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Male increase in brain gene expression
variability is linked to genetic risk for
schizophrenia
Junfang Chen1, Han Cao1, Andreas Meyer-Lindenberg1 and Emanuel Schwarz1

Abstract
Schizophrenia shows substantial sex differences in age of onset, course, and treatment response, but the biological
basis of these effects is incompletely understood. Here we show that during human development, males show a
regionally specific decrease in brain expression similarity compared to females. The genes modulating this effect were
significantly co-expressed with schizophrenia risk genes during prefrontal cortex brain development in the fetal period
as well as during early adolescence. This suggests a genetic contribution to a mechanism through which
developmental abnormalities manifest with psychosis during adolescence. It further supports sex differences in brain
expression variability as a factor underlying the well-established sex differences in schizophrenia.

Introduction
Schizophrenia is a severe developmental mental illness

with an incidence approximately 1.4 times higher in men
compared to women1. The disorder is substantially heri-
table and a large number of common and rare variants
have been associated with illness risk2–5. A widely
accepted neurodevelopmental hypothesis posits that
genetically determined alterations in early brain devel-
opment interact with developmental changes during
adolescence in the prefrontal cortex to lead to the mani-
festation of psychosis6,7. Consistent with this, devel-
opmentally changing prefrontal cortex expression has
been found to be linked to neuronal differentiation and
maturation, as well as genetic schizophrenia risk8.
In men, the illness has a more severe course char-

acterized by more pronounced negative symptoms as well
as cognitive impairment9,10, although evidence has been
reported that substance abuse in men may confound such
clinical differences11. Males with schizophrenia have also,
albeit inconsistently, been reported to have a lower age of
onset, show more pronounced alterations of brain

morphology, and poorer response to antipsychotic med-
ication9,11–13. Genetic risk associations, as well as mole-
cular profiles, contain sex-dependent factors14,15 and sex
hormones are thought to play an important role for illness
course9,16, but again little is known about the underlying
neurobiological mechanisms.
We pursued a novel strategy to explore how biological

sex differences may impact on the manifestation of
genetic risk and the clinical sex differences of schizo-
phrenia. Inspired by a recent study on the human brain
connectome17, we tested whether during development
human brain gene expression is more variable in males
than females. We hypothesized that such increased
expression variability might contribute to a predisposition
of males for heritable neurodevelopmental disorders. A
similar hypothesis has previously been explored for HIV,
where gene expression variability has been suggested as a
modulator for susceptibility to infection18. Our study is
further motivated by previous identification of sexual
dimorphisms of brain expression19–21, protein abun-
dance22, as well as genetic and epigenetic factors mod-
ulating gene expression noise23,24, supporting the
possibility of links between polygenic risk and expression
variance. The longitudinal exploration of variability
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differences is further motivated by previous identification
of differential variance of transcriptional regulators during
human embryonic development25. Analysis of gene
expression variability has also been successfully applied to
identify genes and pathways implicated in several illnesses
and highlighted such variability as an informative biolo-
gical signal26,27.
Expression variability as genetic risk mediator can

capture polygenic effects beyond sex differences of
expression. To investigate this, we identified genes driving
brain region and age-specific variability differences
between sexes and tested whether these were associated
with expression of schizophrenia risk genes.

Materials and methods
Data preprocessing
To characterize brain expression throughout the human

lifespan, we used data from the BrainSpan: Atlas of the
Developing Human Brain (funded by ARRA Awards
1RC2MH089921-01, 1RC2MH090047-01, and 1RC2MH08
9929-01 and available from: http://developinghumanbrain.
org), as well as Braincloud microarray data (GSE3027228,
available from the GEO database29).
The primary analysis was performed on BrainSpan exon

microarray data (GSE25219, preprocessed as described in
ref. 30) due to availability of a larger sample number.
BrainSpan RNA sequencing (RNAseq) data was used for
replication and Braincloud data for validation of findings.
BrainSpan data comprised transcriptome-wide expression
information on subjects between the 6th post-
conceptional week (PCW) and 40 years of age (Table 1,
Supplementary Tables 2, 8, and 9). We did not consider
older subjects, as sex effects on risk are not likely to
manifest beyond the typical age of onset that ranges
between late adolescence and early adulthood. As per-
formed by Willsey et al.31, subjects were grouped in age-
bins by a windowing approach that joins three con-
secutive age periods into a single group.
Preprocessing of all datasets followed a similar sequence

of steps (Supplementary Fig. 1). Procedures performed on
all datasets comprised: RNA Integrity Number (RIN) fil-
tering (for BrainSpan exon microarray data, all donors
were removed that had more than 25% of microarray
samples with RIN < 7.5, as in ref. 30; for BrainSpan
RNAseq data and Braicloud data, a more stringent fil-
tering was performed by removing all samples with RIN <
= 7.5); removal of subjects >40 years; log2 transformation
of data; extraction of autosomal genes (without minimum
expression filter); quantile normalization; surrogate vari-
able determination; covariate adjustment; and outlier
detection. This data contained the respective median
values if multiple replicates per subject were present.
Following a previously described pipeline20, processing of
RNAseq data included two additional steps: gene-level

reads per kilobase million mapped reads (RPKM) were
normalized for GC content using conditional quantile
normalization based on the R library cqn32 and all genes
with less than 1 RPKM in more than 50% of male or
female samples were removed. Surrogate variable analysis
was performed to account for the potential effects of
unobserved confounders33. The number of surrogate
variables were automatically determined using the num.sv
function of the R package sva33, using the approximation
method by Leek33,34. The underlying full model matrix
contained gender, whose effects on expression variability
should be preserved, as well as age, PMI, RIN, and brain
pH (as well as an array indicator for Braincloud data). The
null-model matrix contained all covariates but gender.
Age was used as a covariate, to prevent artifactual cor-
relations between genes due to their joint association with
age. This is particularly important for age-bins covering a
broader range of ages, where significant correlations
between age and expression can be expected. The number
of surrogate variables determined for BrainSpan exon
microarray was 0, 2 for BrainSpan RNAseq and 0 for the
Braincloud data. Covariate adjustment was performed via
residualization against all covariates described above
(except for gender) using linear models. Missing brain pH
values were replaced by the mean of non-missing values.

Outlier detection
After preprocessing, principal component analysis was

used to exclude outliers (Supplementary Fig. 2). For this,
we identified separately for males and females observa-
tions that deviated more than 3 standard deviations from
the mean of the respective first two principal components.
This removed 7 samples in the BrainSpan exon micro-
array data (6 from male donors), 11 observations in the
BrainSpan RNAseq data (6 from male donors), and 1
outlier (from a female donor) in the Braincloud data.

Schizophrenia risk genes
Schizophrenia risk variants, loci, and associated genes

were taken from ref. 5 (Supplementary Table 3). Previous
analyses have pursued different approaches to identify
genes linked to genetic schizophrenia risk. Among these
approaches is the selection of all genes or those within a
certain distance from a given locus5, or genes affected by
index variant eQTLs35. For the present study, we aimed to
identify a single gene per locus. This was due to the risk of
introducing statistical bias from including multiple genes
per locus, caused by (1) the undue influence of loci har-
boring a larger number of genes and (2) the gene–gene
correlation of genes in close chromosomal proximity.
Therefore, for loci harboring multiple genes, we here used
the gene in closest chromosomal proximity to the
genome-wide significant index variant. If a locus con-
tained more than one index variant, we selected the gene
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in closest chromosomal proximity to the most significant
index variant. Chromosomal locations were determined
from the R library org.Hs.eg.db., vs. 3.1.2 (genome build
hg19, assembly GRCh37). Genes within the MHC region
were not considered due to their significant linkage dis-
equilibrium pattern. Two loci mapped to the genes
IMMP2L and TCF4, and these were considered only once
for subsequent analyses. C10orf32, C12orf79, and
VPS14C were not annotated by the library org.Hs.eg.db.
and not considered for further analysis. The final set of
schizophrenia risk genes contained 100 genes, of which 97
were autosomal. Of these, 87 were part of the BrainSpan
dataset (see Supplementary Table 3).

Analysis of expression similarity
First, all samples were identified for a given brain

regional cluster and age-bin. Based on such data subset,
we performed a three stage resampling approach sepa-
rately for males and females. The objective of this
resampling was to quantify the expression similarity (and
its confidence interval) between subjects while accounting
for the non-independence of multiple samples taken from
the same donor:
1. First, we randomly selected a single sample per

subject to prevent an impact of sample non-
independence on results.

2. Second, we took a bootstrap sample of subjects by
sampling with replacement and chose the unique set
of subjects. This was performed to prevent the perfect
correlation between multiply selected samples.

3. Finally, we subsampled the selected subjects, such
that the same number of subjects was chosen for
males and females. This was aimed at preventing
an influence of unequal sample numbers on
results.

Then separately for males and females, we determined
the pairwise Pearson correlation coefficients between all
subject pairs using expression values from all genes. The
mean of these estimates was used as an estimate of
expression similarity between subjects for a given regional
cluster age-bin combination. Only the upper triangular
matrix of a given correlation matrix was used for esti-
mation. This entire resampling was repeated 100 times
and the mean value (for confidence intervals the upper
and lower 2.5% percentile) of obtained estimates used to
quantify expression similarity.
The difference between males and females was then

quantified as the mean difference between the point
estimates of each regional cluster age-bin combination.
To assess significance, the resampling procedure was
repeated 1000 times. During each repetition, gender
information was permuted for a given regional cluster
age-bin combination, such that different samples of the
same subject were always assigned the same gender. The
frequency of bootstrapping point estimates at least as
high as the one obtained from non-permuted data was
used as empirical P-value and corrected for multiple
comparisons according to the method of Bonferroni. To
perform two-sided tests, absolute values were used for
this calculation.

Table 1 BrainSpan exon microarray sample numbers for males and females across 11 age-bins and 4 brain regional
clusters after data preprocessing

Males Females

Age-bin Regional cluster 1 2 3 4 1 2 3 4

1 12 (3) 21 (4) 11 (4) 1 (1) 20 (4) 24 (4) 12 (4) 7 (4)

2 23 (5) 31 (6) 16 (6) 5 (4) 20 (4) 24 (4) 12 (4) 7 (4)

3 23 (5) 27 (5) 14 (5) 5 (4) 33 (7) 39 (7) 20 (7) 13 (7)

4 23 (5) 27 (5) 14 (5) 8 (5) 27 (6) 31 (6) 16 (6) 12 (6)

5 15 (3) 18 (3) 9 (3) 6 (3) 27 (6) 31 (6) 16 (6) 12 (6)

6 30 (6) 36 (6) 18 (6) 12 (6) 14 (3) 16 (3) 8 (3) 6 (3)

7 24 (5) 29 (5) 12 (4) 10 (5) 5 (1) 6 (1) 3 (1) 2 (1)

8 24 (5) 28 (5) 12 (4) 10 (5) 10 (2) 9 (2) 6 (2) 4 (2)

9 19 (4) 20 (4) 8 (3) 7 (4) 15 (3) 15 (3) 8 (3) 5 (3)

10 20 (4) 21 (4) 10 (4) 7 (4) 20 (4) 21 (4) 11 (4) 7 (4)

11 36 (8) 42 (8) 19 (7) 14 (8) 33 (7) 39 (7) 19 (7) 12 (7)

1: V1C-STC, 2: PFC-MSC, 3: STR-HIP-AMY, 4: MD-CBC (see Supplementary Table 1 for details). Subject numbers are shown in brackets
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Identification of genes driving expression similarity
differences
We anticipated that genes driving the difference of

expression similarity between males and females would
likely show strong differences in expression variance
between sexes. For each regional cluster age-bin combi-
nation, we therefore performed the same resampling
strategy as described above. For a given set of subjects
(males and females separately), we then determined the
standard deviation of expression for a given gene. These
estimates were averaged over 100 resampling repetitions.
We then determined the ratio of these averages between
males and females and used the 100 genes (arbitrary cut-
off) with the highest ratio as “variability genes”. To test
whether these gene sets were also “variability genes” in
replication (BrainSpan RNAseq data) and validation
(Braincloud) data, we determined the difference of
expression similarity estimates (using the resampling
strategy described above) between males and females. An
empirical P-value was then determined by comparing this
estimate against those derived from random “variability
genes” identified as described below (1000-fold resam-
pling, one-sided test).

Testing associations with schizophrenia risk genes
To explore associations between variability genes and

schizophrenia susceptibility genes, the co-expression
between the two gene sets was determined for a given
regional cluster age-bin combination, by calculating a
matrix of all pairwise Pearson correlation coefficients
using expression values from both gene sets. The median
value of this correlation matrix was then used as a mea-
sure of co-expression. Again, these calculations were
determined as part of the resampling procedure described
above, with the exception of the third step (under-
sampling to obtain equal numbers of male and female
subjects), since calculations were performed using males
only.
Significance was determined using 1000 fold resam-

pling. During each repetition and for each regional cluster
age-bin combination, the low number of donors pre-
vented meaningful permutation of gender information.
Therefore, random “variability genes” were selected such
that for each real variability gene, one gene with a stan-
dard deviation of expression within 5% of the original
gene was randomly chosen. The resulting co-expression
values were then used to form null-distributions.
Empirical P-values were determined as the frequency of
co-expression values at least as high as that observed from
real data (one-sided test). Since a total of 22 sets of
variability genes were tested, P-values were corrected for
the Family Wise Error Rate according to the method of
Bonferroni.

Analysis of schizophrenia specificity
To test the specificity of the co-expression between

variability genes and schizophrenia susceptibility genes,
five additional analyses were performed, using different
selections of “susceptibility genes”: (I) Random selection
of schizophrenia susceptibility genes for a given locus
(instead of based on physical proximity to the index SNP).
(II) Random selection of genes from loci with comparable
DNA sequence variability compared to the schizophrenia
loci. For this analysis, the number of common (MAF >=
1%) variants recorded in dbSNP (GRCh37, available from
https://genome.ucsc.edu/) was used as a proxy for DNA
sequence variability. For each schizophrenia locus, a locus
of the same size was selected from the same chromosome
and retained if the DNA sequence variability was within
10% of the original locus. A random gene was then
selected from the locus, extended by 20 kbp, using the R
library biomaRt36. (III) Random selection of genes from
the same chromosome as a given schizophrenia gene,
irrespective of DNA sequence variability. (IV) Selection of
genes in proximity to SNPs associated with major
depressive disorder (35 genes; closest gene selected to a
given index SNP, as described in ref. 37). (V) Selection of
genes in proximity to SNPs associated with a non-
psychiatric phenotype (coronary artery disease; 35 genes;
random gene selected from a given susceptibility locus, as
described in ref. 38).

Exploratory age-windowing
To perform a “fine-mapping” of effects within a set of

age-bins, we performed separate analyses for subjects
within a given age-window (Supplementary Table 7).
The width of the window was determined as four con-
secutive age entries among the recorded ages in weeks.
Differences of expression similarity and co-expression
with schizophrenia susceptibility genes were deter-
mined separately for each age-window as described
above. Genes identified as “variability genes” of the
investigated age-bins were combined and used for this
analysis.

Functional analysis
To explore biological functions of genes contributing to

differences of expression similarity between sexes, we
used the DAVID functional annotation tool using default
settings (https://david.ncifcrf.gov/home.jsp)39. In this tool,
enrichment is quantified based on a modified Fisher’s
exact test. The 14,702 autosomal genes part of the
BrainSpan exon microarray data were used as background
for functional analysis. We retained all functional anno-
tation clusters with at least one annotation term passing
the False Discovery Rate corrected P-value threshold of
0.05.
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Code availability
Code is available from the corresponding author upon

request.

Results
Expression similarity differences in BrainSpan exon
microarray data
The filtered dataset contained autosomal,

transcriptome-wide expression data on healthy subjects
between the 6th PCW and 40 years of age19 (42 donors, 23
males, 14,702 autosomal genes; Fig. 1). We tested whether
gender was confounded by ethnicity, but found no asso-
ciation (P= 0.77, Chi-squared test). Subjects were binned
into 11 age groups and the 16 brain areas were aggregated
into 4 regional clusters with similar expression values
(Supplementary Tables 1 and 2, regional clustering was
taken from ref. 31 and based on hierarchical clustering of
fetal transcriptome profiles; for abbreviations, see Fig. 1):
(1) the V1C-STC cluster; (2) the prefrontal and primary
motor-somatosensory cortex or PFC-MSC cluster; (3) the
STR-HIP-AMY cluster; and (4) the MD-CBC cluster.
Figure 2a shows that despite substantial variability,

males had significantly lower expression similarity com-
pared to females in three of the four brain regional clus-
ters (PV1C-STC < 0.004, PPFC-MSC < 0.004, PSTR-HIP-AMY=
0.003, PMD-CBC= 0.080; FWER corrected). Due to the
more pronounced differences in the regional clusters
V1C-STC and PFC-MSC, subsequent analyses focused on
these areas. Figure 2a further shows that in females,
expression similarity tended to decrease across

developmental time points, suggesting that inter-subject
similarity was lower in adulthood compared to younger
age. We aimed to explore whether sex differences in
expression similarity were associated with genetic schi-
zophrenia risk, to pinpoint a potential biological
mechanism for the well-known sex differences of the
disorder.

Identification of genes driving sex differences in
expression similarity
For each age-bin regional cluster combination we

identified the 100 “variability genes” with the greatest
ratio (male divided by female) of standard deviations of
expression (see Supplementary Fig. 3 and Supplementary
Dataset for a list of all “variability genes”). Figure 2b shows
that expression similarity determined from these genes
differed strongly between sexes.

Co-expression between variability and schizophrenia
susceptibility genes
Next, we investigated potential relationships between

these variability genes and genes harbored by the 108 well-
established schizophrenia susceptibility loci5. This analysis
was performed in males, since the lack of variance in female
expression levels would prevent meaningful association
analyses. Across 22 sets of variability genes (11 age-bins in
the 2 regional clusters V1C-STC and PFC-MSC), we found
that variability genes derived from both clusters were sig-
nificantly co-expressed with schizophrenia susceptibility
genes in age-bins 8 (4 months–4 years, rhoV1C-STC= 0.05,

Fig. 1 Analysis workflow. Transcriptome-wide expression data were extracted from the BrainSpan Atlas of the Developing Human Brain for each
age-bin brain regional cluster combination. Age-bins and regional clusters were taken from ref. 31. Using a resampling procedure, expression
variability was then quantified in males and females as the mean of the pairwise correlations of transcriptome-wide expression between samples
from the respective subjects. PCW post conceptional week, V1C primary visual cortex, ITC inferior temporal cortex, IPC posterior inferior parietal
cortex, A1C primary auditory cortex, STC superior temporal cortex, M1C primary motor cortex, S1C primary somatosensory cortex, VFC ventral
prefrontal cortex, MFC medial prefrontal cortex, DFC dorsal prefrontal cortex, OFC orbital prefrontal cortex, STR striatum, HIP hippocampal anlage/
hippocampus, AMY amygdala, MD mediodorsal nucleus of the thalamus, CBC cerebellar cortex
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rhoPFC-MSC= 0.05), 9 (10 months–11 years, rhoV1C-STC=
0.10, rhoPFC-MSC= 0.12), and 10 (2 years–19 years, rhoV1C-
STC= 0.07, rhoPFC-MSC= 0.13; all PFWER < 0.022, Fig. 3a, b).
Significant co-expression was additionally observed for the
PFC-MSC in age-bin 1 (6 PCW–13 PCW, rho= 0.11) and 2
(9 PCW–16 PCW, rho= 0.08; all PFWER < 0.022).

Age-bin specificity and pathway analysis
Next, we explored whether differences in expression

similarity were age-bin specific. Figure 2c shows that PFC-
MSC variability genes of age-bin blocks 1–2 and 8–9–10
were also associated, albeit to a lesser extent, with
decreased male expression similarity in the respectively
other age-bin blocks.
In this brain regional cluster, the 257 genes of age-bins

8–10 were significantly linked to synaptic processes and
(calcium-)ion signaling (Supplementary Table 4).
Notably, the 138 variability genes from age-bins 1 and 2
in the PFC-MSC cluster were associated with similar
ontological categories, including “post-synaptic

membrane” and “synapse” (Supplementary Table 5).
Interestingly, the genes from age-bins 1–2 and age-bins
8–10 showed only a minimal overlap (8 genes shared).
These ontological associations showed regional specifi-
city for the PFC-MSC cluster, as the V1C-STC varia-
bility genes (age-bins 8–10) that also showed significant
co-expression with susceptibility genes were not asso-
ciated with similar ontological categories (Supplemen-
tary Table 6). Furthermore, the ontological overlap
between age-bins 1–2 and age-bins 8–10 in the PFC-
MSC cluster is consistent with the correlation of the
male expression similarity profiles (Fig. 2c).

Schizophrenia specificity
To explore the specificity of co-expression results for

schizophrenia, analysis was repeated using (I) schizo-
phrenia susceptibility genes randomly selected for a given
locus (instead of based on physical proximity to the index
SNP), (II) genes randomly selected from loci with com-
parable DNA sequence variability compared to the

Fig. 2 Sex differences in expression similarity in BrainSpan exon microarray data. a Expression similarity for four brain regional clusters: V1C-
STC, PFC-MSC, STR-HIP-AMY, and MD-CBC for males (blue) and females (orange). The panels display mean estimates (solid lines) and 95% confidence
intervals (shaded areas). The panels show no values for regional cluster age-bin combinations containing data from only one donor. b Expression
variability for “variability genes”, identified separately for each given age-bin. In age-bin 7, data from only one donor was available for females. c
Expression variability profiles for variability genes derived from age-bins 9 (10 months–11 years) and 10 (2 years–19 years) in the PFC-MSC cluster. This
panel shows variability profiles for male subjects only
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schizophrenia loci, (III) genes randomly selected from the
same chromosome as a given schizophrenia gene, irre-
spective of DNA sequence variability, (IV) genes in
proximity to SNPs associated with major depressive dis-
order, (V) genes in proximity to SNPs associated with a
non-psychiatric phenotype (coronary artery disease).
Figure 3c shows that random and proximity-based
selection of genes from schizophrenia loci yielded simi-
lar results. Despite a similar co-expression profile across
age-bins, schizophrenia gene co-expression showed spe-
cificity against DNA sequence variability-stratified gene
selection in age-bins 8 and 9 (P= 0.05) and a trend
toward specificity in age-bins 2 and 10 (P= 0.06). Ran-
domly selected genes (procedure III) showed substantially
lower mean co-expression, leading to specificity of schi-
zophrenia results (age-bins 8–10, P ≤ 0.05; age-bin 2, P=
0.06). For both random selection procedures,

schizophrenia specificity could not be observed in age-bin
1 (P= 0.12 and P= 0.11, for procedures II and III,
respectively). Genes in the proximity of SNPs linked to
major depression or grip strength led to lower co-
expression values in age-bins 2 and 8–10; in age-bin 1,
major depression genes showed higher co-expression than
the schizophrenia genes.

Age-windowing
Finally, since age-bins 8–10 covered a broad age range

(4 months–19 years), we performed an exploratory “fine-
mapping” of PFC-MSC effects using an age-windowing
approach. While based on small sample numbers, this
analysis suggested that co-expression had a broad plateau
from a mean age of 4.8–10.9 years (Fig. 3d). Differences in
expression similarity between sexes were consistent
across all age windows (Fig. 3d).

Fig. 3 Co-expression between variability genes and schizophrenia susceptibility genes. a Significance of median co-expression for variability
genes determined for each age-bin in the regional clusters V1C-STC, PFC-MSC, and STR-HIP-AMY of male subjects. b Co-expression in PFC-MSC
cluster, age-bin 10, for males and females, respectively. Rows and columns were ordered separately based on median co-expression. c Comparison of
co-expression between variability genes and schizophrenia susceptibility genes chosen based on physical proximity to index SNPs (red), random
selection within a given susceptibility locus (orange), randomly selected loci with comparable DNA sequence variability compared to schizophrenia
loci (blue), random genes selected from the same chromosomes as schizophrenia susceptibility genes (purple), major depression susceptibility genes
(green), and genes linked to a non-psychiatric phenotype (coronary artery disease, gray). d Windowing of age-bins 8, 9, and 10 in the PFC-MSC
cluster. The panel shows variability difference and co-expression for variability genes determined for age-bins 8–10. Co-expression was determined
for males only
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Replication in BrainSpan RNAseq data
Preprocessed BrainSpan RNAseq data comprised

expression information on 11,514 autosomal genes in
400 samples (37 subjects, 20 males). The transcriptome-
wide expression similarity showed similar profiles as
observed for exon microarray data (Supplementary Fig.
4a). Similarly, the variability genes identified from exon
microarray data were also variability genes in RNAseq
data (Supplementary Fig. 4b, P < 0.001). These genes were
significantly correlated with schizophrenia susceptibility
genes in the PFC-MSC regional cluster for age-bins 2
(rho= 0.01, P < 0.001), 9 (rho= 0.05, P < 0.001), and 10
(rho= 0.03, P < 0.001), validating exon microarray
observations. For the V1C-STC cluster, we found sig-
nificant associations for age-bins 3 (rho= 0.03, P < 0.001),
and a trend toward nominal significance in age-bins 8 (P
= 0.07) and 10 (P= 0.05).

Validation in Braincloud data
Filtered Braincloud data contained dorsolateral pre-

frontal cortex expression information on 14,773 auto-
somal genes from 112 subjects (75 males). In covariate-
corrected data, expression similarity is dependent on
expression variance. Therefore, we compared the stan-
dard deviation of expression across all genes overlapping
with BrainSpan exon microarray data. We found these
estimates to be strongly correlated across datasets (rho=
0.40, P < 2.2 × 10−16, Spearman correlation), suggesting
that preprocessing resulted in high cross-dataset com-
parability. Since the Braincloud data contained no sub-
jects in age groups 1 and 2 (i.e., age-bin 1 only consisted of
subjects in age group 3), age-bin 1 was not used for fur-
ther analysis. Assessment of expression similarity differ-
ences using BrainSpan exon microarray PFC-MSC
variability genes validated the decreased similarity in
males (P < 0.001, Supplementary Fig. 5), which was less
pronounced in Braincloud data and driven by genes from
age-bins 8 and 9. Consistent with BrainSpan results, co-
expression with schizophrenia susceptibility genes was
significant in age-bin 2 (rho= 0.03, P < 0.001), age-bin 9
(rho= 0.07, P < 0.001), and age-bin 10 (rho= 0.03, P <
0.001) and showed a trend toward significance in age-bin
8 (rho= 0.01, P= 0.08).

Discussion
The present results demonstrate that the similarity of

gene expression profiles in males shows a brain region-
specific decrease compared to females. Some of the genes
driving this effect were co-expressed with schizophrenia
susceptibility genes, in a regionally specific and age-
dependent manner. Importantly, co-expression was found
in the brain regional cluster encompassing the prefrontal
cortex during fetal brain development, confirming a core
prediction of the neurodevelopmental hypothesis of

schizophrenia6. Additionally, and again as predicted by
this hypothesis, significant co-expression was further
found during adolescence. Similar differences of expres-
sion similarity were found in RNAseq data acquired on a
subset of the same samples. In this dataset, we further
replicated associations between variability and suscept-
ibility genes in data from adolescent donors, but found no
associations during the fetal period. Expression similarity
differences were further validated in the independent
Braincloud data and significant co-expression was found
in samples from fetal, as well as adolescent donors.
Co-expression did not depend on how genes were

selected from a given susceptibility locus and exceeded
that observed for major depression (in age-bin 1 by a
small margin) and coronary artery disease in the early
fetal phase, as well as during adolescence. We observed
that genes selected from randomly chosen loci stratified
for DNA sequence variability showed a broadly similar,
although less pronounced, co-expression trend compared
to schizophrenia genes. In contrast, genes selected ran-
domly without consideration of DNA sequence variability
were not co-expressed with variability genes, on average.
This may suggest that sequence variability associated with
schizophrenia susceptibility loci impacted on diversifica-
tion of gene expression and the sex differences observed
in the present study.
Genes from the fetal and adolescent periods were

involved in synaptic processes, which have been impli-
cated in schizophrenia by a range of genetic, histopatho-
logical, neuroimaging, pharmacological, and
neurotransmitter studies40–44. They are affected by
genetic and environmental risk in particular during early
life, leading to subsequent impairments in synaptic plas-
ticity and connectivity45. The lack of overlap between
variability genes from the fetal period and adolescence
may hint at biologically divergent risk processes that
converge on the same synaptic pathways.
The main limitation of the present study is sample size.

The primary analysis of the BrainSpan data reported that
brain region and age are stronger modulators of gene
expression compared to sex or inter-individual varia-
tion19. Therefore, the present study focused on analyses
that are stratified by regional clusters and age-bins, with
significant impact on sample numbers available for a
given analysis. In the BrainSpan dataset, data from mul-
tiple brain regions was available for most donors. We
performed a donor-wise bootstrapping procedure during
all resampling analyses, to account for the non-
independence of the samples. This procedure further
accounted for potential effects arising from differences in
donor numbers between sexes, further reducing the
effective sample size. The low donor number per regional
cluster age-bin combination prevented meaningful per-
mutation of gender. Therefore, random “variability genes”
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were created by randomly sampling genes, stratified by
expression variance. This may have led to bias, due to the
potential correlation among the actual variability genes
that is not captured by the procedure employed here. The
low sample number in all three investigated datasets also
limits the power to identify and validate significant asso-
ciations, including expression similarity differences and
co-expression between variability and susceptibility genes.
This may have contributed to the partial non-replication
of findings across datasets.
Another limitation is that we selected a single suscept-

ibility gene per locus to prevent statistical bias, but this
selection may not accurately reflect genetic schizophrenia
risk. By comparison, other studies have previously selec-
ted susceptibility genes by extracting all genes within a
given locus5 or by focusing on effectors of index variant
eQTLs35. Another interesting aspect is that the present
findings may relate to underlying, variable phenotypes,
such as personality traits and comorbid psychiatric con-
ditions. Furthermore, we aimed to account for the effects
of known and unknown confounders during all analyses,
but this may not have comprehensively captured experi-
mental artefacts that may have influenced between-
subject or gene–gene correlations. Finally, we did not
use genetic association data to correct for potential sub-
ject relatedness or population structure, due to data
availability and sample size limitations.
In conclusion, this study indicates sex-specific genetic

mechanisms operating during fetal brain development
linked to the variability of prefrontal brain gene expression
during adolescence, as predicted by the neurodevelop-
mental hypothesis of schizophrenia. These effects may
contribute to the well-established clinical sex differences of
schizophrenia and underlying gene sets may be valuable for
biologically stratified exploration of the illness’s etiology.
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