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Using phenome-wide association to
investigate the function of a schizophrenia
risk locus at SLC39A8
Thomas H. McCoy Jr1, Amelia M. Pellegrini1 and Roy H. Perlis 1

Abstract
While nearly all common genomic variants associated with schizophrenia have no known function, one corresponds
to a missense variant associated with change in efficiency of a metal ion transporter, ZIP8, coded by SLC39A8. This
variant has been linked to a range of phenotypes and is believed to be under recent selection pressure, but its impact
on health is poorly understood. We sought to understand phenotypic implications of this variant in a large genomic
biobank using an unbiased phenome-wide approach. Specifically, we generated 50 topics based on diagnostic codes
using latent Dirichlet allocation, and examined them for association with the risk variant. Then, any significant topics
were further characterized by examining association with individual diagnostic codes contributing to the topic.
Among 50 topics, 1 was associated at an experiment-wide significance threshold (beta= 0.003, uncorrected p=
0.00049), comprising predominantly brain-related codes, including intracranial hemorrhage, cerebrovascular disease,
and delirium/dementia. These results suggest that a functional variant previously associated with schizophrenia risk
also increases liability to cerebrovascular disease. They further illustrate the utility of a topic-based approach to
phenome-wide association.

Introduction
Despite the remarkable success of genome-wide asso-

ciation studies (GWAS) in medicine, a central challenge
remains extrapolating from common-variant associations
to actionable disease biology1. In particular, the poly-
genicity of most common disorders, and the lack of
functional single-nucleotide polymorphisms (SNPs), ren-
ders follow-up of GWAS challenging even in cellular or
animal models.
As a complement to more traditional efforts at func-

tional genomics using model systems, phenome-wide
association, or PheWAS, seeks to understand the impli-
cations of a risk variant by characterizing associated
phenotypes in vivo2. However, such studies carry sub-
stantial risk of type 1 error because they typically examine

1000 or more phenotypes. Moreover, many biobanks and
registries rely on individual billing or claims codes for
which reliability varies substantially3–6. To address both of
these limitations, we have previously demonstrated that
the use of probabilistic topic models, an approach drawn
from natural language processing that draws on groups of
related diagnostic codes rather than individual codes,
provides interpretable dimensionality reduction as well as
making efficient use of sparse count data (i.e., the fact that
most individuals will not have any given diagnosis)7,8.
Here we apply this method to examine phenotypic

implications of a recently identified common variant
associated with schizophrenia risk9,10. Notably, among all
of the first 108 loci associated with schizophrenia, only
this variant is a nonsynonymous coding SNP, which is
functional (i.e., the risk allele is associated with decreased
metal ion transport) and common in Northern European
populations11. However, little is known about its physio-
logic role, particularly in the context of brain function.
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Therefore, to better understand this schizophrenia risk
locus, we conducted a topic-based PheWAS in a large
genomic biobank linked to electronic health records
(EHRs) of multiple academic medical centers.

Materials and methods
Cohort derivation, genotyping, and quality control
The cohort was derived from the first four genotyping

waves of the Partners HealthCare Biobank Initiative12,
which spans N= 20,084 inpatients and outpatients across
two large academic medical centers and affiliates (n=
4927, 5353, 4784, and 5020). Participants provided writ-
ten informed consent for EHRs to be analyzed in proto-
cols approved by the Partners HealthCare Institutional
Review Board, along with a blood sample for DNA
extraction.
After extraction of DNA from buffy coat, samples were

genotyped via one of the Illumina Multi-Ethnic Geno-
typing Arrays, which include content from phase 3 of the
1000 Genomes Project. For details of genotyping, see our
prior publication7. To address potential batch effects
across the four genotyping waves, we cleaned, imputed,
and analyzed each one separately. In each wave, partici-
pants were included with genotyping call rates >99%, and
no related individuals based on identity by descent
(defined by pi-hat > 0.25)13. From these individuals, gen-
otyped SNPs were retained if call rate was at least 95% and
Hardy-Weinberg equilibrium p value was >1 × 10–6.
Genotypes were imputed using the Michigan Imputation
Server implementing Minimac314–16 with all population
subsets from 1000G Phase 3 v5 as reference panel; hap-
lotypes were phased using SHAPEIT17. The SNP of
interest here is imputed but with a high degree of con-
fidence (rsq/info= 0.911; avg call= 0.99). Minor allele
frequency is 0.079, consistent with other reports in Eur-
opean cohorts18.

Ancestry
To address risk for stratification artifact, each geno-

typing wave was examined via principal components
analysis of linkage-disequilibrium-pruned genotyped
SNPs as a measure of population substructure, using the
PLINK 1.9 implementation of EIGENSTRAT. HapMap
samples of Northern European ancestry were used
to confirm location of this population group19–21, yielding
n= 3593, 3327, 3552, and 3105 participants from geno-
typing waves 1–4, respectively.

Topic identification
As in our prior work, we identified topics based on the

ninth revision of the International Statistical Classification
of Diseases (ICD-9) diagnosis codes extracted from each
individual’s EHR data, further grouped into top-level
PheWAS codes intended to capture clinically meaningful

disease categories22. We then applied frequency controls
to eliminate PheWAS codes occurring in <0.5% of sub-
jects, yielding 480 distinct PheWAS codes. The remaining
PheWAS code count by subject matrix was used to fit a
latent Dirichlet allocation (LDA) model with 50 topics;
the 50 topic count was selected for consistency with our
own prior work and in the absence of well-established
methods for optimal topic count selection23. As we have
described7, this unsupervised machine learning method
treats each subject’s medical record as if it were a docu-
ment composed of PheWAS codes reflecting a mixture of
underlying topics, or disease categories. The LDA model
that results reflects a distribution of all PheWAS codes
over each topic, although most codes contribute only a
trivial amount. The fitted topic model was then used to
extract topic membership scores for each subject. Topic
modeling used R v3.4.324,25.

Analysis
Primary analysis examined association between the SNP

of interest (rs13107325, at chr4:103188709 in hg19) and
each of the 50 topics. Single-locus associations in each
genotyping wave were examined individually, and then
combined in inverse-variance-weighted fixed-effects
meta-analysis in Plink 1.9. Tests for association used lin-
ear regression assuming an additive allelic effect treated
each topic as a quantitative trait, and adjusted for the first
10 principal components a priori. Secondary analysis
examined association between presence/absence of each
diagnostic code with loading >0.01 (i.e., 1%) on any topics
significant at p < 0.001 (i.e., 0.05/50 topics) with the SNP
of interest; these analyses were similarly adjusted for
principal components, and then for body mass index
(BMI) as well.

Follow-up
To further characterize the risk allele, we examined data

from the UK Biobank as analyzed by Neale and collea-
gues26 and presented in the Global Biobank Engine
(Global Biobank Engine, Stanford, CA; http://gbe.
stanford.edu/). We queried rs13107325 to identify
health-care codes most strongly enriched in this cohort,
then examined the closest-corresponding ICD-10 codes
for each individual PheWAS code in our most strongly
associated topic.

Results
For 13,577 participants, mean age was 60.5 years (SD

16.1), 7473 (55.1%) were female, and mean BMI was 27.6
(SD 6.1). Among the 50 diagnostic topics, 1 was sig-
nificantly associated with rs13107325 at an experiment-
wide significance threshold (p= 0.00049; beta= 0.0029
for the minor (schizophrenia risk-increasing) allele) (Fig. 1
and Supplemental Table 1).
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Fig. 1 Manhattan plot of association between rs13107325 and individual electronic health record-derived topics. Red line indicates experiment-wide
significance
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We next examined the 13 individual codes loading onto
this topic with weights ≥0.01 (i.e., presence of a code is
associated with 1% increase in probability of belonging in
this diagnostic group). Table 1 lists these codes, along
with weight in topic and univariate association. In parti-
cular, nominally significant univariate associations were
observed with intracranial hemorrhage, delirium/demen-
tia, other conditions of the brain, other cerebral degen-
eration, vertigo, cerebrovascular disease, and
developmental disorders. In all cases, the minor (risk)
allele is associated with greater risk for the phenotype.
Nominal associations persisted after adjustment for BMI,
known to be associated with this SNP in prior genome-
wide studies (Table 1)27.
For comparison, we examined ICD-10 diagnostic codes

associated with the risk allele by querying the UK Biobank
association results using the Global Biobank Engine. For
nominal p < 1e-03 (the same threshold as applied to our
experiment-wide topics), associated diagnoses with
increased risk included osteoarthritis (p= 2.06e-11), other
joint disorder (2.50e-06), arthritis not otherwise specified
(1.12e-05), hiatus hernia (1.47e-05), incontinence (2.14e-
05), gastroesophageal reflux (3.58e-05), hay fever/rhinitis
(8.03e-05), asthma (1.64e-04), motor neuron disease
(4.75e-04), joint pain (5.53e-04), and back pain (6.42e-04).
Table 1 also reports associations for the closest ICD-10
code corresponding to the individual PheWAS codes in
the primary (intracranial hemorrhage-plus) topic; none of
these was nominally associated. Notably, however, no
association with schizophrenia codes was identified in
either the UK Biobank (via ICD-10) (p= 0.39) or the
Partners HealthCare Biobank (p= 0.96).

Discussion
In this analysis of 13,577 individuals of Northern Eur-

opean ancestry in a large hospital-based biobank linked to
EHR, we identified a constellation of diagnostic codes
associated with a previously reported schizophrenia risk-
associated missense variant. The topic is notable for its
coherence—i.e., the extent to which nearly all of the
associated codes reflect cerebrovascular disease or
sequelae—although some of the associated codes (e.g.,
“other conditions of the brain”) would not necessarily
have been identified a priori as informative for analysis.
Previous work has suggested that this schizophrenia risk

SNP is pleiotropic, associated with multiple genome-wide
association phenotypes including BMI27. Further, some
evidence suggests this locus to be under selection pres-
sure28,29. Here we sought to identify a group of codes
associated with the variant as a means of better under-
standing potential pathophysiologic mechanisms.
In particular, while the proximal function of the

SLC39A8 gene product, ZIP8, is known, the implications
of the schizophrenia risk gene are not. Studies of null Ta
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mutations in rodents suggested important developmental
effects30, while other functional mutations in humans
have been associated with disorders of glycosylation31.
However, the mechanism by which ZIP8 may contribute
to schizophrenia risk is unknown. Speculative mechan-
isms range from immune modulation to metabolic effects
and modulation of excitotoxicity via glutamate signaling
(for a review, see Costas)11. Our results are consistent
with both of these, and suggest the utility of investigating
the transporter further in stroke-related injury associated
with immune activation, where levels of ZIP8 expression
have been shown to be high32.
While we were unable to directly examine PheWAS/

ICD-9 code-based topics in the UK Biobank, we did seek
to examine the nearest match in individual ICD-10
codes. This analysis does not represent replication
per se, as the correspondence between ICD-9 and -10
codes may be poor. Among those ICD-10 codes sig-
nificantly increased in individuals with the risk allele,
the preponderance relate to osteoarthritis and joint
pain, which may be sequelae of obesity. Notably, we do
not find evidence of replication for individual ICD-9
code associations mapped to ICD-10—nor even of
replication of the robust schizophrenia association
reported in prior studies (p= 1.54e-12; odds ratio 1.16,
SE 0.02). Taken together, these follow-up results
underscore the challenges in using single diagnostic
codes, particularly when comparing across health sys-
tems. They further illustrate the need for additional
replication of our topic-based approach.
Nonetheless, our results provide further support for the

notion that topic-based genome-wide association is a
powerful means of addressing the variable reliability of
individual diagnostic codes while facilitating phenome-
wide investigation, or simply reverse genomics7. It pro-
vides control of type I error by limiting the number of
phenotypes tested, such that only topics achieving
experiment-wide association require further investigation.
In prior work, we demonstrated that under most sce-
narios, power to detect association will be greater with
this approach; the exception is circumstances where a
single diagnostic code captures essentially all of the rele-
vant variance associated with a variant.
The extrapolation from GWAS results to biology

remains a great challenge, particularly for brain diseases
where model systems may be more limited. Nonetheless,
if the promise of modern genomics is to be fulfilled,
bridging this gap is necessary, particularly to enable
development of pharmacologic interventions tied to
genomics as has been done in other disorders1. For
schizophrenia, investigating the ZIP8 locus in large bio-
banks may help to complement and extend efforts in
cellular and animal models to understand this complex
disease.
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