
susceptibility of BD patients to metabolic comorbidities5,
a higher BMI has also been reported in adolescents and
drug naïve patients18,19, thus suggesting the existence of
common pathophysiological processes, as well as genetic/
epigenetic links underlying these conditions5,20,21. Indeed,
BD, obesity and T2D are multifactorial disorders that
show a high heritability, estimated at 60–80% in BD22,
40–70% in obesity23,24 and 30–70% in T2D25. In a recent
study, it was shown that Ets96B (the ETV5 homolog in
Drosophila melanogaster) regulates a number of genes
involved in neuroprotection and that its inhibition indu-
ces BD- and obesity-related phenotypes20. Moreover,
single nucleotide polymorphisms (SNPs) located in the
human ETV5 gene were associated with BD20. Further-
more, a recent review suggested that 24 genes previously
associated with cardiometabolic phenotypes are also
associated with mood disorders (major depressive dis-
order (MDD) and BD)26. An overview of studies pre-
viously investigating the role of genes potentially involved
in both BD and obesity or T2D16,17,21,27–36 is reported in
Table 1. The majority of these studies investigated var-
iants already known to be associated with T2D or other
metabolic phenotypes.
Since the potential molecular mechanisms that could

predispose BD patients to an increased susceptibility to
obesity or T2D are largely unknown, studies not restricted
to specific candidate genes or pathways, able to identify
novel molecular targets and pathways commonly asso-
ciated with BD and metabolic phenotypes, are urgently
needed. Genetic variants suggested to be associated to BD
or metabolic phenotypes by previous studies generally
showed small effect sizes, as in the case of most complex

phenotypes. To this regard, gene-based analysis is a
powerful method to identify novel genes associated with a
complex trait, as this method is able to globally evaluate
the cumulative effect of multiple SNPs located in a gene.
This approach gives the opportunity to build new knowl-
edge upon genome-wide association studies (GWAS) that
have already been produced with huge investments, thus
accelerating the discovery of associations between genetic
variation and complex traits. To our knowledge, no study
has hitherto used this approach to investigate targets
commonly associated with BD and metabolic phenotypes.
In this sense, public databases of GWAS conducted on
large samples of patients affected by BD or metabolic
conditions and healthy controls represent an extraordinary
opportunity to expand our knowledge on genes that might
be implicated in these conditions.
In the present study, we took advantage of large publicly

available GWAS datasets to conduct a gene-based analysis
as well as cross-trait meta-analyses aiming at (1) identi-
fying genes commonly associated with BD and BMI or BD
and T2D, and (2) investigating if genes shared between
these conditions are enriched for pathways previously
implicated in BD pathophysiology or in the mechanism of
action of medications used to treat BD.

Material and methods
Sample
The present study was conducted on the summary sta-

tistics of three large public GWAS datasets. Summary
statistics include all SNPs that were analyzed, together with
the calculated effect sizes. Evaluation of BD-associated
genes was performed using the summary statistics from the
largest GWAS conducted by the Psychiatric Genomics
Consortium (PGC) Bipolar Disorder Working Group to
date37. The dataset included GWAS results from logistic
regression analyses on over 13.4 million autosomal SNPs
on 20,352 BD cases according to DSM-IV, ICD-9 or ICD-
10 criteria and 31,358 controls of European descent.
Detailed characteristics of each included cohort have been
described in the work from Stahl and coworkers37. Further,
to identify genes associated with T2D, we used the DIA-
GRAM 1000G GWAS meta-analysis Stage 1 dataset,
including 26,676 T2D cases and 132,532 Caucasian con-
trols from 18 studies38. Criteria for T2D diagnosis differed
among the studies and included self-reported diagnosis of
diabetes by a physician, self-reported use of medication to
treat diabetes, fasting glucose ≥ 7.0mmol/l, or non-fasting
glucose ≥ 11.1 mmol/l, hemoglobin A1c (HbA1c) >=
6.5%38. This dataset reported association summary statis-
tics for over 12.06 million autosomal SNPs.
Finally, genes associated with BMI were investigated

using the GWAS plus Metabochip meta-analysis dataset
from the GIANT Consortium39. This dataset included
summary association statistics of 322,154 subjects of
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European ancestry. Participants were recruited from
125 studies (82 with GWAS and 43 with results Meta-
bochip results). In this dataset, over 2.47 million auto-
somal genotyped or imputed variants were tested for
association with transformed BMI residuals in linear
regressions assuming an additive genetic model39.

Gene-based analysis
For each of the three datasets, a gene-based analysis was

performed with MAGMA40, using the FUMA platform41.
MAGMA is a tool for gene analysis that estimates gene-

based statistics taking into account the linkage dis-
equilibrium (LD) of the included SNPs. LD was estimated
using the European panel of the 1000 Genomes phase 3
data as reference42. Locations of protein-coding genes
were defined as the regions from transcription start site to
transcription stop site (default option in MAGMA). In
case a dataset reported information on imputation quality
or frequency of the minor allele (MAF), SNPs with
imputation quality score < 0.3 or MAF < 0.01 were
excluded. Additionally, in the case of the BD dataset,
SNPs that were missing in more than 1% of the subjects

Table 1 Overview of previous studies investigating molecular links between bipolar disorder and obesity or T2D in
humans.

Sample Main results Study

Post-mortem dlPFC samples from 268 patients (SCZ= 113,

MD= 155)a and 191 HC; hippocampal samples from 219

patients (SCZ= 96, MD= 113)a and 169 HCa

Compared to HC, patients with mood disorders showed

differential expression of GLP-1R and GLP-2R in the dlPFC and of

GLP-1R in the hippocampus

Mansur et al.27

Post-mortem dlPFC samples from 268 patients (SCZ= 113,

MD= 155)a and 191 HC; hippocampal samples from 219

patients (SCZ= 96, MD= 113)a and 169 HC

Significant diagnosis by BMI interaction modulates expression of

genes involved in the reeling pathway (RELN, CAMK2A, CAMK2N2

and GRIN2A)

Brietzke et al.17

Post-mortem dlPFC samples from 321 patients (SCZ= 142,

MDD= 99, BD= 80) and 209 HC; hippocampal samples

from 196 patients (SCZ= 102, MDD= 52, BD= 42)

and 180 HC

Changes in the expression of insulin receptor-related genes in

the postmortem brain tissue of patients with mood and

psychotic disorders mediate the expression of dopamine

regulation-related genes

Mansur et al.16

100 patients with BD type II Association between the TT genotype of the GNB3 C825T variant

and lower BMI in patients treated with valproate

Chen et al.28

284 patients with psychosis (32 with BD) The addition of genetic to clinical data does not improve

prediction of BMI or BMI gain after 1 year

Harrison et al.29

662 patients with BD and 616 HC Interactions between different TCF7L2 variants and BMI modulate

susceptibility to BD

Cuellar-Barboza30

139 patients with BD and 137 HC Association between the Met allele of the BDNF Val66Met variant

and lower frequency of overweight and obesity

Morales-Marin et al.31

384 probands (SCZ= 129, SAD= 85, BD= 160), 413 non-

affected relatives and 218 HC

Lack of association between a T2D PRS and proband or relative

status; lack of association between a SCZ PRS and prevalence of

diabetes

Padmanabhan et al.32

90 patients with BD, 76 with SCZ or SAD Association between the Met66 allele of the BDNF Val66Met

functional variant and weight gain in patients treated with

atypical antipsychotics

Bonaccorso et al.33

81 patients with SCZ or BDa Association between CYP2D6 phenotype and weight gain in

patients treated with atypical antipsychotics

Nussbaum et al.34

388 BD patients and 1020 HC Interaction between the TCF7L2 rs12772424 variant and BMI in

modulating susceptibility to BD

Winham et al.21

930 patients with SCZ, 869 with BD and 876 HC No association between BD and 32 SNPs previously associated

with T2D

Kajio et al.35

96 patients with BD Association between the T allele of the GNB3 C825T variant and

lower BMI in patients treated with valproate

Chang et al.36

BD bipolar disorder, dlPFC dorsolateral prefrontal cortex, HC healthy controls, MD mood disorders, MDD major depressive disorder, PRS polygenic risk score, SAD
schizoaffective disorder, SCZ schizophrenia
aThe number of mood disorder patients with a diagnosis of BD was not specified
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were excluded. SNPs not represented in all three datasets
as well as ambiguous SNPs (G/C or A/T) were also
excluded. Three sets of genes significantly associated with
BD, BMI and T2D were obtained. Multiple testing cor-
rection was performed according to the Benjamini and
Hochberg (BH) procedure43 using the p.adjust function in
R44. The hypergeometric test was used to assess over-
representation of genes significantly associated with BD
and either BMI or T2D after multiple testing correction.
Analyses were conducted using R v. 3.6.1 (ref. 44).

Pathway analysis
Enrichment for non-redundant Gene Ontology (GO)

terms and Reactome pathways among the genes com-
monly associated with BD and BMI, BD and T2D or all
three phenotypes was assessed using the WebGestalt
functional enrichment analysis tool (www.webgestalt.org/).
In order to include the largest number of potentially
relevant genes in the pathway analysis, we used the list of
genes nominally associated with the traits of interests,
with a p < 0.05, without applying a correction for multiple
testing at this step. The enrichment analysis was per-
formed using the hypergeometric test with default settings
(minimum number of genes for a category: 5; multiple-
testing adjustment: BH method). In order to obtain more
information on the possible interactions between proteins
coded by the genes found to be commonly associated with
BD and BMI or T2D, a protein–protein interaction (PPI)
analysis was conducted using STRING45. For this analysis,
the interaction score was set to high confidence (score=
0.7) and all the active interaction sources supported by the
tool were included (text mining, experiments, databases,
co-expression, neighborhood, gene fusion and co-
occurrence).

Meta-analysis and functional effects of SNPs associated
with BD and BMI or T2D
In order to pinpoint specific SNPs associated with BD

and BMI or T2D, we conducted two meta-analyses
between BD and BMI, as well as BD and T2D using
Metasoft46. This software provides effect estimates, het-
erogeneity estimates as well as a posterior probability that
an effect exists in each study (m-value statistics > 0.9). The
two meta-analyses were conducted with a conservative
random-effect model using the same list of SNPs of the
gene-based analysis as input. For both meta-analyses,
we selected SNPs with a meta-analysis p < 5E−08, an
m-value > 0.9 and a p < 0.05 in each original study. The
putative functional role of the significant SNPs was eval-
uated using RegulomeDB47. Among SNPs predicted by
RegulomeDB to likely affect binding of transcription fac-
tors (score < 3), the presence of significant expression
quantitative trait loci (eQTL) in adipose tissue as well as

in different brain regions was investigated using GTEx48.
Finally, the presence of SNPs located in potentially
druggable genes was investigated using the Drug Gene
Interaction database (DGIdb)49.

Results
Gene-based analysis
A flow-chart of the analyses is reported in Supple-

mentary Fig. 1. A total of 2,013,566 SNPs that passed
quality control and were present in all datasets were used
as input for the gene-based analysis. These SNPs allowed
conducting a gene-based analysis for 17,455 genes. Gene-
based analyses conducted with MAGMA identified 2700,
2144 and 1988 genes nominally associated with BD, BMI
and T2D, respectively. Among these, a total of 579, 549
and 173 were significant after multiple testing correction
with BH, respectively.
When comparing the three lists, 518 genes were found

to be commonly associated with BD and BMI, 52 of which
were significant after multiple testing correction (Sup-
plementary Table 1). The number of genes associated
with both phenotypes was 2.86-fold higher than expected
based on results of the hypergeometric test (p= 9.4E−12,
Supplementary Table 2). Regarding BD and T2D, 390
genes were associated with both phenotypes, 12 of which
were significant after multiple testing correction (Sup-
plementary Table 3). The number of overlapping genes
was 2.09-fold higher than expected based on results of the
hypergeometric test (p= 0.01, Supplementary Table 2).
Similarly, genes associated with BD were enriched for
targets associated with either BMI or T2D (p= 2.6E−12,
Supplementary Table 2). Finally, 93 genes, three of which
were significant after multiple testing correction, were
associated with all investigated phenotypes (Supplemen-
tary Table 4). Genes associated with BD were not sig-
nificantly enriched for targets associated with both BMI
and T2D (p= 0.076, Supplementary Table 2).

Pathway analyses
The analyses conducted using WebGestalt showed that

the genes commonly associated with BD and BMI were
enriched for one cellular-component GO term: Neuronal
cell body (p= 0.0001; false discovery rate (FDR)= 0.025)
(Table 2). Additionally, genes commonly associated with
BD and BMI were enriched for 12 pathways (Supple-
mentary Table 5). The weighted set cover method
implemented by WebGestalt, which reduces redundancy
of the gene sets, confirmed a significant association for
four of these pathways: Hemostasis, Signaling by Hedge-
hog, L1CAM interactions and Signaling by BRAF and
RAF fusions (Table 2), as well as for the GO term. We
further explored the potential interactions between the
proteins encoded by the 518 genes commonly associated
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with BD and BMI using STRING. This analysis showed
that the network of proteins encoded by these genes
presented a number of interactions greater than expected
for a random set of proteins of similar size extracted from
the genome (expected number of edges: 332; observed
number of edges: 392; PPI enrichment p= 0.0007, Fig. 1),
supporting the hypothesis that proteins encoded by genes
commonly associated with BD and BMI could be biolo-
gically connected.
No significantly enriched category of GO terms or

pathways was observed for genes commonly associated
with BD and T2D. However, the network of proteins
encoded by these genes presented more interactions than
what would be expected for a random set of proteins of
similar size extracted from the genome (expected number
of edges: 163; observed number of edges: 215; PPI
enrichment p= 5.8E−05, Supplementary Fig. 2).
Genes associated with BD, BMI and T2D were not

found to be significantly enriched for specific GO terms or
pathways. Furthermore, the network of proteins encoded
by these genes did not present a significantly higher
number of interactions than what would be expected for a
random set of proteins of similar size extracted from the
genome (expected number of edges: 10; observed number
of edges: 10; PPI enrichment p= 0.58).

Meta-analysis and functional effects of SNPs associated
with BD and BMI or T2D
The meta-analyses with Metasoft were conducted on

the 2,013,566 SNPs for which data were available in all
three datasets, which were also used as input for the gene-
based analysis. The meta-analysis between BD and BMI
identified 64 significant SNPs relevant for both traits
(m-value > 0.9) (Table 3).
The majority of SNPs shared between BD and BMI were

located in intergenic regions (n= 26) or in a locus in
chromosome 16 spanning the NPIPL1, SH2B1, TUFM,
ATP2A1, AK125489, CLN3 and ATXN2L genes (n= 24
SNPs; best SNP: rs3888190, p= 1.1E−24). Five SNPs were
located in the ETV5 gene (best SNP: rs1516725, p= 1.0E
−24), five in the LINGO2 gene (best SNP: rs2183824, p=
4.9E−15), while the remaining four SNPs were located in
the NEGR1 (rs1620977, p= 8.7E−13), MAP2K5
(rs2127162, p= 4.7E−11), RPGRIP1L (rs1477199, p=
5.7E−09) and DTX2P1 genes (rs4729098, p= 2.9E−08).
Interestingly, three of these genes (RPGRIP1L, SH2B1 and
ATP2A1) were included in significantly enriched path-
ways identified by WebGestalt. Specifically, RPGRIP1L
was included in the Signaling by Hedgehog pathway, while
SH2B1 and ATP2A1 in the Hemostasis pathway (Table 2).
A total of 11 SNPs located in three genes were predicted

to affect the binding of transcription factors by Reg-
ulomeDB (score < 3, Table 3). All SNPs for which Reg-
ulomeDB predicted a functional effect were also found toTa
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Fig. 1 Predicted interactions between proteins encoded by genes commonly associated to bipolar disorder and BMI. Output of the
protein–protein interaction analysis conducted using STRING with genes associated with bipolar disorder and BMI as input. Each node represents all
the proteins produced by a single protein-coding gene locus (splice isoforms are collapsed), while edges represent protein–protein associations. The
interaction score was set to high confidence (score= 0.7) and all the active interaction sources supported by the tool were included (text mining,
experiments, databases, co-expression, neighborhood, gene fusion and co-occurrence). The network of proteins encoded by genes commonly
associated with bipolar disorder and BMI presents more interactions compared to the number expected for a random set of proteins of similar size
extracted from the genome (number of nodes: 504, expected number of edges: 332, observed number of edges: 392, protein–protein interaction
enrichment p= 0.0007).
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be significant eQTLs in adipose tissue and in different
brain regions in GTEx (Supplementary Table 6). Finally,
13 SNPs were located in genes that are part of the
druggable genome (LINGO2, NEGR1, MAP2K5, DTX2P1
and ATP2A1) according to DGIdb.
The meta-analysis between BD and T2D identified six

SNPs relevant for both traits (Table 4), three of which
were located in the ALAS1 gene (best SNP: rs352165, p=
3.4E−08), two in intergenic regions and one in the
KCNG1 gene (rs6091248, p= 4.3E−08). The three SNPs
rs61428, rs352162 (intergenic regions) and rs164640
(ALAS1) were predicted to affect the binding of tran-
scription factors by RegulomeDB (Table 4) and were also
found to be significant eQTLs in cerebellum (Supple-
mentary Table 6). KCNG1 was found to be part of the
druggable genome by DGIdb.
Finally, we found no SNP in common between the two

meta-analyses (i.e. SNPs significant in both comparisons
BD and BMI as well as BD and T2D)

Discussion
Our study supports the existence of shared genetic

factors between BD and BMI. To the best of our knowl-
edge, this is the first study to investigate genes commonly
associated with BD, BMI and T2D using a gene-based
approach and without a specific focus on single candidate
genes and pathways previously suggested to be involved in
BD. We showed that BD and BMI share a higher number
of susceptibility genes compared to BD and T2D. Some of
the genes we found to be associated with BD and either
BMI or T2D (CACNA1D, ITIH4, NCAN, CRY2 and
POMC) were previously reported by a recent systematic
review to be associated with cardiometabolic phenotypes
and mood disorders (MDD and BD)26. Besides validating
these genes, we reported many novel targets and found
that genes commonly associated with BD and BMI are
enriched for the cellular-component Neuronal cell body
GO term.
The pathway analysis fromWebGestalt further supports

the hypothesis that genes commonly associated with BD
and BMI show a significant functional enrichment. Two
of the pathways (Signaling by Hedgehog and Hedgehog
“off” state) were related to Hedgehog signaling and the
former was also included among the four pathways of the
weighted set (i.e. the set including the most representative
pathways that can cover all the genes from the enriched
sets). The Hedgehog signaling pathway plays a crucial role
in neural and limb development, cell growth, differentia-
tion and survival50. The mechanisms underlying Hedge-
hog signaling are complex and not completely
understood. This pathway takes the name from the
Hedgehog (Hh) ligand, which was first identified in D.
melanogaster51. This ligand has three counterparts in
mammalians: sonic hedhgehog (SHH), Indian hedgehog Ta
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(IHH) and desert hedgehog (DHH)52. Through a finely
regulated switching between “off” and “on” states, the
Hedgehog pathway modulates a signaling cascade that
ultimately targets the Gli transcription factors. In the
absence of the ligand (Hedgehog off state), the cytosolic
Gli proteins are cleaved to a truncated form, translocate
to the nucleus and repress gene expression. Conversely, in
the presence of the Hedgehog ligand (Hedgehog on state),
the Gli transcription factors are stabilized in their full-
length form, which is able to stimulate gene expression50.
Recent evidence suggests that the Hedgehog transduc-

tion pathway shows a bi-directional connection with
metabolism53. In fact, on one hand Hedgehog proteins are
modified by fatty acids and cholesterol (these modifica-
tions being essential for their maturation and activity)53.
On the other hand, this signaling system might play a role
in adipocyte differentiation and regulation of energy
homeostasis53. Although the role of the Hedgehog path-
way in the pathophysiology of BD has not been system-
atically investigated, disruption of sonic hedgehog
signaling associated with Ellis-van Creveld syndrome (a
form of chondrodysplastic dwarfism) has been suggested
to exert a protective role against BD54. Interestingly,
in vitro treatment with lithium was found to modulate
Hedgehog signaling in pancreatic adenocarcinoma cells
via the inhibition of the GSK-3 serine/threonine kinase55.
In this study, lithium exerted a biphasic effect, i.e. an
initial increase of GLI1 cellular levels due to the inhibition
of the ubiquitin-proteasome-mediated GLI degradation,
followed by a downregulation of expression and activity of
GLI1 after lithium treatment for 18 h55. These results
suggest that lithium might interfere with Hedgehog sig-
naling via modulation of the ubiquitin-proteasome
degradation.
The meta-analysis approach also supported the

hypothesis that genes involved in Hedgehog signaling
might play an important role. In fact, among SNPs sig-
nificantly associated with BD and BMI, rs1477199 was
located in the RPGRIP1L gene. This gene encodes a
protein localized at the transition zone of the primary
cilium56 and is required for hypothalamic arcuate neuron
development57. RPGRIP1L represents a particularly
interesting target, as its expression and activity are
regulated by intronic variants located in the FTO gene
(which is strongly associated with obesity and T2D)
through long-range regulation58. RPGRIP1L was recently
associated with BD in a sample including 276 patients
and 170 controls of Mexican origin59. Taken together, our
findings suggest that complementary analytical approa-
ches may provide converging evidence and should be used
together to be able to identify genes in which multiple
SNPs with small effect sizes might play an additive effect,
as well as genes in which single SNPs might play a more
relevant role. The two different approaches we used

support the potential role of Hedgehog signaling in both
BD and BMI.
Other relevant pathways shared between BD and BMI

were revealed, such as “L1CAM interactions”, which has
been implicated in neuritogenesis and neuroprotection60.
Indeed, the neural cell adhesion molecule L1 plays a
crucial role in nervous system development, being
involved in neurite outgrowth, adhesion, axon guidance,
myelination and synaptic plasticity61. Preclinical studies
support the hypothesis that dysregulation of neuronal
synaptic plasticity might mediate a potential role of L1
and other adhesion molecules in the pathogenesis of
mood disorders62. Interestingly, state-dependent altera-
tions of L1 peripheral messenger RNA (mRNA) levels in
patients with BD have been suggested63. Specifically, L1
levels were increased in a sample of 13 BD patients in a
current depressive state, but not in patients in a remissive
state (n= 29)63.
Results from our meta-analysis confirmed the important

role played by other genes previously suggested to be
associated with BD and BMI. Specifically, we found five
SNPs to be located in the ETV5 gene. Inhibition of the
ETV5 homolog in D. melanogaster (Ets96B) induces BD-
and obesity-related phenotypes20.
Our hypothesis that genetic variants might contribute

to explain the increased comorbidity between BD and
obesity is in contrast with findings from a recent study
showing that the inclusion of genetic data in a model
comprising clinical characteristics did not improve
prediction of BMI or BMI gain after 1 year in a sample of
284 patients with psychosis29. However, in this study
only 32 patients had a diagnosis of BD, suggesting the
need to conduct further studies specifically including
BD patients.
While our results support the existence of shared

functional pathways between BD and BMI, we did not
observe a functional enrichment for genes commonly
associated with BD and T2D. However, proteins encoded
by these genes showed more interactions compared to
what would be expected for a random set or proteins of
similar size extracted from the genome. The limited
number of genetic targets we observed to be shared
between BD and T2D is in accordance with previous
studies showing a lack of association between T2D
polygenic risk scores (PRS) and diagnosis of psychiatric
disorders32,35. Although the aggregated effect of multiple
T2D-associated variants might not play a relevant role in
BD pathophysiology, the contribution of specific genes
might still be important. In our meta-analysis, the largest
number of SNPs commonly associated with BD and T2D
was located in the ALAS1 gene, which might represent a
promising target to further investigate. This gene cata-
lyzes the rate-limiting step in heme (iron-proto-
porphyrin) biosynthesis, a process which has been shown
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to be bidirectionally connected with the regulation of the
circadian clock64,65. Based on a large body of evidence
supporting the existence of circadian disturbances in
patients with BD66 as well as the important role of cir-
cadian genes in both BD and response to lithium67–70, it
might be important for future studies to evaluate the role
of genes interacting with circadian systems as in the case
of ALAS1.
Our results have to be interpreted in light of some

limitations. Firstly, we chose to select genes nominally
associated with both BD and BMI or T2D in GWAS
datasets without applying a correction for multiple testing
at this step, in order to include the largest number of
potentially relevant genes in the pathway analysis.
Although this might have increased the risk to include
less-relevant genes in the pathway analysis, this aspect was
partly addressed by applying a FDR correction on path-
ways as well as searching for converging evidence from
the meta-analysis approach to support the potential
relevance of the identified pathways. Secondly, publicly
available GWAS datasets do not generally include infor-
mation on concomitant disturbances. Therefore, it was
not possible to assess the prevalence of BD as well as
other psychiatric comorbidities in the BMI and T2D
datasets. As our analyses could not be adjusted for
potential comorbidities, it is not possible to exclude that
comorbidity with psychiatric disorders could play a role in
explaining our findings. Thirdly, although GWAS sum-
mary statistics can be analyzed with a wide range of
methods, they do not provide individual-level genotyping
data, thus not allowing to conduct other analyses that can
provide important insight such as PRS analysis. Finally,
although we conducted our analyses on the largest and
most recent BD dataset released by the PGC to date, the
smaller number of participants included in this dataset
compared to the BMI and T2D GWAS datasets might
have limited our ability to identify shared genetics
determinants between BD and the other traits. The main
strengths of our study are the large sample size of the
included datasets and the choice not to restrict our
investigation to specific candidate genes or pathways to
overcome limitations of previous studies focused on
candidate targets.
It is important to note that our analyses were con-

ducted on subjects of European ancestry. Further studies
will be needed to assess the potential generalizability of
these results to other populations. While our study was
focused on BD, other psychiatric disorders such as MDD
and schizophrenia show increased frequency of obesity71.
A recent study investigating the role of the candidate
gene CADM2, which encodes a synaptic cell adhesion
molecule, reported that this gene might be associated
with a wide range of psychological (neuroticism, mood
instability and risk-taking) and metabolic traits, and that

regulation of this gene in adipose tissue might mediate
common biological mechanisms across phenotypes72. In
accordance with these results, our gene-based analysis
identified this gene as commonly associated with BD and
BMI and this association survived multiple testing cor-
rection. Further studies will be needed to understand
which of the targets we identified might be specific for
BD and which genes or pathways might play a role in
different psychiatric disorders.
To conclude, our results suggest the existence of shared

genetic determinants between BD and BMI and support
the relevance of genes implicated in Hedgehog signaling.
Studies using other instruments such as PRS to further
evaluate shared etiology between these traits, as well as to
assess the aggregated effect of multiple variants with small
effect sizes, are warranted. Future studies on independent
samples for which information on comorbidities and
potential confounding factors are available are needed to
confirm our results and explore the potential role of these
genes in the mechanism of action of mood stabilizers in
patients with BD. Finally, based on the fact that some of
the targets and pathways we reported to be associated
with both BD and BMI have been implicated in the
mechanism of action of lithium, it would be important to
explore if at least part of the genetic determinants com-
mon to these traits might play a role in response to this
mood stabilizer.
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