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Epigenome-wide association study of depression
symptomatology in elderly monozygotic twins
A. Starnawska 1,2,3, Q. Tan4,5, M. Soerensen4,5,6, M. McGue4,7, O. Mors2,8, A. D. Børglum 1,2,3, K. Christensen 4,5,6,9,
M. Nyegaard 1,2,3 and L. Christiansen4,6,10

Abstract
Depression is a severe and debilitating mental disorder diagnosed by evaluation of affective, cognitive and physical
depression symptoms. Severity of these symptoms strongly impacts individual’s quality of life and is influenced by a
combination of genetic and environmental factors. One of the molecular mechanisms allowing for an interplay
between these factors is DNA methylation, an epigenetic modification playing a pivotal role in regulation of brain
functioning across lifespan. The aim of this study was to investigate if there are DNA methylation signatures associated
with depression symptomatology in order to identify molecular mechanisms contributing to pathophysiology of
depression. We performed an epigenome-wide association study (EWAS) of continuous depression symptomatology
score measured in a cohort of 724 monozygotic Danish twins (346 males, 378 females). Through EWAS analyses
adjusted for sex, age, flow-cytometry based blood cell composition, and twin relatedness structure in the data we
identified depression symptomatology score to be associated with blood DNA methylation levels in promoter regions
of neuropsin (KLK8, p-value= 4.7 × 10−7) and DAZ associated protein 2 (DAZAP2, p-value= 3.13 × 10−8) genes. Other
top associated probes were located in gene bodies of MAD1L1 (p-value= 5.16 × 10−6), SLC29A2 (p-value= 6.15 ×
10−6) and AKT1 (p-value= 4.47 × 10−6), all genes associated before with development of depression. Additionally, the
following three measures (a) DNAmAge (calculated with Horvath and Hannum epigenetic clock estimators) adjusted
for chronological age, (b) difference between DNAmAge and chronological age, and (c) DNAmAge acceleration were
not associated with depression symptomatology score in our cohort. In conclusion, our data suggests that depression
symptomatology score is associated with DNA methylation levels of genes implicated in response to stress,
depressive-like behaviors, and recurrent depression in patients, but not with global DNA methylation changes across
the genome.

Introduction
Depression is a multifactorial common psychiatric dis-

order diagnosed by evaluation of various depressive
symptoms, such as low mood, loss of interest and plea-
sure, fatigue and loss of energy, decline in cognitive
functioning, poor concentration, increase in anxiety,
inappropriate guilt, change in appetite, sleep disturbance,
as well as changes in psychomotor activity1. Early

diagnosis and treatment of depression is beneficial for the
patient and individual’s later mental health outcome2.
However, due to the complexity of depression sympto-
matology and its varying severity across the general
population, depression is reported to be under-diagnosed
and therefore under-treated in society3–5. Depression is
estimated to be the leading global cause of years lost due
to disability worldwide, with lifetime prevalence of the
disorder estimated to be ~14%, and even reaching 21% in
high-income countries6,7. Risk of suffering from depres-
sion is influenced by common genetic variants8–11, with
twin studies attributing ~40% of the variation in depres-
sion liability to the additive genetic effects12,13, and
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change in depression symptomatology reported to be a
heritable trait, with heritability estimates reaching 30%14.
Apart from genetic factors, which contribute to but do not
fully explain individual’s disorder risk, environmental
exposures, such as social and socioeconomic factors
(social isolation15, life events16, low income or financial
problems17, level of education18,19), as well as lifestyle
factors (such as diet20 or level of physical activity21)
impact severity of depression symptomatology and risk of
developing depression across the lifespan22.
One of the molecular mechanisms through which

environmental factors can modulate phenotype outcome
is epigenetics, with DNA methylation being one of the
most studied modifications of the genome. DNA methy-
lation is dynamic and changes across an individual’s life-
span, influenced by prenatal environmental factors23–26,
life events27–30, lifestyle choices23,31–37, as well as pub-
erty38,39 and aging40,41. DNA methylation plays a pivotal
role in regulation of human brain development, its func-
tioning, and aberrant changes in this modification are
increasingly reported to be associated with mental dis-
orders (schizophrenia, bipolar disorder, mental retarda-
tion, ADHD, autism)42–52, mental disorder trajectories53,
and cognitive54–56, as well as social functioning57.
In this study we hypothesized that there are DNA

methylation signatures in the genome that associate with
depression symptomatology in the general population. As
liability to depression in part constitutes the extreme of a
quantitatively measurable depression symptomatology
identification of such signatures could inform on genes
and molecular pathways involved in progression of
depression symptoms, and could allow in the future for
earlier identification of individuals at risk of developing
depression in the general population. Since both depres-
sion symptomatology and DNA methylation are not
independent of individual’s genetic background we per-
formed our epigenome-wide association study (EWAS) in
a large cohort of Danish monozygotic twins, which
allowed us to adjust the analyses for shared genetic and
environmental factors.

Materials and methods
Study population
The study was performed on a sample of 724 Danish

monozygotic twins (378 females and 346 males, repre-
senting 362 complete twin pairs) recruited as part of the
Danish Twin Registry (DTR)58,59 for whom DNA
methylation data and depression symptomatology score
was available. Participants were enrolled in the survey as a
part of the Middle Aged Danish Twin Study (MADT)60

and the Longitudinal Study of Aging in Danish Twins
(LSADT)61, both designed, organized and performed by
DTR. Depression symptomatology was assessed for all
participating twins by using a nine-symptom ‘affect scale’,

corresponding to the affective depression assessment,
adapted from the Depression Section of the Cambridge
Mental Disorders of the Elderly Examination (CAMDEX),
as previously described62. The nine questions evaluate the
current emotional state of study participants and a final
affective depression symptomatology score was calculated
as the sum of the nine items. Higher affective depression
symptomatology score corresponds to more severe
symptoms14,62. During the visit whole blood samples were
collected for all study participants. All study participants
gave informed consent. Permissions to collect blood
samples and the usage of register-based information were
granted by Regional Committees on Health Research
Ethics for Southern Denmark (S-VF-19980072 and S-VF-
20040241). Genomic DNA was extracted from buffy-coat
fraction with the use of the semi-automated salt pre-
cipitation protocol with Autopure System (Qiagen, Hil-
den, Germany).

DNA methylation profiling
In total 500 ng of genomic DNA extracted from buffy

coat from each individual was bisulfite converted with the
use of EZ Methylation Gold Kit (Zymo Research, Irvine,
California, United States). Bisulfite converted DNA was
further analyzed using the Infinium Human Methylation
450 K array (Illumina, San Diego, California, United
States) according to manufacturer’s protocol. Quality
control of DNA methylation data was performed with a
combination of MethylAid63 and minfi64 tools. In short
probes with high detection p-value (>0.01), low bead
count (<3 beads), zero signal, missing in >5% of samples
and cross-reactive probes, as reported before65, were
removed from the dataset. In order to reduce the tech-
nical variation methylome data was normalized with the
use of functional normalization (FunNorm)66, which
regresses out the technical variability estimated from
control probes included in Infinium HumanMethyla-
tion450BeadChip. Obtained normalized beta-values were
further logit transformed to obtain M-values, as recom-
mended before by Du P. and co-authors67. According to
the current Danish legislation transfer and sharing of
individual-level data requires prior approval from the
Danish Data Protection Agency and requires that data
sharing requests are delt with on a case-by-case basis. To
comply with the study’s ethical approval the data cannot
be deposited in a public database, however, we welcome
any enquiries regarding collaboration and individual
requests for data sharing.

Blood cell composition
Blood cell counts were available for 477 individuals,

where five blood leukocyte subtypes (monocytes, lym-
phocytes, basophils, neutrophils, eosinophiles) were
measured using a Coulter LH 750 Hematology Analyzer
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(Beckman Coulter, Brea, California, United States).
For the remaining individuals, where blood cell compo-
sition was not available, data was imputed by partial
least squares regression with the use of wbccPredictor
tool (https://github.com/mvaniterson/wbccPredictor), as
described before55. In short, a regression model was first
fitted based on the 477 samples for which measurements
were available, and afterwards it was applied for predic-
tion of missing cell counts. The model used log(cell
count+ 1) as response and included all beta values, that
were available for all samples, as covariates. Sex, age, and
sentrix position were also included as covariates in the
model. The sentrix position was modeled by two cate-
gorical variables indicating the position in each of the two
directions on the chip: column-wise and row-wise. All
calculations were performed in R68.

Association of depression symptomatology score with
covariates
We performed several exploratory analyses to investi-

gate if measured affective depression symptomatology
score is associated with age, sex, and blood cell counts in
this cohort of MADT and LSADT monozygotic twins.
The analyses were performed with the use of linear mixed
models with depression symptomatology score as the
outcome variable, age, sex, and blood cell composition as
fixed effects, and twin pairing information as a random
effect. The analyses were performed with the use of
lmerTest69 R package.

Epigenome-wide association studies
In this study we examined if DNA methylation in whole

blood is associated with depression symptomatology in
middle-aged as well as elderly individuals, while adjusting
for their genetic background with a monozygotic twin
study design. Possible associations between DNA
methylation levels and depression symptomatology score
were investigated in two statistical models, first where we
studied monozygotic twin intra-pair differences (paired
analysis), and second model where all individuals were
treated as singletons while adjusting for the relatedness
structure in the dataset (unpaired analysis). For the
paired analysis differences in the depression symptoma-
tology score, DNA methylation and blood cell composi-
tion between twins were calculated for all twin pairs. DNA
methylation differences were regressed on depression
symptomatology score differences and were adjusted for
age, sex and intra-pair differences in blood cell compo-
sition. The reason for including sex and age variables
in the paired model was to adjust for sex and age effects
on the intra-pair differences. This aspect is important as
the intra-pair differences can increase with increasing
age and may also differ between male and female twin
pairs. For the unpaired regression analysis we used linear

mixed models and adjusted for age, sex, individuals’ blood
cell composition, and specified twin pairing as a random
effect. All analyses were performed in R68. All probes
with suggestive association p-value < 1×10−5 were anno-
tated to gene symbols according to human genome
assembly (hg19) to provide better overview of the most
associated sites in the study. Identified genes were further
used for Gene Ontology, KEGG and DisGeNET (human
disease) pathway overrepresentation enrichment analysis
(ORA) with the use of WebGestalt tool70 versus genes
included at Infinium HumanMethylation450BeadChip as
background.
We also performed a replication of the most associated

sites (p-value < 1 × 10−5) identified in a recent EWAS
meta-analysis study of depression symptomatology71 in
our cohort of Danish monozygotic twins in results
obtained from both paired and unpaired models. We
performed replication for all results, from both discovery
and meta-analysis, from Story et al. (2018) report71.

Differentially methylated regions
In order to expand the search of epigenetic signatures

associated with depression symptomatology we extended
our analyses to differentially methylated regions (DMRs)
for both paired and unpaired statistical approaches.
DMRs were identified with a comb-p tool72 reported to
have consistently the best sensitivity and high control of
false-positive rate when compared to other DMR tools
(DMRcate, bumphunter, and probe lasso)73. Comb-p
analyses were ran using Python 2.7 with parameters
reported to achieve the best performance, as tested for
DNA methylation array studies, seed <0.05 and dist=
75073. Identified DMRs, consisting of at least 3 probes and
reaching unadjusted DMR p-value <0.05, were annotated
to gene symbols according to human genome assembly
(hg19). Additionally, p-value for each DMR was adjusted
for multiple testing with Šidák correction method74 as
implemented by default in the comb-p tool72.

DNA methylation age
Another approach to analyze epigenetic signatures of a

studied trait is to investigate associations between DNA
methylation age (DNAmAge) and the phenotype of
interest. DNAmAge, known also as the epigenetic clock,
represents age-related changes in DNA methylation at
multiple sites in the genome and provides an alternative
to performing single-site analysis as in the case of EWAS
approach. DNAmAge was estimated for each individual
with Horvath75 and Hannum76 biological clock estima-
tors, both appropriate for methylome data obtained from
blood tissue collected from adult individuals. Horvath and
Hannum DNAmAge estimates were further correlated
with affective depression symptomatology score with and
without adjusting for chronological age of each individual.
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Additionally, we investigated if deltaDNAmAge (differ-
ence between DNAmAge and chronological age of each
individual) and accelDNAmAge (residuals from DNA-
mAge regressed on chronological age of each individual)
are associated with depression symptomatology score.
The difference between deltaDNAmAge and accelDNA-
mAge is that the first measure represents age difference at
individual level, while the latter one measures an altera-
tion of aging of an individual when compared to the rest
of the cohort56. All DNAmAge-related depression symp-
tomatology score analyses were performed for both
Horvath and Hannum DNAmAge estimates. Analyses
were performed with linear mixed models, and were
adjusted for sex as fixed effect and specified twin pairing
as random effect.

Results
DNA methylation data for all 724 monozygotic twins

included in this study passed all quality control steps
performed with minfi and MethylAid pipelines. Overview
of demographics of MADT and LSADT twins partici-
pating in this study is provided in Table 1. We observed
significant associations between depression symptoma-
tology score with sex and with chronological age (see
Table 2). Depression symptomatology score was increased
in females in comparison to males, and additionally
increased with age (see Table 2). We also investigated if
blood cell composition is associated with the depression
symptomatology score. Out of five studied blood cell
types we observed two (lymphocyte and neutrophil pro-
portions) to be significantly associated with the score (see
Table 2). Interestingly, levels of associations for these two
cell types with depression symptomatology score were
very comparable (in terms of absolute effect size and
significance level), and the reason for this similarity was a
high negative correlation between lymphocyte and neu-
trophil proportions (r=−0.93).
Next, we performed EWAS analyses of depression

symptomatology score with both paired and unpaired
twin models. In the paired analysis, where we investigated
if within-twin-pair depression symptomatology score
differences can be associated with within-twin-pair DNA

methylation level differences, we identified cg05777061
probe as the most associated finding (p-value= 4.7 ×
10−7, FDR p-value= 0.21, see Table 3). The probe is
located on chromosome 19 and targets promoter region
of kallikrein-8 (KLK8) gene, also known as neuropsin
gene. The finding in KLK8 gene was the only one in the
paired model analysis with p-value < 10−6, as depicted by
a Manhattan plot (Fig. 1a). In the EWAS of depression
symptomatology score performed with the unpaired
approach, where all individuals were treated as singletons
and we adjusted for the relatedness structure in the
dataset, we identified cg00554948 probe as the most sig-
nificant finding (p-value= 3.13 × 10−8, FDR p-value=
0.014). The probe is located on chromosome 12 in a
promoter region of DAZ Associated Protein 2 (DAZAP2)
gene, also known as Proline-Rich Transcript In Brain.
This was the only finding with association p-value < 10−6,
as depicted by a Manhattan plot (Fig. 1b). We identified
suggestive associations (p-value < 10−5) for additional 12
loci from the paired model targeting MAD1L1, SLC29A2,
AKT1, ATF6B, RGS12, LIG1, HCG11 genes, as well as
intergenic regions. For the unpaired model we identified

Table 1 Demographics of monozygotic twins from MADT
and LSADT cohorts included in this study

MADT (n= 486) LSADT (n= 238)

Males (n= 264) Females (n= 222) Males (n= 82) Females (n= 156)

Age ± sd [years] 66.2 ± 6.1 65.6 ± 6 78.0 ± 4.0 77.9 ± 4.1

Age min/max [years] 56–79 55–79 73–87 73–89

Mean depression score ± sd 10.4 ± 1.8 11.0 ± 2.4 10.9 ± 2.6 11.3 ± 2.7

Depression score min/max 9–20 9–22 9–20 9–22

Table 2 Results from association analyses between
depression symptomatology score, chronological age, sex,
and blood cell composition adjusted for relatedness
structure in the data

Depression

symptomatology score

Estimate ± sd P-value

Chronological age adjusted for sex 0.03 ± 0.01 0.01

Sex adjusted for chronological age −0.56 ± 0.02 0.004

Basophil proportions −7.2 ± 21.84 0.74

Eosinophil proportions −9.8 ± 6.50 0.13

Lymphocyte proportions −3.22 ± 1.14 0.005

Neutrophil proportions 3.19 ± 1.06 0.003

Monocyte proportions −1.2 ± 3.14 0.70
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additional 5 loci with suggestive association p-value <
10−5, most of them located in intergenic regions and one
located in ATG16L1. All differentially methylated sites
with suggestive association p-value < 10−5 are presented
in Table 3. Inflation factor λ was calculated for of each of
the performed EWAS analysis with the use of ramwas R
package77. λ was estimated to be 1.014 for the paired
EWAS, and 0.92 for the unpaired EWAS indicating little
deflation or inflation of our EWAS results from the
expected distribution of p-values.
Top enrichment results for ORA pathway analysis from

paired EWAS of depression symptomatology were: ‘Reg-
ulation of Myelination’ (p-value= 8.78 × 10−5) for Gene
Ontology, ‘Longevity Regulating pathway’ (p-value=
9.43 × 10−4) for KEGG, ‘Schizophrenia’ (p-value= 1.34 ×
10−3) for DisGeNET analysis (Supplementary Table 1).
None of the pathways remained significant after FDR p-
value correction. ORA performed on genes reported in

the unpaired EWAS of depression symptomatology did
not identify any significantly enriched pathways.
Replication of the most associated sites from a recent

EWAS meta-analysis study of depression symptomatology by
Story et al.71 in our cohort replicated cg07012687 in
SLC16A3 (p-valuetwin cohort= 8.75 × 10−4, p-valueStory-dis-
covery= 3.47 × 10−7, p-valueStory-replication= 1.58 × 10−1,
p-value Story-meta-analysis= 4.45 × 10−6) as the most associated
finding. The second most associated finding within the 51
probes investigated for replication was cg12764201 in CORT
(p-valuetwin cohort= 3.01 × 10−3, p-valueStory-discovery= 7.15 ×
10−6, p-valueStory-replication= 7.20 × 10−1, p-valueStory-meta-ana-

lysis= 7.29 × 10−5). Probe cg04987734 in CDC42BPB, iden-
tified as one of three genome-wide significant findings in the
meta-analysis71, replicated as third most significant finding
across the investigated 51 probes (p-valuetwin cohort= 8.64 ×
10−3, p-valueStory-discovery= 4.93 × 10−8, p-valueStory-replica-
tion= 4.82 × 10−2, p-valueStory-meta-analysis= 1.57 × 10−8). In

Table 3 The most associated probes (p-value < 10−5) from paired and unpaired EWAS analyses of depression
symptomatology score adjusted for sex, age, and blood cell composition

Probe ID Estimate se P-value Probe position (hg19) Gene Genomic feature

Paired twin model

cg01859717 −0.027 0.006 9.87E-06 chr6: 32088654 ATF6B Body

cg01919885 0.029 0.006 2.36E-06 chr4: 3365330 RGS12 Body, CGIa

cg02286193 0.031 0.006 1.01E-06 chr14: 76823128 NA IGRb, CGIa shelf

cg05777061 −0.057 0.011 4.7E-07 chr19: 51505001 KLK8 TSS200c, CGIa shore

cg10100767 0.030 0.006 4.47E-06 chr14: 105246561 AKT1 Body

cg10778249 −0.021 0.004 3.75E-06 chr19: 48674746 LIG1 TSS1500d, CGIa shore

cg12836280 −0.031 0.007 8.01E-06 chr5: 50260240 NA IGRb

cg15022049 −0.021 0.005 6.15E-06 chr11: 66137145 SLC29A2 Body, CGIb shore

cg16135936 0.035 0.008 8.18E-06 chr14: 98629292 NA IGRb

cg17350432 −0.016 0.003 7.47E-06 chr4: 841569 NA IGRb, CGIa shore

cg20250722 −0.018 0.004 6.64E-06 chr6: 26522136 HCG11 Body, CGIa

cg20556803 0.030 0.006 5.16E-06 chr7: 2114593 MAD1L1 Body, CGIa shore

cg26241863 −0.028 0.006 5.93E-06 chr8: 145849419 NA IGR, CGIa shore

Unpaired twin model

cg00554948 −0.016 0.003 3.13E-08 chr12: 51631858 DAZAP2 TSS1500d, CGIa shore

cg01971269 −0.008 0.002 9.1E-06 chr5: 162993061 NA IGRb

cg03550773 0.011 0.002 4.2E-06 chr14: 35163458 NA IGRb

cg23050873 −0.009 0.002 5.4E-06 chr2: 234184376 ATG16L1 Body

cg25104234 −0.014 0.003 8.4E-06 chr2: 52281777 NA IGRb

cg26603050 0.016 0.004 7.9E-06 chr1: 22938172 NA IGRb

Probes with p-value < 10−6 are indicated in bold
aCGI: CpG Island
bIGR: Intergenic Region
cTSS200: Probe positioned within 200 bp region from transcription start site
dTSS1500: Probe positioned within 1500 bp region from transcription start site
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total 12 of the investigated 51 probes reached nominal p-
value < 0.05 in either paired or unpaired twin analysis. Our
most significant findings in KLK8 and DAZAP2 were not
reported to have p-value < 10−5 in the Story et al. report71.
Overview of replication results in our Danish monozygotic
twin cohort for all 51 investigated probes from Story et al.71 is
presented in Supplementary Table 2.
Results from paired and unpaired EWAS of depression

symptomatology obtained from MADT and LSADT
monozygotic twin cohorts were further used to identify
possible DMRs across the genome associated with this
trait. We identified 30 DMRs from paired analysis and 40
DMRs from the unpaired analysis to be associated with
depression symptomatology score with unadjusted DMR
p-value < 0.05. Overview of all DMRs and their annotated
genes is presented in Table 4. Five genes overlapped
between DMR paired and unpaired analysis (PCDHGA4,
GLIPR1L2, STAM, VARS2, MAST3), 2 genes overlapped
between paired EWAS and paired DMR analysis
(MAD1L1 and RGS12), and 1 gene overlapped between
paired EWAS and unpaired DMR analysis (ATF6B).
Overview of all probes located within each of the identi-
fied DMRs is presented in Supplementary Table 3 (paired)
and Supplementary Table 4 (unpaired).
Apart from studying epigenetic signatures of depression

symptomatology score in a single-CpG-site resolution
manner we also investigated if blood-derived DNAmAge
is associated with the depression symptomatology score.
We observed a high Pearson’s correlation of both Horvath
(r= 0.80) and Hannum (r= 0.79) DNAmAge estimates

with chronological age of study participants. Horvath
DNAmAge measure underestimated (mean= 65.07 years
± 9.49, min= 43.35 years, max= 107.96 years), while
Hannum DNAmAge measure overestimated individuals’
age (mean= 74.30 years ± 8.31, min= 54.85 years, max=
108.75 years) in comparison to chronological age of the
twin cohort (mean= 69.89 years ± 7.86, min= 55 years,
max= 89 years). Both Horvath and Hannum DNAmAge
estimates were found to be significantly associated with
depression symptomatology score (p-values < 0.05), how-
ever, these findings did not remain significant after
adjusting the models for chronological age (p-values
>0.05). This result was also reflected in further regression
analyses where no association was observed between
depression symptomatology score and deltaDNAmAge
and accelDNAmAge (see Table 5), as both represent
measures from which chronological age was either sub-
tracted or regressed. Overview of all results from asso-
ciation analyses performed between depression
symptomatology score with Horvath and Hannum
DNAmAge estimates adjusted for sex and relatedness
structure in the data is presented in Table 5.

Discussion
Depression is a complex mood disorder influenced by a

combination of genetic and environmental factors. One of
the molecular mechanisms that allows for an interplay
between genes and environment is epigenetics, which
through its dynamic nature has the potential of con-
tinuously contributing to the pathophysiology of

Fig. 1 Manhattan plots of depression symptomatology EWAS results from paired A and unpaired B models adjusted for sex, age and blood cell
composition. All loci with p-value < 10−5 are annotated to genes according to human genome assembly (hg19)
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Table 4 Overview of all DMRs associated with depression symptomatology (DMR unadjusted p-value < 0.05) identified
with comb-p tool

DMR position (hg19) Number of probes in

the DMR

Stouffer-Lipta p-value

for DMR

DMR p-value after Šidák adjustment

for multiple testing

Gene

DMRs from paired analysis

chr12: 75784616-75785295 10 4.26E-16 2.97E-13 GLIPR1L2

chr10: 17685928-17686414 8 2.12E-13 1.98E-10 STAM

chr1: 205819087-205819609 7 3.11E-13 2.70E-10 PM20D1

chr6: 31650734-31651278 18 2.72E-12 2.27E-09 NA

chr6: 31734105-31734580 12 1.45E-11 1.38E-08 C6orf27

chr1: 1067098-1067223 3 4.66E-09 1.69E-05 NA

chr6: 30228046-30228254 10 1.24E-08 2.71E-05 HLA-L

chr2: 241076281-241076441 6 5.67E-08 1.61E-04 MYEOV2

chr6: 32223075-32223236 7 2.19E-07 6.18E-04 NA

chr12: 132663674-132663883 4 3.46E-07 7.51E-04 NA

chr4: 3432341-3432546 3 4.59E-07 1.02E-03 RGS12

chr6: 30882640-30882708 4 5.05E-07 3.36E-03 VARS2

chr16: 85253979-85254209 3 7.24E-07 1.43E-03 NA

chr22: 22901568-22901697 5 1.56E-06 5.46E-03 PRAME, LOC648691

chr12: 12848976-12849269 8 1.73E-06 2.67E-03 GPR19

chr19: 18234710-18234911 3 1.87E-06 4.21E-03 MAST3

chr7: 1952517-1952600 3 1.88E-06 1.02E-02 MAD1L1

chr5: 2537495-2537834 6 2.98E-06 3.97E-03 NA

chr19: 28284490-28284741 3 3.59E-06 6.46E-03 LOC148189

chr5: 140792510-140792700 5 3.85E-06 9.15E-03 PCDHGA4, PCDHGA6

chr3: 10806021-10806288 5 4.42E-06 7.47E-03 LOC285370

chr19: 2294886-2295092 3 5.58E-06 1.22E-02 LINGO3

chr4: 24796987-24797176 5 8.48E-06 2.01E-02 SOD3

chr4: 3516533-3516758 4 8.58E-06 1.71E-02 LRPAP1

chr1: 234871409-234871477 3 9.47E-06 6.12E-02 NA

chr10: 5406889-5407119 8 9.57E-06 1.87E-02 UCN3

chr17: 77916732-77916892 3 1.09E-05 3.04E-02 TBC1D16

chr8: 144896175-144896307 3 1.14E-05 3.85E-02 SCRIB, MIR937

chr10: 1975561-1975631 3 1.59E-05 9.77E-02 NA

chr19: 46999054-46999118 3 4.25E-04 9.51E-01 PNMAL2

DMRs from unpaired analysis

chr11: 67417957-67418405 13 1.87E-14 1.90E-11 ACY3

chr6: 31650734-31651291 20 5.78E-14 4.70E-11 NA

chr12: 75784616-75785295 10 8.15E-13 5.44E-10 GLIPR1L2

chr6: 31762352-31762776 14 2.16E-11 2.31E-08 VARS

chr10: 17685697-17686414 10 4.68E-11 2.96E-08 STAM

chr6: 33048253-33048919 23 5.56E-11 3.78E-08 HLA-DPB1
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depressive symptoms. In this study we performed an
EWAS of depression symptomatology in a large cohort of
monozygotic twins with two different statistical approa-
ches and we identified DNA methylation levels in KLK8
and DAZAP2 genes to be most associated with the
depression symptomatology score. The two EWAS data

analysis approaches (paired and unpaired) differ in how
they estimate and handle confounding factors, as descri-
bed before55. In short the first model analyzes intra-twin-
pair differences which are adjusted for the effects from
pair-specific confounding factors (age, sex, genetics,
shared environmental factors), while the second model,

Table 4 continued

DMR position (hg19) Number of probes in

the DMR

Stouffer-Lipta p-value

for DMR

DMR p-value after Šidák adjustment

for multiple testing

Gene

chr6: 30882640-30883203 9 2.28E-10 1.83E-07 VARS2

chr19: 2428349-2428677 4 3.29E-09 4.55E-06 LMNB2, TIMM13

chr6: 117802587-117802786 5 4.92E-08 1.12E-04 DCBLD1

chr1: 26233375-26233709 10 1.10E-07 1.50E-04 STMN1

chr13: 110521955-110522297 5 1.14E-07 1.50E-04 NA

chr6: 32552015-32552205 6 8.77E-07 2.09E-03 HLA-DRB1

chr7: 24323674-24323939 7 9.23E-07 1.58E-03 NPY

chr10: 104196205-104196339 4 1.18E-06 3.98E-03 MIR146B

chr6: 34206399-34206683 4 1.35E-06 2.16E-03 HMGA1

chr6: 32223075-32223341 9 1.76E-06 2.99E-03 NA

chr19: 18234710-18234911 3 2.22E-06 5.00E-03 MAST3

chr14: 91818496-91818668 3 2.37E-06 6.22E-03 CCDC88C

chr17: 79495267-79495519 6 2.43E-06 4.36E-03 FSCN2

chr3: 45635930-45636386 7 2.54E-06 2.52E-03 LIMD1

chr10: 134150450-134150690 7 3.17E-06 5.98E-03 LRRC27

chr14: 31343282-31343427 3 3.90E-06 1.21E-02 COCH

chr12: 10183166-10183364 7 4.01E-06 9.13E-03 CLEC9A

chr12: 7260545-7260776 6 4.23E-06 8.27E-03 C1RL, LOC283314

chr11: 62621177-62621406 4 5.02E-06 9.88E-03 SNORD30, SNORD22

chr9: 4662857-4663107 3 6.13E-06 1.11E-02 C9orf68, PPAPDC2

chr4: 74847645-74847829 7 7.31E-06 1.79E-02 PF4

chr1: 244094868-244094935 3 8.53E-06 5.61E-02 NA

chr2: 71211980-71212157 3 1.06E-05 2.67E-02 ANKRD53

chr11: 57408513-57408751 3 1.43E-05 2.68E-02 MIR130A

chr6: 32086754-32086928 10 1.80E-05 4.58E-02 ATF6B

chr10: 48416780-48416977 7 2.20E-05 4.94E-02 GDF2

chr7: 3227261-3227332 3 2.29E-05 1.36E-01 NA

chrX: 114524263-114524470 6 2.90E-05 6.15E-02 LUZP4

chr10: 74034643-74034667 3 2.93E-05 4.25E-01 DDIT4

chr17: 8127195-8127373 3 3.06E-05 7.49E-02 C17orf44

chr6: 29911541-29911558 3 3.82E-04 1.00E+ 00 HLA-A

chr11: 117069848-117069966 5 8.26E-04 9.58E-01 TAGLN

chr5: 140792595-140792700 3 1.24E-02 1.00E+ 00 PCDHGA4, PCDHGA6

chr5: 92956643-92956679 3 3.78E-02 1.00E+ 00 FAM172A, MIR2277
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even though also corrects for age and sex, does that for
the effects on individual DNA methylation levels and also
allows for inclusion of incomplete twin pairs if such are
present55.
KLK8, also known as neuropsin, encodes a serine pro-

tease and maps to chromosome 19q13, a region impli-
cated in schizophrenia and bipolar disorder by genetic
linkage studies78,79. Genetic variation in human neuropsin
itself was associated in a candidate-gene study with
bipolar disorder and cognitive functioning, however not
with major depression80. Neuropsin exists in two forms: a
regular neuropsin (type 1) and hominoid-specific neu-
ropsin (type 2)81, the latter containing a 135-bp insertion
in 5′ upstream region of exon 3. Both types of neuropsin
are abundantly expressed in human brain, with type 2
reported to be preferentially expressed in the adult brain,
including hippocampus, frontal lobe and cerebral cor-
tex80–82. Neuropsin is involved in synaptogenesis,
maturation of orphan and small synaptic boutons83, and is
responsible for degradation of cell adhesion molecule L1
(CAM-L1)84. Interestingly, CAM-L1 levels were found to
be increased in prefrontal cortex and decreased in parieto-
occipital cortex in post mortem brains of depressed
individuals85. Exposure of rats to prolonged stress resul-
ted in decreased CAM-L1 brain levels, while anti-
depressant treatment increased its expression86. In the
same line acute stress was shown to increase neuropsin
mRNA levels in mouse hippocampus87, while inactivation
of neuropsin was shown to have protective effects against
depressive-like behaviors and memory impairment

induced by chronic stress in mice88. Significant increase in
expression levels of human neuropsin, measured in per-
ipheral blood, was observed between patients suffering
from recurrent depression episodes compared to patients
with first episode of depression89. These findings were
further supported by a follow-up study where increased
mRNA levels of neuropsin were found in patients with
recurrent depression in comparison to healthy controls90.
These studies support our observation of association
between differential levels of DNA methylation in the
promoter region of neuropsin and depression sympto-
matology, and further suggest that these changes may be
modulated by external factors (such as chronic stress,
acute stress or use of antidepressants).
The second probe identified in this study was located in

the promoter region of DAZAP2, a well-conserved gene
known for inducing stress granule formation91,92.
According to Enrichr database DAZAP2 directly interacts
with HGS, NEDD4, UBQLN4, UBB, UBC, MAP3K7,
SMURF2, CTNNB1, ATXN1, and RPS27A93, most of
these genes have been reported before to be associated
with major depression, depression symptomatology, as
well as exposure to stress94–101. Recent methylome ana-
lysis of monozygotic twins discordant for childhood psy-
chotic symptoms identified a differentially methylated site
located closest to DAZAP2 among the top ten most
associated findings with the phenotype, however the
probe was located -19713 bp from DAZAP2 TSS, while
our probe was located closer to the gene, within the -1500
bp region from its TSS102. Differential methylation of
DAZAP2 promoter region was shown to regulate its
expression in multiple myeloma cell lines103, and its
decreased expression levels were found to contribute to
pathogenesis of this cancer104. Therefore, possible link
between DAZAP2 and depression symptomatology
requires further investigation. Differences between the top
results observed from paired and unpaired EWAS ana-
lyses may be attributed to different statistical approaches
that they use to evaluate the associations between DNA
methylation levels and the studied trait, therefore inter-
pretation of results from these two models differs. How-
ever, it is worth to note the overlap between genes
identified from paired and unpaired DMR analyses, both
based on the initial EWAS findings. This overlap indicates
that even though these two models are not statistically
equal they are both capable of identifying the same epi-
genetic signatures of depression symptomatology score.
Further investigation of other most differentially

methylated sites in the EWAS analyses identified epige-
netic changes in additional genes of high interest to the
depression phenotype, such as mitotic arrest deficient 1
like 1 (MAD1L1), solute carrier family 29 member 2
(SLC29A2), AKT serine/threonine kinase 1 (AKT1).
Recent large genome-wide association studies reported

Table 5 Results from association analyses between
depression symptomatology score and DNA methylation
age estimates adjusted for sex and relatedness structure in
the data

Regression model Depression symptomatology

score p-value

DNAmAge Horvath

Unadjusted for

chronological age

0.039

Adjusted for chronological age 0.88

DeltaDNAmAge 0.95

AccelDNAmAge 0.86

DNAmAge Hannum

Unadjusted for

chronological age

0.026

Adjusted for chronological age 0.71

DeltaDNAmAge 0.88

AccelDNAmAge 0.66
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genetic variation in MAD1L1 to be genome-wide sig-
nificantly associated with ICD-coded major depressive
disorder (MDD)105, schizophrenia106, and bipolar dis-
order107. Additionally, a study comparing monozygotic
twins discordant for MDD reported affected twins to have
greater variance in methylation in MAD1L1 than their
unaffected co-twins108, supporting our observation of
association between depression phenotype and DNA
methylation levels of MAD1L1. Genetic polymorphism in
SLC29A2 showed suggestive association in candidate-
gene studies (p-value < 0.05) with depression and
depression with fatigue phenotypes in men109, as well
with childhood trauma score within MDD cases110.
Genetic polymorphism in AKT1 was associated with
severity of depression, anxiety symptoms and suicide
attempts in patients with MDD from a Chinese Han
population111, with late-onset depression in a Brazilian
population112, and antidepressant treatment response in
patients with depressive disorder in a Caucasian popula-
tion113. Differential methylation of AKT1 in blood was
associated with clinical post-traumatic stress disorder in
combat veterans114, and in post-mortem brain of schizo-
phrenia patients compared to unaffected controls115,
while changes in its expression level in blood were posi-
tively correlated with improvement of depression symp-
toms among bipolar disorder patients treated with
lithium116. Altogether these studies support involvement
of genes identified as differentially methylated in this
study in the development of depression symptoms.
Other studies that investigated DNA methylation sig-

natures of depression in discordant monozygotic twins
study design implicated epigenetic changes in VDR26,
HOXB7, CACNA1C, STK32C, NR1C3, and MYC genes
among others, but not in KLK8 or DAZAP247,108,117,118.
These studies were performed mainly in blood samples,
but also in buccal cells of monozygotic twins discordant
for depression, and even though they were performed on
smaller twin cohorts, they studied individuals from a
more severe part of depression scale in comparison to the
MADT and LSADT twins analyzed in this study. That is
why it should be noted that our findings represent epi-
genetic results related to severity of depression sympto-
matology across the general population, rather than
markers related to MDD diagnosis. We have also
observed that apart from the signal from epigenetic
associations the depression symptomatology score was
increased in females in comparison to males, and
increased additionally with age, as reported before for
elderly individuals22. Depression symptoms were reported
to be comparable between younger and elderly individuals
suffering from depression119,120. However, it should be
noted that depression symptomatology evaluated in
elderly individuals, in comparison to the young ones in
the general population, may be driven by different factors,

such as cognitive decline or represent a prodromal feature
of dementia121–123. Based on the available data in this
study we cannot delineate if the observed epigenetic dif-
ferences associated with depression symptomatology in
the elderly are generalizable to younger individuals. Other
studies that identified changes in KLK8 expression levels
to be linked with recurrent depression were performed in
a younger population aged 18–67 (mean= 47.64 years, sd
= 11.16)89 than MADT and LSADT cohorts, but more
research is required across even younger age groups to
assess if findings from this study apply to the general
population.
In this study we have also tested the hypothesis that

increased individual’s biological age (measured with
Horvath- and Hannum-based DNAmAge estimates) in
comparison to individual’s chronological age, which may
serve as a marker of accelerated aging and health dete-
rioration, associates with more severe depression symp-
tomatology score in elderly individuals. Similarly to
previous studies on cohorts with comparable age-spans
we observed that Horvath-based DNAmAge under-
estimated, while Hannum-based DNAmAge over-
estimated the age of our study participants40,56. This
difference could be explained by different set of probes
used in these two DNAmAge predictors, with only 6
probes out of 353 in Horvath and 71 in Hannum DNA-
mAge estimators overlapping between them75,76. We
initially observed a positive association between both
Horvath and Hannum DNAmAge estimates and depres-
sion symptomatology score, however it was no longer
significant after adjusting for chronological age of these
individuals, a variable associated with the score itself. This
observation suggests that the initial effect was observed
only due to high correlation between DNAmAge and
chronological age, and further between chronological age
and depression symptomatology score. A recent study
reported accelerated epigenetic aging in individuals suf-
fering from MDD in comparison to controls124. The
reason why we did not detect any association between
accelDNAmAge and depression symptomatology score in
our study may be because the phenotype in our study
differed from the one studied by Han and co-authors, as
we studied only depression symptomatology measured in
a general population of monozygotic twins, and not in
patients diagnosed with MDD, who, as pointed out before,
represent the most severe part of the depression symp-
tomatology spectrum. Thus, further studies, preferably
performed in a cohort of monozygotic twins discordant
for MDD, are needed to elucidate if DNAmAge accel-
eration is associated with the disorder regardless of the
genetic background of studied individuals.
Apart from many strengths of this study, such as use of

a large cohort of monozygotic twins and adjustment of
EWAS models for blood cell proportions measured with
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flow cytometry, there are also potential limitations of this
study, such as use of blood samples to study a brain-
related phenotype. We are aware that DNA methylation
profiles are tissue-specific, that they substantially differ
between brain and blood samples, and that if surrogate
tissues should be informative on the molecular changes of
tissue of interest their methylation levels at locus of
interest should ideally co-vary125,126. For the two most
associated sites with p-value < 10−6 (in KLK8 and
DAZAP2 genes) we did not find any strong evidence for
correlation of methylation levels between blood and pre-
frontal cortex (PFC), entorhinal cortex (EC), superior
temporal gyrus and cerebellum regions (https://
epigenetics.essex.ac.uk/bloodbrain/)126. The most sig-
nificant correlation for methylation levels for cg05777061
was observed between blood and EC (p-value= 0.026, r=
0.26) and for cg00554948 between blood and PFC (p-
value= 0.035, r= 0.25). Remaining comparisons for these
four tissues for these two probes had p-value > 0.05.
Interestingly, previous studies did report factors that
impact brain methylome to also leave an epigenetic sig-
nature in blood, and that inter-individual differences
detected in blood correlate with differences observed in
brain125,127. The latter observation may be explained to
some extent by cross-tissues mQTL signals126,128, how-
ever a recent study reported DNA methylation differences
observed in buccal cells between monozygotic twins dis-
cordant for depression to be successfully replicated in
independent brain samples, which supports the use of
secondary tissues for research of mental disorders117.
That is why further replication of our findings in brain
samples collected from an independent monozygotic twin
cohort with data on depression symptomatology score is
of high interest.
Use of the monozygotic twin study design has many

advantages, as it allows adjusting the analyses for various
factors shared between analyzed co-twins. However, the
results could still be influenced by the unmeasured non-
shared environmental factors, such as the well-known
confounder of epigenomic studies tobacco smoking. None
of our top associated sites was located in the well-
established tobacco smoking loci, such as AHRR or
GPR15, and none of the recent tobacco smoking EWAS
reported DNA methylation changes in KLK8 or DAZAP2
to be associated with this trait31,129–135. Therefore we
believe that tobacco smoking was not a confounder in our
EWAS of depression symptomatology, or at least it was
not a strong one. Another possible confounder that could
impact our results was use of drugs, especially use of
antidepressants is of interest in the context of this phe-
notype. According to the Drug-Gene Interaction Database
neither KLK8 nor DAZAP2 have any well-established
drug interactions136, however, an antidepressant fluox-
etine was reported before to alter expression of KLK8 in

the mice hippocampus137. Therefore we cannot exclude
that the reported results are not influenced by additional
non-shared environmental factors between investigated
monozygotic twins.
It should be also noted that both top findings reported

and discussed in this study (KLK8 and DAZAP2) were
identified by using a p-value cut-off < 1 × 10−6, however,
there is a discrepancy in the scientific literature on the
threshold for epigenome-wide significant findings. Initi-
ally EWAS findings with p-value < 1 × 10−6 were con-
sidered to be genome-wide significant138, but a recent
study proposed a more stringent threshold with p-value <
2.4 × 10−7 for the 450 K Illumina methylation array sig-
nificant findings threshold, and p-value < 3.6 × 10−8 for
genome-wide significant findings to be used139. Inclusion
of more individuals with higher depression symptoma-
tology score could allow for identification of more sig-
nificant and stronger signals. These signals could also be
informative on the epigenetic changes most related to the
diagnosis of MDD. Also it should be remembered that the
MADT and LSADT cohorts used in this study were
composed only of elderly individuals and that their
depression symptomatology score was evaluated with an
instrument adequate for this age-span (CAMDEX)62.
However, whether there are different biological processes
that impact depression symptomatology at younger ages
is yet to be elucidated.
In conclusion, we have performed EWAS of depression

symptomatology score in a unique cohort of elderly
monozygotic twins and identified blood methylation
levels at KLK8, DAZAP2, MAD1L1, SLC29A2, AKT1, and
other genes, as well as several DMRs across the genome to
be associated with this trait. Function of these genes
suggests a possible link between exposure to stress, epi-
genetic regulation of their expression, and further change
in depression symptomatology, however, this hypothesis
needs to be tested by future studies.
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