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Predicting rehospitalization within 2 years of initial
patient admission for a major depressive episode: a
multimodal machine learning approach
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Henning Teismann8, Heike Minnerup8, Udo Dannlowski2, Klaus Berger8 and Bernhard T. Baune2,9,10

Abstract
Machine learning methods show promise to translate univariate biomarker findings into clinically useful multivariate
decision support systems. At current, works in major depressive disorder have predominantly focused on
neuroimaging and clinical predictor modalities, with genetic, blood-biomarker, and cardiovascular modalities lacking.
In addition, the prediction of rehospitalization after an initial inpatient major depressive episode is yet to be explored,
despite its clinical importance. To address this gap in the literature, we have used baseline clinical, structural imaging,
blood-biomarker, genetic (polygenic risk scores), bioelectrical impedance and electrocardiography predictors to
predict rehospitalization within 2 years of an initial inpatient episode of major depression. Three hundred and eighty
patients from the ongoing 12-year Bidirect study were included in the analysis (rehospitalized: yes= 102, no= 278).
Inclusion criteria was age ≥35 and <66 years, a current or recent hospitalisation for a major depressive episode and
complete structural imaging and genetic data. Optimal performance was achieved with a multimodal panel
containing structural imaging, blood-biomarker, clinical, medication type, and sleep quality predictors, attaining a test
AUC of 67.74 (p= 9.99−05). This multimodal solution outperformed models based on clinical variables alone,
combined biomarkers, and individual data modality prognostication for rehospitalization prediction. This finding
points to the potential of predictive models that combine multimodal clinical and biomarker data in the development
of clinical decision support systems.

Introduction
Relapse rates in specialized mental healthcare settings

are high in patients with major depressive disorder
(MDD) (60% after 5 years, 67% after 10, and 85% after
15)1. To better predict relapse, previous research has
predominantly focused on the presence and magnitude of
clinical symptoms, including residual depressive symp-
toms2, illness severity3, number of prior episodes4, age of
onset4, and comorbid personality disorders5. Other

studies have explored group level associations between
biomarkers and relapse, observing smaller hippocampal
volumes6, higher levels of post-treatment glucocorti-
coids7, high cortisol response on the combined
dexamethasone-CRH test8, as well as catecholamine and
tryptophan depletion9. Such findings have been beneficial
in constructing modality specific aetiological hypotheses
as well as sign posts for relapse in clinical practice.
However, the elucidation of clinically meaningful pre-
dictors of relapse is contingent on the construct validity of
the prediction outcome and the size of the analysed
sample. Some of these studies identifying biomarkers as
predictors of relapse have used self-reported relapse into a
new depressive episode and samples of less than 50
patients7,10. Whether patients have truly relapsed into a
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new depressive episode or merely have a treatment
refractory illness is unknown. These observations may
help to explain the lack of empirically validated relapse
prediction tools and subsequent intervention strategies
for relapse prevention10.
To overcome this blind spot in patient care, studies of

increased size that focus on a well-defined outcome such
as rehospitalization are needed to identify clinically robust
predictors of this illness trajectory. To facilitate this, a
longitudinal, multimodal sample of clinically diagnosed
inpatients is required. The BiDirect depression cohort
provides such a sample11. In addition, multimodal, mul-
tivariate modelling techniques that prognosticate indivi-
dually, rather than at the group level are needed given the
heterogeneous nature of MDD and its illness
trajectories12,13.
Recent work has shown that machine learning (ML)

models are well suited to problems of this nature,
demonstrating their efficacy in drug response and func-
tional outcome prediction in MDD14,15, while other stu-
dies using neuroimaging modalities have shown similar
success for ML-based MDD diagnostics16. Interestingly,
no studies have applied ML models to relapse prediction;
thus, the utility of differing data modalities for relapse
prediction remains poorly understood. Regarding illness
trajectory modelling, one previous work from Schmaal
et al.17 combined neuroimaging and clinical data to pre-
dict MDD remission trajectories with moderate success
(accuracy= 69–73%). Further, Koutsouleris et al.15 used
both neuroimaging and clinical data to predict functional
outcomes in recent onset MDD (balanced accuracy=
70.3%). However, studies employing a combination of
neuroimaging markers with biomarkers from different
modalities as well as clinical data are lacking up until now.
Given the apparent gap in multimodal studies of out-

come prediction in MDD, we have combined a range of
clinical and biomarker predictors that have shown sig-
nificant associations to MDD in previous works but are yet
to be used for ML-based rehospitalization trajectory
modelling. Modalities used included clinical18, blood bio-
marker19–21, structural imaging16, electrocardiography22,
genetic23, cognitive24, nutritional25, sleep26, and exercise27.
Using these modalities, we predicted rehospitalization in a
cohort of patients within 2 years of initial hospitalization
for an acute episode of MDD.

Materials and methods
Dataset description
The BiDirect study is an ongoing study of (a) patients,

hospitalized for an acute episode of major depression at
time of recruitment, (b) population controls randomly
drawn from the register of the city of Münster11, and (c)
patients 3 months after an acute coronary event or
myocardial infarction. Examination of all participants

included a computer-assisted face-to-face interview of
socio-demographic characteristics and medical history as
well as an extensive psychiatric assessment (Supplemen-
tary Information 1.1). Only patients in the depression
cohort were used in this analysis.
At baseline, 999 MDD patients were recruited and 684

completed their 2-year follow-up and provided their
rehospitalization status. Specifically, patients were asked,
have you had at least one or more re-admissions to hos-
pital for an acute depressive episode since the initial
examination? Patient response was recorded by study
assistants. As our aim was to assess both multi and
unimodal prediction models of reported rehospitalization,
a requirement for inclusion was complete imaging and
genetic data. Twenty-nine patients had incomplete
genetic data while 294 had incomplete imaging data. In
addition, 14 participants were excluded due to poor MRI
quality, leaving a final sample of 380 participants (rehos-
pitalized: yes= 102, no= 278). See Table 1 for socio-
demographic characteristics. In this final sample, 87.9%
(334/380) of patients were taking some form of anti-
depressant medication at their baseline assessment, 40.3%
(153/380) were taking an antipsychotic, while 92.6% (352/
380) were taking some form of psychotropic medication
(see Table 2).

Predictor modalities
Clinical
Detailed information regarding socio-demographic and

socio-economic status, lifetime medical diagnoses, cur-
rent medication use, healthcare utilization, insurance
status, lifestyle and risk behaviour (e.g., diet, physical
activity, alcohol consumption, smoking status), and per-
ceived health state was collected via a computer-assisted
interview. A combination of individual items as well as
total scores were included from the Hamilton Depression
Rating Scale (HAM-D), the Hamilton Anxiety Rating
Scale (HAM-A), the Center for Epidemiologic Studies
Depression Scale (CES-D), the Inventory of Depressive
Symptomatology (IDS), the International Physical Activity
questionnaire (IPAQ), and the Food Frequency Ques-
tionnaire (FFQ) (Supplementary Information 1.1 and 1.2).
In addition, we included measures from a cognitive
functioning module and several self-report measures
(Supplementary Information 1.3). In total, 208 clinical and
demographic predictors were included.

Structural imaging
We included imaging data derived from structural

magnetic imaging sequences (3D-T1). To reduce the size of
the predictor space, we a priori selected 15 regions that
have been shown to be significantly associated with MDD
in previous ENIGMA meta-analyses6,28. Selected regions
included right and left mean hippocampal volume, cortical
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thickness of the bilateral medial orbitofrontal cortex (OFC),
fusiform gyrus, insula, rostral anterior and posterior cin-
gulate cortex and unilaterally in the left middle temporal
gyrus, right inferior temporal gyrus and the right caudal
anterior cingulate cortex (Supplementary Information 1.4).

Serum and genetic markers
Our serum biomarker panel consisted of 10 measures of

high sensitive C-reactive protein19, free triiodothyronine,
thyroxine, thyroid-stimulating hormone29–31, 17 beta-
estradiol32,33, sex hormone-binding globulin, testoster-
one, the free androgen index34–36, total cholesterol37, and
high-density lipoprotein cholesterol38. Due to the corre-
lations between genetic variants shared across psychiatric

traits and common comorbidities between psychiatric
disorders39,40, we also included seven polygenic risk
scores (PGRS) with a p value threshold of 0.5, for MDD,
anxiety, Alzheimer’s, anorexia, autism spectrum disorder,
bipolar, and schizophrenia (Supplementary Information
1.5–1.6 and Supplementary Information 2.1–2.6). In
addition, we also assessed PGRS with p value thresholds
of 0.05 and 0.01 (Supplementary Information 3.2).

Cardiovascular
We determined cardiovascular and general health status

through the assessment of different cardiovascular mar-
kers. First, we measured weight (without shoes and hea-
vier clothes), height, and waist circumference. Following,

Table 2 Percentage proportions and total counts for psychotropic medication use in each rehospitalization
outcome group

Medication Rehospitalized? Yes

(N= 278)

Rehospitalized? No (N= 102) P

Selective serotonin reuptake inhibitors 29.50% (N= 82) 22.55% (N= 23) 0.18

Beta blocking agents 18.71% (N= 52) 10.78% (N= 11) 0.07

Non-selective monoamine reuptake inhibitors 10.43% (N= 29) 13.73% (N= 14) 0.37

Other antidepressants 57.91% (N= 161) 71.57% (N= 73) 0.06

Benzodiazepines 30.58% (N= 85) 53.92% (N= 55) <0.01

Butyrophenone derivates 3.96% (N= 11) 8.82% (N= 9) 0.06

Diazepines, oxazepines, thiazepines, oxepines 24.10% (N= 67) 41.18% (N= 42) <0.01

Lithium 2.52% (N= 7) 3.92% (N= 4) 0.47

Other antipsychotics 6.47% (N= 18) 17.65% (N= 18) 0.01

Significant differences between groups were assessed using chi-square tests

Table 1 Summary statistics for the final study sample

Mean SD Min Max Mean SD Min Max P

Rehospitalized? Yes (n= 102) Rehospitalized? No (n= 278)

Sex (m/f) Sex (m/f)

(n= 43/59) (n= 108/170)

Age Age

(n= 102) 49.03 7.32 34.96 63.96 (n= 278) 49.91 7.38 35.15 65.37 0.3

HAM-D total HAM-D total

(n= 101) 15.33 6.59 0.00 27.00 (n= 278) 12.71 6.33 0.00 33.00 <0.01

CES-D total CES-D total

(n= 102) 31.30 12.97 1.00 56.00 (n= 276) 25.40 11.50 0.00 48.00 <0.01

Total inpatient episodes Total inpatient episodes

(n= 101) 2.06 2.00 0.00 10.00 (n= 274) 1.42 0.90 0.00 6.00 <0.01

Means, standard deviations (SD), minimal (Min), and maximal (Max) values are presented. Significance testing between groups was conducted with independent
samples t-tests. “Total inpatient episodes” includes the baseline assessment inpatient episode as well as all previous inpatient episodes. HAM-D total total score for the
first 17 items of the HAM scale; CES-D total total score with the inversion of positive items 4, 8, 12, and 16 taken into account
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we used bioelectrical impedance measurements (Body
Impedance Analyzer BIA 2000-S, Data Input GmbH)
including the determination of body fat and water,
extracellular mass, body cell mass, and basic metabolic
rate to assess general markers of body composition. In
addition, a measurement of a standard three-channel
electrocardiogram (ECG) was performed (Supplementary
Information 1.7). From these assessments we included the
following seven predictors: heart rate (beats per minute),
body mass index (BMI), extracellular mass to body cell
mass (ECM/BCM ratio), basic metabolic rate, corrected
body fat (kg), total body water (kg), and lean body mass
(kg). In total, 247 predictors were included in the analysis
(see Supplementary Table 1 for all predictors).

ML pipeline
For our first set of models we entered all predictor

modalities into our pipeline for consideration. To ensure
the unbiased approximation of the model’s general-
izability to new patients, we trained and tested all models
using repeated nested cross-validation in a pipeline to
prevent information leaking between patients used for
training and validation. In the inner cross validation loop,
we conducted imputation, standardization, feature selec-
tion, hyperparameter optimization, and the fitting of a
linear support vector machine (SVM).
To begin, we imputed predictors using multivariate

imputation of chained equations with the 10 nearest
predictors used in the imputation process. No predictors
entered into the pipeline had more than 20% missing data.
Following, all variables were scaled to have a mean of zero
and a standard deviation of one. Next, we used the elastic
net, a form of penalized logistic regression to select a final
subset of variables for prediction. This approach shrinks
the coefficients of highly correlated predictors towards
each other while removing irrelevant predictors from the
model41,42. This process was completed simultaneously
with an exhaustive grid search to tune model hyperpara-
meters. For the elastic net, the parameters alpha (the
amount of penalization) and the l1 ratio (mixing para-
meter between the l1 and l2 norms) were tuned for pre-
dictor selection. For the l1 ratio parameter we searched
the values λ∈{0.1, 0.5, 0.7, 0.9, 0.95, 0.99}, with values
closer to 1 representing the l1 norm. For alpha, we sear-
ched a∈{0.1, 0.2…,1.0}. For the SVM, we tuned four
values of the regularization parameter C∈{0.001, 0.01, 0.1,
1.0}. To accommodate for the class imbalance in the
outcome, each C value was weighted by the inverse per-
centage proportion of each class label (rehospitalized: yes
= 102, no= 278). This approach increases the penalty for
misclassifying the minority class (rehospitalized) given its
relative scarcity. Finally, we used Platt scaling to calibrate
the probability estimates for the SVMs binary predic-
tions43,44. The set of predictors and hyperparameters that

maximized area under the curve on the receiver operator
characteristic (AUC) were selected in the pipeline. See
Supplementary Information 1.8–1.8.7 for further details
on the pipeline and Supplementary Information 1.8.5 for
the selected hyperparameter values for the elastic net and
SVM classifier.
All steps were completed in an inner cross-validation

loop with five repeats of 10-fold cross-validation. This
method divides the sample into 10 separate subsets, uses
nine for training, and then makes predictions on the final
set. To avoid favourable splits in the data, this process is
repeated five times, initializing splits uniquely for each
repeat. For the testing of our final models, we used 10-fold
cross validation in the outer cross validation loop, aver-
aging model performance metrics across test folds. To
assess the statistical significance of our final best per-
forming model, we used a permutation test (m= 10,000)
(see Fig. 1).
To assess the predictive capacity of each modality, we

trained, clinical, sMRI, cardiovascular, and PGRS only
models using the same pipeline as above, as well as a
biomarker only model that aggregated together all bio-
marker modalities. To assess for a significant omnibus
effect between models, we used a Kruskal–Wallis H-test.
Following, we used Mann–Whitney rank tests to assess
for post hoc differences between our multi and unimodal
models. All p values were FDR corrected using the Ben-
jamini and Hochberg method. All ML models were
developed using Scikit-learn in Python 3.6.5. All code for
analysis is available on request.

Open sourcing of model
To provide transparency, the use of our model to other

research groups, and encourage further external valida-
tion of our multimodal model, we uploaded our trained
model to the Photon AI online model repository (https://
www.photon-ai.com/repo). This repository allows our
multimodal model to be downloaded and tested by other
research groups.

Analyses of multimodal predictors
To analyse the direction, magnitude, and significance of

the models selected predictors after controlling for cov-
ariates, we used a non-penalized implementation of
logistic regression in Python’s statsmodels package. In
addition, we included the average SVM weight values
from the outer 10-fold cross-validation loop from our ML
pipeline (Supplementary Information 3.1 and Supple-
mentary Table 2). Further, we conducted ordinary least-
squares regression sub-analyses of variables including age,
gender, BMI, overall psychotropic medication load, and
individual psychotropic medication use on the biomarkers
that were selected in the final multimodal model. This was
done to elucidate an understanding of variables that may
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be associated with these biomarkers and help explain their
inclusion in the multimodal model. In addition, we con-
ducted an exploratory analysis of patient characteristics
for those taking a specific type of medication selected in
the multimodal model. This was done to determine: (a)
whether this medication proxied for the treatment or
prevention of a specific comorbid illness, (b) was taken as
a polytheraputic treatment strategy for MDD, or (c) was
acting as a proxy for the presence of unmedicated patients
that were relapsing at higher rates than the rest of the
sample. For these additional analyses and results, see
Supplementary Information 3.3–3.5.

Results
Multimodal model
Within 2 years of hospitalization for an acute episode of

MDD 102 patients (26.8%) were rehospitalized for a
depressive episode, while 278 (73.2%) were not. Our best
performing model was our multimodal model (test AUC
= 67.74). For our multimodal solution, 10 predictors were
selected for optimal predictions by the elastic net. Those
with a positive association with rehospitalization included
the number of previous inpatient depressive episodes,
individual CES-D items 5 (Last week I had trouble con-
centrating) and 3 (In the last week I could not get rid of
my mood, although my friends/family tried to cheer me
up), Pittsburgh Sleep Quality Index (PSQI) item 7 (During
the past month, how often have you had trouble staying
awake while driving, eating meals, or engaging in social
activity?), the PSQI sleep quality index (global score),
taking diazepines, oxazepines, thiazepines and oxepines,
and right hippocampal volume. Predictors with a negative
association included cholesterol (mmol/l), taking thyroid

medications: yes/no, and how often do you drink alcohol?
(At most once a week/more than once a week). See
Supplementary Figs. 1–3.
Our final multimodal model provided an increase in

prognostic certainty of 23.21% (prognostic summary
index= (PPV+NPV)–100). Further, a patient classified as
being re-hospitalized by our model was 83% more likely to
be rehospitalized than a patient who was not

(positive likelihood ratio ¼ sensitivity
1�specificity). Finally, our multi-

modal classifier was statistically significant after permu-
tation testing (p= 9.99−e05) (Fig. 1, Table 3). For individual
modality models, see Supplementary Information 3.2.

Discussion
The current study is the first of its kind to investigate

the role of multiple predictor modalities for MDD
rehospitalization trajectory modelling. Overall, our mul-
timodal model provided a 23.21% increase in prognostic
certainty for patient rehospitalization classification while
providing an isolated subset of multimodal predictors for
analysis. Furthermore, our multimodal model was statis-
tically significant after permutation testing.
Of clinical importance is the positive (PPV) and nega-

tive predicted values (NPV) of our multimodal model and
how they can be used to inform clinical decision making.
As PPV was low (PPV= 41.64), using this model to
confirm clinician suspicion of rehospitalization is not
supported. On the contrary, NPV was modestly high
(NPV= 81.57). Suggesting that the model could be used
to confirm a clinician’s suspicion of low rehospitalization
risk, potentially identifying the patient as suitable for less
assertive follow-up.

Fig. 1 Left: Area under the receiver operator characteristic for all classifiers. Right: Null distribution (blue gaussian distribution) and classifier
performance (green dashed line) for our multimodal model after permutation testing (m= 10,000)
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As few studies are yet to consider a diverse range of
biomarker modalities for rehospitalization trajectory
modelling, the discriminative ability of the included
modalities, as well as their interaction with clinical mar-
kers is of interest. First, our best performing model was
multimodal, including a range of clinical, blood-bio-
marker, and structural imaging predictors. A recent work
by Koutsouleris et al.45 also demonstrated the superiority
of multimodal models, finding that a combination of
clinical and neuroimaging markers was most predictive of
functional outcomes in a cohort of patients at risk for
psychosis with recent onset depression. Our findings build
on this work as well as provide preliminary evidence for
the discriminative ability of blood biomarkers on a well-
defined and clinically meaningful dichotomous endpoint.
Given that clinical predictors have consistently

demonstrated their discriminative ability in multivariate
pattern recognition studies12,14,46, it is unsurprising that
8 of 10 predictors in our multimodal solution were
clinical. On the contrary, PGRS scores were of no use for
rehospitalization classification (test AUC= 50.5) show-
ing the least discriminative ability of all the modelled
modalities. Even with lower p value thresholds (p= 0.05
and 0.01), no changes were seen in our multimodal
model. In addition, unimodal PGRS discrimination was
still low at these thresholds (AUC= 54.83 and 54.17
respectively, Supplementary Information 3.2). PGRS
scores have received strong interest in psychiatric
research, hoping that the aggregation of multiple single-
nucleotide polymorphisms may illuminate genetic dif-
ferences in psychiatric traits as well as parse the het-
erogeneity of outcomes such as medication
response47,48. Significant associations with outcomes of
interest have been consistently demonstrated, however,

commonly explain less than 1–2% of variance, limiting
their current clinical use. Given that PGRS scores could
not classify rehospitalization any better than chance in
the current work, the discovery of more variants as well
as non-linear modelling techniques may improve their
clinical utility in future works49. All other biological
modalities performed better, yet still lacked clinically
meaningful discriminative ability when modelled with-
out clinical predictors. Given these findings and those of
Koutsouleris et al.45, it appears that biomarkers may be
of prognostic use but likely perform best when modelled
with clinical predictors also.
Regarding the selection of diazepines, oxazepines, thia-

zepines, and oxepines and their positive association with
rehospitalization, it is possible that patients on this class
of drugs at baseline had a more severe form of illness
requiring augmentation with antipsychotic medications,
placing them at a greater risk of rehospitalization. In
addition, thyroid medication use was negatively associated
with rehospitalization. Besides a small handful of patients,
those with a past diagnosis of hyper/hypothyroidism who
were not currently taking thyroid medications had t3, t4,
and TSH levels within healthy reference ranges (Supple-
mentary Information 3.3), suggesting that it was not the
presence of unmedicated patients with thyroid disorders
relapsing at high rates that were responsible for thyroid
medication use and its negative association with rehos-
pitalization. Considering that nearly all patients were
taking antidepressant medications at their baseline
assessment, it is possible that a synergistic prophylactic
relationship between thyroid and antidepressant medica-
tion use may exist. Such a polytheraputic relationship has
been robustly demonstrated in the multisite sequenced
alternatives to relieve depression trial (STAR*D)29.

Table 3 Performance metrics for all classifiers

Train Test SVM results

AUC AUC F1 BAC Acc Sens Spec PPV NPV PSI PLR NLR DOR

Multi 78.86 (2.81) 67.74 (13.86) 67.15 63.05 65.72 57.45 68.65 41.64 81.57 23.21 1.83 0.62 2.96

Clinical 73.59 (1.64) 62.81 (11.14) 64.30 60.10 62.62 54.73 65.44 37.04 79.79 16.83 1.58 0.69 2.29

Bio 63.12 (1.04) 57.09 (11.47) 55.80 51.47 53.64 46.90 56.03 27.44 74.78 2.22 1.07 0.95 1.13

sMRI 64.53 (1.74) 56.75 (10.46) 56.94 52.03 55.31 45.00 59.06 29.16 74.96 4.12 1.10 0.93 1.18

Cardio 61.44 (1.48) 56.03 (13.12) 56.15 54.22 53.65 55.55 52.90 29.62 77.18 6.80 1.18 0.84 1.40

Serum 60.70 (0.75) 54.43 (8.31) 51.81 50.00 63.97 20.00 80.00 5.41 58.57 −36.02 1.00 1.00 1.00

PGRS 59.72 (1.26) 50.52 (13.62) 53.32 50.55 50.85 49.91 51.18 27.88 73.30 1.18 1.02 0.98 1.04

All classifiers used a Linear Support Vector Machine with Platt scaling, only predictor modalities varied across models. Mean (SD) scores from the outer 10-fold cross-
validation loops are presented. Model abbreviations: Multi our multimodal model (all biomarker modalities, clinical, and demographic variables), Clinical clinical and
demographic predictors only, Bio model with all biomarker modalities (no clinical or demographic data), sMRI structural imaging predictor model only, Cardio
electrocardiography and bioelectrical impedance analysis predictor model only, Serum blood biomarkers only, PGRS PGRS model only. Metric abbreviations: AUC area-
under-the-curve, F1 Harmonic mean of Sens+ Spec, BAC balanced accuracy, Acc accuracy, Sens sensitivity, Spec specificity, PPV positive predicted value, NPV negative
predicted value, PSI prognostic summary index, PLR positive likelihood ratio, NLR negative likelihood ratio, DOR diagnostic odds ratio
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However, prophylactic effects against rehospitalization
should be explored in future works.
Of interest, right hippocampal volume showed a posi-

tive association with rehospitalization. This was surpris-
ing, given the well-established effect of smaller
hippocampal volumes in MDD patients compared to
healthy controls6. To better understand this observation,
we conducted a range of sub-analysis (Supplementary
Information 3.4). In accordance with previous works50,51,
we showed that those taking any form of antipsychotic at
baseline had larger right hippocampal volumes than those
who were not, albeit, this effect was not significant after
controlling for covariates. In addition, we showed that
there was a significant gender/diazepine, oxazepine,
thiazepine, and oxepine use interaction effect on right
hippocampal volumes, with women currently taking
medications from this class having significantly larger
right hippocampal volumes than those who were not.
Forty-four percent of these women ended up being
rehospitalized between baseline and their 2-year follow-
up assessment, compared to only 22% of women who
were not. While we had binary usage data for medication,
dosage data were not available. Dosage effects were likely
prevalent, but not quantifiable in the current work.
Overall, it is plausible that changes in right hippocampal
volume proxied for a complex gender/medication/dosage-
specific aetiology not fully represented in our clinical data.
The first limitation of the current work is the models’

scope. As our model was trained on a middle-aged Eur-
opean cohort, it is plausible that some of the selected
predictors in our pipeline were unique to this demo-
graphic. Predictors such as the number of previous
inpatient episodes will likely be larger on an older cohort,
offering more discriminative ability. Therefore, the clin-
ical utility of the model needs to be considered within this
scope. To overcome this limitation, we have provided our
trained model online through the Photon AI model
repository.
Further limitations include the reporting of nominal

significance in our logistic regression model (Supple-
mentary Information 3.1). It is important to consider that
the nominally significant effects that were found in our
non-penalized logistic regression model did not survive
FDR corrections (Supplementary Table 2). However, our
primary interest was the emergent multivariate pattern
that demonstrated statistically significant class separation
between cases and controls at p= 9.99−e05. Given the
importance and statistical significance of this aggregated
multivariate pattern, we deemed it necessary to conduct
an exploratory analysis to illuminate the contribution of
each individual predictor after rigorously controlling for
known covariates age, gender, smoker status, BMI, and
intracranial volume. Given this, we believe the nominal

significance of predictors in our logistic regression model
to be of use for hypothesis generation in future works.
Regarding clinical use, while our multimodal model was

statistically significant after permutation testing, its
balanced accuracy was relatively low (BA= 63.05). Whe-
ther this level of performance is sufficient for clinical use
is unknown; however, this BA is similar to that attained in
a previous work that is now deployed clinically (BA=
59.60–64.6)14. Further, we argue that it is not the absolute
accuracy of a model that should dictate whether it is of
clinical use, but whether or not it outperforms current
clinical best practice. For example, as rehospitalization
risk is not formally and routinely quantified by clinicians
to inform their clinical decision making, we would not
expect clinician prognostication of rehospitalization to be
any better than chance. Therefore, even a modestly per-
forming model would theoretically confer clinical advan-
tage when deployed at scale. In addition, such a model
would be free of well-documented decision-making biases
that are known to affect clinician prognostication52 (e.g.,
anchoring effects), potentially providing further clinical
benefit under high workloads commonly seen in inpatient
care. Nonetheless, for these questions to be answered,
future works that benchmark clinicians’ prognostic abil-
ities are needed before such incremental utility can be
quantified.
Finally, it is important to note that while our multi-

modal model provided the highest degree of class
separation, after testing for post hoc differences between
all models and FDR correcting p values, our multimodal
model did not significantly outperform our model con-
taining only clinical predictors (p= 0.15) (Supplementary
Information 3.2). Future works of increased size may be
required to elucidate a statistically significant difference
given the small predictive discrepancy between the mul-
timodal and clinical model. On the contrary, clinical data
of sufficient depth (for example, that captures the pre-
viously discussed gender/medication/dosage effects and
their association with right hippocampal volumes) may
even mitigate the contribution of biomarkers in future
works. If so, these models will bestow both ease of use and
economic advantage, rendering the inclusion of costly and
harder to attain biomarkers ineffectual. To answer these
questions a greater dearth of clinical data, discovery
samples of increased size, as well as validation samples
that are phenotypically and geographically diverse will be
required.
In conclusion, the presented findings suggest that the

combination of ML techniques with multimodal clinical
and biomarker data may lead to an increase in prognostic
certainty compared to chance level. Continued research is
required, but ML may be of use to derive models for
clinicians to make personalized predictions regarding
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rehospitalization risk as well as better inform prophylactic
treatment strategies.
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