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Intrinsic functional connectivity predicts
remission on antidepressants: a
randomized controlled trial to identify
clinically applicable imaging biomarkers
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Leanne M. Williams 1,2

Abstract
Default mode network (DMN) dysfunction (particularly within the anterior cingulate cortex (ACC) and medial prefrontal
cortex (mPFC)) has been implicated in major depressive disorder (MDD); however, its contribution to treatment
outcome has not been clearly established. Here we tested the role of DMN functional connectivity as a general and
differential biomarker for predicting treatment outcomes in a large, unmedicated adult sample with MDD. Seventy-five
MDD outpatients completed fMRI scans before and 8 weeks after randomization to escitalopram, sertraline, or
venlafaxine-XR. A whole-brain voxel-wise t-test identified profiles of pretreatment intrinsic functional connectivity that
distinguished patients who were subsequently classified as remitters or non-remitters at follow-up. Connectivity was
seeded in the PCC, an important node of the DMN. We further characterized differences between remitters, non-
remitters, and 31 healthy controls and characterized changes pretreatment to posttreatment. Remitters were
distinguished from non-remitters by relatively intact connectivity between the PCC and ACC/mPFC, not
distinguishable from healthy controls, while non-remitters showed relative hypo-connectivity. In validation analyses,
we demonstrate that PCC–ACC/mPFC connectivity predicts remission status with >80% cross-validated accuracy. In
analyses testing whether intrinsic connectivity differentially relates to outcomes for a specific type of antidepressant,
interaction models did not survive the corrected threshold. Our findings demonstrate that the overall capacity to remit
on commonly used antidepressants may depend on intact organization of intrinsic functional connectivity between
PCC and ACC/mPFC prior to treatment. The findings highlight the potential utility of functional scans for advancing a
more precise approach to tailoring antidepressant treatment choices.

Introduction
Major depressive disorder (MDD) is highly prevalent1

and a diagnosis of MDD alone does not inform us about
which treatment choices will work best for the individual
patient. As little as a third of patients may remit following

the first choice of antidepressant2,3, and depression is now
one of the leading causes of disability as well as a primary
risk for suicide4. To address this burgeoning issue, as a
field we are searching for markers that are predictive of
remission and that have translational relevance to the
clinic. A promising avenue for guiding classification and
treatment choices is the development of a brain-based
taxonomy for depression and related experiences5,6.
Guided by this approach, in this study we focus on the
intrinsic functional connectivity of the default mode
network (DMN). Functional connectivity, particularly
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within the DMN is implicated in the pathophysiology of
MDD7–9 and may have a role in differentiating responders
from non-responders to treatments, including anti-
depressants10–14.
Previous studies have laid important foundations for

the role of the DMN in depression, particularly the
posterior cingulate cortex (PCC) and the medial pre-
frontal cortex (mPFC) nodes. The most consistent
findings have identified aberrant functioning15,16 as
well as connectivity both within and between these
DMN nodes11,15–19, which may resolve after treat-
ment11,15. Recently, two unique subtypes of depression,
differentiated by the presence or absence of
PCC–anterior cingulate cortex (ACC)/mPFC con-
nectivity, were identified using community detection
algorithms on resting-state functional data within a
depressed sample20. This is particularly interesting
when considering that differences in PCC–ACC/mPFC
connectivity prior to treatment have been linked to
treatment responsiveness in late-life depression10.
While these past reports implicate DMN functional
connectivity in the pathophysiology of depression and
depression treatment response, we do not yet know the
role of DMN intrinsic functional connectivity as a
general and differential biomarker for predicting
treatment outcomes in broader age range of depressed
individuals. Further, no study to date has characterized
the accuracy, sensitivity, and specificity of using
intrinsic functional connectivity of the DMN as a
prospective predictor of antidepressant outcomes.
Addressing these issues, in the current study we asses-

sed which aspects of pretreatment dysfunction in the
DMN predict antidepressant treatment outcomes more
generally, and which aspects differentially predict out-
come for different antidepressants. We investigated these
issues in a patient sample from the International Study to
Predict Optimize Treatment Outcomes for Depression
(iSPOT-D), who were unmedicated at the pretreatment
baseline and subsequently randomized to different anti-
depressants21. We hypothesized that pretreatment con-
nectivity (particularly within the ACC/mPFC) with the
PCC node of the DMN would (1) predict general remis-
sion across antidepressants and (2) differentially predict
remission by type of antidepressant. We also assessed
whether pretreatment functional connectivity, as a func-
tion of remission status, is abnormal relative to controls in
remitters or non-remitters and whether connectivity
changes from pretreatment to posttreatment. Given that
both hyper- and hypo-connectivity within and between
the DMN has been documented in the literature (e.g., refs
11,22,23) and the dearth of studies examining intrinsic
functional connectivity predictors of depression response,
we did not have specific directional predictions related to
aims 1 nor 2.

Materials/subjects and methods
Overview and study design
Functional connectivity data were obtained from 80

participants with MDD and from 34 healthy controls from
the iSPOT-D (See Supplemental Figure S1 for the full
CONSORT chart). A complete description of the rando-
mized iSPOT-D practical trial protocol, clinical assess-
ments, inclusion/exclusion criteria, and diagnostic
procedures is provided in ref. 21. In short, the primary
diagnosis of non-psychotic MDD was confirmed using the
Mini-International Neuropsychiatric Interview (MINI)24,
according to Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition criteria, and inclusion criteria
included a score ≥16 on the 17-item Hamilton Rating
Scale for Depression (HRSD17)

25. Exclusion criteria
included multiple comorbidities including current or past
diagnosis of psychosis, bipolar disorder, posttraumatic
stress disorder, obsessive compulsive disorder, and any
Axis II personality disorder as assessed by the MINI or
any medical condition that might interfere with admin-
istration of assessments or the safety of antidepressant
medication. Sample size was chosen as part of the original
protocol development in order to achieve statistical power
of 80% at an effect size of 1 standard deviation21.
This study was conducted according to the principles of

the Declaration of Helsinki 2008. Participants provided
written informed consent after the study procedures were
fully explained in accordance with the ethical guidelines
of the institutional review board.
All participants were either antidepressant medication

naive or, if previously prescribed an antidepressant med-
ication, had undergone a wash-out period of at least
1 week (five half-lives). Participants were randomized to
receive sertraline, escitalopram, or venlafaxine-XR using
PhaseForward’s validated, Web-based Interactive
Response Technology as previously described26. For fur-
ther details, see supplemental methods.

Criteria for treatment outcomes
The primary study outcome was treatment remission

defined as a score of ≤7 on the HRSD17 using clinician
ratings from the HRSD17 scale as this was the primary
outcome measure of the iSPOT-D protocol21. We ana-
lyzed data for participants who completed the posttreat-
ment scanning session, consistent with previous studies
that included a posttreatment scan27,28.

Study treatments
A blocked randomization procedure was undertaken

centrally for the full iSPOT-D study (block size of 12,
across sites). The imaging was conducted solely at the
Sydney site. Investigators, raters, and participants were
not blind to treatment assignment. The medication doses
were prescribed and adjusted by treating clinicians
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according to routine clinical practice and followed the
recommended dose ranges.
Any treatment for concurrent general medical condi-

tions were allowed and recorded. Comorbid general
medical conditions were recorded under the categories
(with examples) of cardiovascular (hypertension), diges-
tive (irritable bowel syndrome), endocrine (diabetes),
hemic/lymphatic (gout), metabolic/nutritional (high cho-
lesterol), musculoskeletal (tendonitis), respiratory
(asthma), urogenital (kidney stone), skin (eczema), and
special senses (astigmatism) disorders. Approximately
50% of the sample reported no comorbid general medical
condition in these categories, 23% reported one condition,
and 27% one or more conditions.
Participants discontinued psychotropic medication

prior to randomization with the exception of occasional
(i.e., ⩽1 dose/week) use of anxiolytics, sleep aids, and
medications to manage anti- depressant-induced side
effects (e.g., nausea) as they reflect common practice. In
all, 4.9% of patients within the total sample were taking a
concomitant psychotropic medication, including the
anxiolytic Alprazolam and the sedative/hypnotics, Eszo-
piclone, Triazolam, Zolpidem, and Zopiclone.

Image acquisition
Magnetic resonance imaging (MRI) images were

acquired in Sydney, Australia using a 3.0-T GE Signa
scanner and an eight-channel head coil. The intrinsic
functional connectivity data were acquired using a pre-
viously validated approach29. Specifically, the scan con-
sisted of five tasks and a three-dimensional (3D) T1-

weighted structural MRI scan. MR images for each task
were acquired using echo planar imaging (TR= 2500 ms,
TE= 27.5 ms, matrix= 64 × 64, FOV= 24 cm, flip angle
= 90 degrees). Forty slices, each 3.5 mm thick, covered the
whole brain in each volume. For each task, 120 volumes
were collected with a total scan time of 5 min and 8 s. The
details of the five tasks have been previously described30.
Briefly, tasks assessed (1) selective attention using an
auditory oddball task, (2) working memory using a con-
tinuous performance task, (3) inhibition processes using a
Go-NoGo task, and (4) conscious and (5) non-conscious
processing of emotional faces. Intrinsic functional con-
nectivity was derived from the residual time series when
all five tasks were concatenated, following the removal of
task and covariate effects (more details below). While this
method is distinct from methods used to assess resting-
state connectivity in which there is no specific task con-
text and participants are engaged in non-directed atten-
tion, this procedure results in patterns of functional
connectivity that closely mimic those found in resting-
state scans30 and can also be considered to assess the “task
negative” nature of the DMN8,31. We believe that this
approach may hold more ecological validity than standard
resting-state paradigms, given that individuals switch
from free thought/self-reflection to goal-directed task
states in daily life, and do not necessarily have extended
periods of resting non-directed thought.
Structural MRI 3D T1-weighted images were acquired

in the sagittal plane using a 3D spoiled gradient echo
sequence (TR= 8.3 ms; TE= 3.2 ms; flip angle= 11
degrees, TI= 500ms, NEX= 1, ASSSET= 1.5, matrix=
256 × 256). A total of 180 contiguous slices, each 1mm
thick, covered the whole brain with an in-plane resolution
of 1 × 1mm2.

Preprocessing of connectivity data
Processing of intrinsic functional connectivity was

assessed using an established imaging procedure30. Sta-
tistical Parametric Mapping software implemented in
MATLAB (SPM8; Wellcome Department of Cognitive
Neurology, London) was used for the preprocessing and
data analysis. First images were motion corrected and
unwarped using default parameters in SPM8. Following
realignment and unwarping, quality-control diagnostics
were completed on the time series data for each run. Data
volumes that were associated with extreme (1) movement
(framewise displacement from one time point to the next)
and (2) changes in blood-oxygen-level-depedent BOLD
signal intensity (as indexed by the mean squared differ-
ence in signal intensity over the entire volume from one
time point to the next divided by the mean signal across
the volume averaged across the full time series) were
censored (temporally masked) to reduce the influence of
motion and related artifacts. Framewise displacement was
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Fig. 1 The brain maps display the binary mask for the ACC/mPFC
cluster identified in the voxel-wise comparison of remitters
versus non-remitters. The bar graph illustrates the difference across
groups (remitters, non-remitters, and healthy controls) and sessions
(baseline and 8-week follow-up) in functional connectivity with the
PCC seed with the ACC/mPFC cluster. The ACC/mPFC cluster showed
greater connectivity in the remitters compared to the non-remitters.
Brackets across bars denote significance p < 0.05 in the planned
comparisons. ACC anterior cingulate cortex, mPFC medial prefrontal
cortex, PCC Posterior Cingulate Cortex, NR Non-Remitters, R Remitters,
Con Controls
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calculated as the sum of the absolute values of the dif-
ferentiated realignment estimates as in Power et al.
(2014)32. Volumes were censored using established
thresholds of framewise displacement ⩾0.3 mm and
scaled signal intensity differences >1032–35. Censoring was
implemented with the time series difference analysis
toolbox http://www.fil.ion.ucl.ac.uk/spm/ext/# TSDiffAna
and in-house scripts. A temporal mask was then created
for each censored volume (as well as subsequent volume)
and used as regressors of no interest in the first-level
statistical models32,34. Since movement-related artifacts
have been shown to impact volumes acquired before and
several seconds after a movement spike, to reduce the
influence of movement-related artifacts a total of four
temporal masks were created for each movement spike
(an additional volume before and two volumes after the
movement spike)32. Further, participants who had >200
volumes temporally masked (1/3 of the total intrinsic
connectivity time course) were removed from group
analyses. Images were then slice time corrected in SPM8.
Following slice time correction, images were spatially
normalized to the stereotactic Montreal Neurological
Institute (MNI) space using the FMRIB nonlinear regis-
tration tool36 and smoothed using an 8 mm full-width-at-
half-maximum Gaussian kernel in SPM8.
For each functional MRI (fMRI) task, general linear

models (GLMs) were used to model the BOLD responses
for each experimental condition: oddball (target and
nontarget trials), continuous performance (working
memory, 1-back and baseline trials), Go-NoGo tasks (Go
and NoGo trials), and both emotion tasks (each emotion
type). Motion effects were also modeled for each task
using the Volterra expansion of the realignment para-
meters proposed in Friston et al. (1996) (24 regressors; Rt,
Rt

2, Rt-1, Rt-1
2 where Rs are the realignment parameters

estimated during the preprocessing stage)37. Additional
covariates for each task included the mean signal time
course extracted from eroded ventricle and white matter
masks as well as the temporal masks derived from the
volume censoring described above. The intrinsic func-
tional connectivity signal was estimated as the residual
images after modeling the BOLD signal for each stimulus
of the above tasks as repressors of non-interest. After this,
a band-pass filter (0.009 < f < 0.08 Hz) was applied.

Connectivity analysis
Connectivity within the DMN was identified using a

seed-based correlation approach. The average BOLD time
series was extracted from two bilateral 5-mm spheres
centered on the PCC coordinates from Gordon et al. ([x,
y, z]: [Left: −11, −52, 37; Right: 12, −52, 35])38. The
resultant time series was then used as a regressor of
interest in a first-level model in SPM8 to generate a
correlation map for each subject. The resulting

correlations were then transformed into z-scores using
the Fisher-z transform and entered into second-level
models.

Primary analysis of general prediction
Step 1: To identify regional clusters where pretreatment

intrinsic functional connectivity was associated with
posttreatment antidepressant outcomes independent of
antidepressant type, we implemented a GLM in SPM8
with treatment outcome (remitter versus non-remitter at
8 weeks posttreatment) as the between-subjects factor.
Given that our primary aim was to identify intrinsic
functional connectivity clusters that differed by remis-
sions status, as opposed to MDD diagnosis status, we
chose to exclude healthy controls from this portion of the
analysis. Because non-remitter and remitter subgroups
differed slightly on the severity of depressive symptoms
(HRSD17), MDD episode duration, and age, these vari-
ables were included as covariates. Clusters were retained
for additional analyses if they met a conservative family-
wise error (FWE)-cluster corrected p < 0.001 (one-sided)
to correct for multiple comparisons. An additional sup-
plementary whole-brain, voxel-wise analysis was con-
ducted using the continuous variable of the percent
reduction of depression severity with the same covariates
and FWE-cluster corrected threshold as above.
Step 2: To undertake our planned contrasts, β weights

were extracted from the voxels that showed significant
connectivity with the PCC seed in Step 1. These β weight
data were analyzed using R. We compared differences in
PCC intrinsic functional connectivity between (1) remit-
ters and healthy controls and (2) non-remitters and
healthy controls using multiple regression analyses with
PCC connectivity as the dependent variable, group
membership as a dummy coded variable, and age entered
as a covariate. We chose to use these planned t-tests to
compare each group separately to controls rather than an
analysis of variance framework since it is possible that one
of the remission subgroups may resemble that of controls.
Following the procedure of Williams et al. (2015)26,
separate paired t-tests were used to assess changes from
baseline to follow-up visit in each group within the same
intrinsic functional clusters.

Analysis of differential prediction
Step 1: To determine whether individuals who remitted

to specific antidepressant treatments were also differ-
entiated by pretreatment intrinsic functional, we again
used a GLM (in SPM8) with a second between-subjects
factor for each antidepressant type (escitalopram, sertra-
line, and venlafaxine-XR). Covariates again included
clinician-rated depression severity at baseline, MDD epi-
sode duration, and age. Here we tested the interaction
between remission status and antidepressant medication.
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Following our procedure for testing general prediction,
the primary focus of our analysis was on voxel-wise FWE-
cluster corrected p < 0.001 (one-sided) level threshold.
Clusters were retained for secondary analyses if they met
this FWE-cluster corrected p < 0.001 to correct for mul-
tiple comparisons. An additional supplementary whole-
brain, voxel-wise analysis was conducted using the con-
tinuous variable of the percent reduction of depression
severity with the same covariates and FWE-cluster cor-
rected threshold as above.
Step 2: β weights were extracted from the voxels that

defined the cluster of significant connectivity with the
PCC seed identified in Step 1, and GLMs were then used
to compare the connectivity of healthy controls to that of

remitters and non-remitters within each medication type,
with age as a covariate. Following the procedure of Wil-
liams et al. (2015)26, separate paired t-tests were used to
assess changes from baseline to follow-up visit in each
group within the same intrinsic functional cluster.

Classification sensitivity and specificity of PCC–ACC/mPFC
connectivity
Given our a priori hypotheses that connectivity between

the PCC and ACC/mPFC would be predictive of treat-
ment outcome, we conducted a secondary analysis using
hierarchical logistic regression and receiver operating
characteristic (ROC) analyses implemented in R to char-
acterize the contribution of the PCC– ACC/mPFC

Table 1A Demographic and clinical characteristics by group

Characteristic Non-remitters Remitters All MDD Healthy controls

Mean SD n Mean SD n Mean SD n Mean SD n

Age of first visit 34.98 13.69 38 28.34 7.10 37 31.70 11.38 75 29.93 10.91 31

Years of education 14.00 3.14 38 14.65 2.41 37 14.32 2.80 75 14.84 2.72 31

Duration of illness 14.61 13.26 38 8.32 6.48 37 11.50 10.88 75 — — —

Number of prior episodes 19.95 11.93 38 19.54 7.70 37 19.75 10.00 75 — — —

Body mass index 25.31 4.91 32 26.16 6.29 35 25.75 5.65 67 — — —

Attention −0.04 0.86 33 0.03 0.43 35 0.00 0.67 68 0.09 0.46 30

Cognitive flexibility 0.36 1.27 33 −0.01 0.73 35 0.17 1.04 68 0.05 0.50 30

Decision speed −0.17 1.69 33 −0.02 0.57 35 −0.09 1.24 68 −0.08 0.77 30

Executive functioning 0.20 0.97 33 −0.19 1.4 35 0.00 1.22 68 0.15 0.47 26

Information processing speed 0.17 0.77 33 0.08 0.54 34 0.12 0.66 67 0.11 0.53 30

Motor coordination −0.12 0.36 33 −0.12 0.45 35 −0.12 0.41 68 −0.06 0.58 30

Response inhibition −0.07 0.72 32 −0.01 0.43 35 −0.04 0.58 67 0.07 0.53 29

Verbal memory −0.15 0.73 33 0.09 0.9 35 −0.03 0.83 68 0.02 0.82 30

Working memory −0.24 1.09 33 −0.03 1.07 35 −0.14 1.08 68 0.23 1.12 30

Number of early-life stressors 4.34 2.09 35 3.22 2.69 37 3.76 2.46 72 0.88 1.28 26

HRSD17 total Sscore at baseline 20.5 3.32 38 21.78 4.34 37 21.13 3.88 75 1.10 1.30 30

HRSD17 anxiety score at baseline 6.87 2.06 38 6.97 1.89 37 6.92 1.96 75 0.45 0.63 29

QIDS-SR16 total score at baseline 13.67 3.39 36 14.08 4.02 37 13.88 3.70 73 2.23 1.77 26

Dosage

Escitalopram 15.00 11.68 12 10.00 4.26 12 12.50 8.97 24 — — —

Sertraline 62.50 25.48 14 55.77 29.14 13 59.26 26.99 27 — — —

Venlafaxine 100.00 36.93 12 81.25 21.65 12 90.62 31.11 24 — — —

Equivalent dosagea

Escitalopram 112.50 87.58 12 75.00 31.98 12 93.75 67.26 24 — — —

Sertraline 93.75 38.21 14 83.65 43.72 13 88.89 40.48 27 — — —

Venlafaxine 100.00 36.93 12 81.25 21.65 12 90.62 31.11 24 — — —

aEquivalent dosage in venlafaxine (7.5 × escitalopram; 1.5×sertraline; 1×venlafaxine)
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connectivity in the classification of remission status.
Specifically, connectivity was extracted from a mask
centered on ACC/mPFC coordinates identified using a
meta-analytic approach (see below), mean centered,
scaled by the standard deviation, and entered as a pre-
dictor of remission status. In addition to identifying an
ACC/mPFC cluster that may survive correction for mul-
tiple comparisons described above, we considered it also
important to demonstrate the strength of the prediction
using an independently generated region of interest (ROI).
This approach avoids issues of double dipping39, which
can lead to increased bias and reduced generalizability.
ROC curves were created with the Epi package in R40. The
Wald Statistic (W) was used to determine the significance
of the contribution of each predictor.

Cross-validation analyses
To increase the generalizability of the model predictions

and reduce the bias caused by model fitting41,42, predictive
performance of the ROC analyses was also examined
using leave-one-out cross-validation.

Specificity of prediction of remission by PCC-ACC/mPFC
connectivity
To determine whether intrinsic functional connectivity

may be serving as a proxy for other behavioral and patient
characteristics previously associated with the prediction of
remission outcomes in depressed patients, we conducted
supplementary linear regression analyses between intrin-
sic functional connectivity within the significant clusters
defined by Step 1 and baseline anxiety scores (anxiety
subscale of the HRSD3,25,43), presence of comorbid anxi-
ety diagnosis3, number of early life events42,44, body mass
index45, and cognitive impairment46. Additional supple-
mentary logistic regression analyses tested whether
PCC–ACC/mPFC connectivity would add additional
predictive power over behavioral and patient character-
istics that have previously been associated with remission
status.

Defining ACC/mPFC ROI mask
The ACC/mPFC ROI as defined based on an automated

meta-analysis of 516 studies using NeuroSynth (www.
neurosynth.org)47 was conducted on (May, 26th 2017)
with the search term “Default Mode.” NeuroSynth uses
automated, text-based data mining on abstracts of pub-
lished neuroimaging studies to derive meta-analytic,
whole-brain maps for >3000 search terms47. The coordi-
nate with the peak Z score within the mPFC (x=−2, y=
50, z=−6) was identified using AFNI’s 3dExtrema
function on the forward inference map. To ensure that
only voxels that were part of the original NeuroSynth map
were included, and to maintain regional specificity within
the ACC/mPFC, a mask was derived by taking the overlap
of the original forward inference NeuroSynth map and a
10mm radius spherical mask centered on the identified
peak coordinates of the ACC/mPFC.

Code availability
The code used to generate the results for the current

study is available from the corresponding author on rea-
sonable request.

Results
Participant characteristics
Following the established iSPOT-D imaging protocol,

80 MDD patients completed fMRI scans before and
8 weeks after randomization to escitalopram, sertraline, or
venlafaxine-XR48. Thirty-four healthy controls similarly
were scanned at equivalent time points. Four patients
(three who received escitalopram and two who received
venlafaxine) and two controls were subsequently removed
due to excessive movement within the scanner, and one
patient and one control were excluded due to incomplete
scans. Table 1A, B provide clinical and demographic
characteristics of each group. Because remitters and non-
remitters differed on duration of MDD (t=−2.60, p=
0.011) and age (t=−2.63, p= 0.011), these variables
along with pretreatment depression severity were inclu-
ded as covariates.

General prediction of remission by connectivity with the
PCC
Step 1: General prediction by connectivity between the PCC
node of the DMN and the ACC/mPFC
At the pretreatment baseline, PCC connectivity with a

cluster spanning regions of the ACC/mPFC, distinguished
patients who subsequently went on to remit after 8 weeks
of antidepressants from those who did not remit at the
FWE threshold. The ACC/mPFC is a defining region of
the anterior DMN. Remitters were distinguished from
non-remitters by relatively intact connectivity between
the PCC and ACC/mPFC and were not distinguishable
from healthy controls. (Table 2; Fig. 1 and Supplementary

Table 1B Demographic and clinical characteristics by
group

Characteristic Non-remitters Remitters All MDD Controls

n n n n

Sex

Male 19 19 38 16

Female 20 17 37 15

Comorbid anxiety diagnosis

Yes 16 19 35 —

No 22 18 40 —
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Figure S2). A supplemental whole-brain, voxel-wise ana-
lysis revealed similar associations between the continuous
variable of symptom reduction and PCC–ACC/mPFC
(Supplementary Figure S2).

Step 2: Characterizing if connectivity predictors distinguish
patients from controls at baseline and change from baseline
to posttreatment
Planned comparisons revealed that remitters did not

differ from controls in pretreatment intrinsic functional
connectivity in the ACC/mPFC cluster (p > 0.94, d < 0.02).
However, non-remitters (unlike remitters) differed sub-
stantially from controls at baseline, showing comparative
hypo-connectivity of the PCC with anterior DMN cluster
(ACC/mPFC: p < 0.001, Cohen’s d= 1.22; Table 2; Fig. 1).
Despite lack of remission, hypo-connectivity tended to
increase at follow-up (ΔACC/mPFC: p < 0.006; Table 2;
Fig. 1. There were no changes from pretreatment to
posttreatment for controls in the ACC/mPFC cluster (p
= 0.486).

Differential prediction of remission by connectivity with
the PCC
Step 1. Differential prediction by connectivity with the PCC
node of the DMN
No clusters were identified in the differential prediction

of remission according to antidepressant type at the FWE
threshold. Similarly, no voxels survived correction in the
whole-brain, voxel-wise analysis using the continuous
variable of symptom reduction.

Specificity of prediction of remission by PCC–ACC/mPFC
connectivity
Previous studies, including those with the partici-

pants from the iSPOT-D dataset, have identified other
patient characteristics and biomarkers that predict
remission outcomes, including comorbid anxiety3,
exposure to early life trauma42,44, body mass index42,
and cognitive impairment46. Thus, in supplementary
linear regression analyses, we considered whether the
role of intrinsic connectivity in predicting remission
status may reflect differences in these predictor vari-
ables at baseline or instead contribute independently to
prediction beyond these other factors. At pretreatment
baseline, we found that ACC/mPFC connectivity
cluster was not associated with any of these variables
(Supplemental Table S1). PCC–ACC/mPFC intrinsic
functional connectivity also predicted remission above
and beyond any of these previously identified bio-
markers (Supplemental Table S2). Thus intrinsic
functional connectivity is likely to be an important
independent contributor to baseline characteristics
that predict remission outcomes.Ta

b
le

2
G
en

er
al

tr
ea

tm
en

t
p
re
d
ic
ti
on

(H
A
M
-D

re
m
is
si
on

)

Re
gi
on

(B
A
)

St
ep

1:
Si
g
ni
fi
ca
nt

p
re
d
ic
ti
on

ef
fe
ct
s

St
ep

2:
Fo

llo
w
-u
p
co

m
p
ar
is
on

s

FW
E-
C
or
r

(C
lu
st
er
)

C
lu
st
er

si
ze

(#
of

vo
xe
ls
)

x
y

z
Z
sc
or
e

(P
ea

k)

C
oh

en
’s
da

(C
lu
st
er
)

Pr
et
re
at
m
en

t
co

m
p
ar
is
on

to

co
nt
ro
ls
(C
lu
st
er
)

C
ha

ng
e
fr
om

p
re
tr
ea

tm
en

t
to

p
os
tt
re
at
m
en

t

(C
lu
st
er
)

Re
m
itt
er
s>
no

n-
re
m
itt
er
s

A
C
C
/m

PF
C
(B
A

24
)-L

0.
00

0
28
80

−
4

32
6

4.
52

R>
N
R
d
=
1.
16

N
R<

C
:p

=
0.
00

0,
d
=
1.
22

R
=
C
:p

=

0.
94
3,
d
=
0.
02

N
R:

Pr
e>

Po
st
,p

=
0.
00

6R
:P
re
=
Po

st
,p

=
0.
83
2

C
:P
re
=
Po

st
,p

=
0.
48
6

C
ol
um

ns
un

de
r
st
ep

1
ar
e
re
fe
rr
in
g
to

vo
xe
l-w

is
e
re
su
lts

fr
om

a
w
ho

le
-b
ra
in

fM
RI

an
al
ys
is
us
in
g
a
fa
m
ily
-w

is
e
er
ro
r
co
rr
ec
te
d
p-
va
lu
e
fo
r
cl
us
te
rs
at

al
ph

a
p
<
0.
00

1
cl
us
te
r
ex
te
nt

th
re
sh
ol
d.

C
ol
um

ns
un

de
r
St
ep

2
ar
e
re
fe
rr
in
g

to
th
e
st
at
is
tic
s
ca
lc
ul
at
ed

on
th
e
ex
tr
ac
te
d
be

ta
es
tim

at
es

fr
om

th
e
cl
us
te
rs

id
en

tifi
ed

in
St
ep

1
Bo

ld
va
lu
es

de
no

te
si
gn

ifi
ca
nt

ef
fe
ct
s

FW
E-
Co

rr
SP

M
8
fa
m
ily
-w

is
e
er
ro
r
co
rr
ec
te
d
p-
va
lu
e
fo
r
cl
us
te
rs

at
al
ph

a
p
<
0.
00

1
co
rr
ec
tin

g
fo
r
m
ul
tip

le
co
m
pa

ris
on

s,
cl
us
te
r
si
ze

th
e
nu

m
be

r
of

vo
xe
ls
w
ith

in
th
e
cl
us
te
r
th
at

su
rv
iv
ed

th
re
sh
ol
d,

x,
y,
z
co
or
di
na

te
s
in

M
N
I

sp
ac
e
of

th
e
pe

ak
vo

xe
li
de

nt
ifi
ed

in
th
e
cl
us
te
r,
Z
sc
or
e
th
e
Z
sc
or
e
of

th
e
pe

ak
vo

xe
lw

ith
in

th
e
cl
us
te
r,
Co

he
n’
s
d
fo
r
th
e
ex
tr
ac
te
d
be

ta
co
ef
fi
ci
en

ts
of

th
e
fu
ll
cl
us
te
r
id
en

tifi
ed

in
th
e
vo

xe
lw

is
e
an

al
ys
is
,B
A
Br
od

m
an

n
’s
ar
ea
;

L
le
ft
,A

CC
an

te
rio

r
ci
ng

ul
at
e
co
rt
ex
,m

PF
C
m
ed

ia
l
pr
ef
ro
nt
al

co
rt
ex
,R

re
m
itt
er
s,
N
R
no

n-
re
m
itt
er
s,
C
co
nt
ro
ls

a C
on

tr
ol
lin

g
fo
r
ag

e,
du

ra
tio

n
of

de
pr
es
si
ve

ep
is
od

e,
an

d
ba

se
lin

e
de

pr
es
si
on

se
ve
rit
y

Goldstein-Piekarski et al. Translational Psychiatry  (2018) 8:57 Page 7 of 11



Classification accuracy of PCC–ACC/mPFC connectivity
The ROI mask identified using our neurosynth

procedure contained 498 voxels (Fig. 2a). The con-
nectivity between the PCC and ACC/mPFC together
with the covariates of age, duration of MDD, and
pretreatment depression severity significantly pre-
dicted remission status (Δχ2 = 26.79, Δdf = 4, p <
0.0001). Importantly, the PCC–ACC/mPFC con-
nectivity contribution to classification was significant
beyond that of a model solely consisting of covariates
(Δχ2 = 16.55, Δdf = 1, W = 3.505, p < 0.001). ROC
analyses revealed high predictive accuracy, sensitivity,
and specificity for both the full model (81.9%, 78.4%,
and 82.0%, respectively; Fig. 2c) and the leave-one-out
cross-validated model (77.4%, 73.0%, and 81.6%; Fig.
2c), suggesting that this model may be generalizable.
Including the intrinsic functional predictor increased
classification model accuracy by 16.9% as compared to
a model with the covariates alone (cross-validated
accuracy = 60.5, sensitivity = 83.8%, specificity =
39.5%; Fig. 2b).

Discussion
In this study, we demonstrate that knowing about

intrinsic functional connectivity of the brain prior to
commencing treatment may be a clinically applicable
predictor, with 75% accuracy, for assessing which patients
with depression are likely to benefit from a first-line
antidepressant and which patients are not. Specifically, we
found that functional connectivity between the posterior
and anterior regions of the DMN, a network previously
associated with depression pathophysiology, predicts
clinical remission following antidepressant treatment.
When connectivity was disrupted, it predicted poorer
treatment outcomes. This predictive relationship was
observed for outcomes defined by remission and the
magnitude of symptom change. We have confidence that
these results are generalizable across definitions of the
DMN, as predictive accuracy remained high (75%) when
examining connectivity based on regions defined by a
meta-analytic approach.
A striking finding in the present study was that, at

pretreatment, the profile of posterior–anterior DMN
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Fig. 2 a NeuroSynth ACC/mPFC mask used to extract connectivity with PCC for ROC analyses. ROC curve model performance in predicting remission
for 75 participants using the following predictors: b demographic/clinical measures (including age, MDD duration, and baseline depression severity)
and c demographic/covariate measures and the connectivity between the PCC seed and the NeuroSynth-defined ACC/mPFC mask. AUC area under
the curve, ROC receiver operating characteristic, FC functional connectivity, ACC anterior cingulate cortex, mPFC medial prefrontal cortex
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connectivity in eventual remitters closely resembled that
of healthy controls. One potential interpretation of this
resemblance is that the intrinsic functional organization
of DMN connections must be substantially intact in order
to confer the neural capacity to mount a clinically sig-
nificant acute response to antidepressant treatment. A
further implication is that utilizing alternative interven-
tions that have the capacity to directly alter intrinsic
functional connectivity within these networks such as
transcranial magnetic stimulation prior to beginning
antidepressant treatment may aide in remediating symp-
toms in those individuals with dysfunctional connectivity.
Critically, the absence of associations between
posterior–anterior DMN connectivity and several other
variables that had been previously associated with
depression course suggests that the intrinsic functional
connectivity may provide additional information about
treatment outcome that would not be available through
other clinical, behavioral, or demographic measures. This
profile of abnormal pretreatment connectivity in non-
remitters attenuated after 8 weeks of follow-up despite the
lack of clinical remission. Because attenuation of
abnormality was in the direction of taking the patients
closer to healthy controls, it is possible that non-remitters
would in fact remit on a longer course of treatment. It is
also possible that factors independent of treatment or
clinical characteristics drive the profiles of functional
connectivity that distinguish non-remitters from both
remitters and controls. These possibilities require further
investigation, including in a study of longer-term treat-
ment phases.
Our finding that intrinsic connectivity in the pretreat-

ment state may differ as a function of subsequent treat-
ment outcome might help disentangle the question of
how and to what extent disrupted connectivity is a
common characteristic of depressive disorder itself. Some
studies have reported that MDD is characterized by hypo-
connectivity of posterior and anterior regions of the DMN
relative to controls (e.g., refs 22,23), while others suggest
hyper-connectivity (e.g., ref. 11) and yet others, no differ-
ence10,20. The results from the current study together with
prior findings indicating unique subtypes of depression
that are defined by the presence or absence of
PCC–mPFC connectivity20 suggest that MDD may in fact
comprise multiple intrinsic connectivity types, including
some patients who have disrupted connectivity as well as
others who do not, and that these types may be important
for treatment outcome.
Previously studies have typically estimated intrinsic

functional connectivity using a resting-state scan that is
distinct from task conditions. Here we estimated intrinsic
connectivity extracted from regular periods of rest within
a standardized series of cognitive and emotional task
conditions. This procedure was developed based on

principles of ecological validity to mimic participants
switching between rest and task in their natural world
functioning. This procedure has been shown to yield
intrinsic default mode connectivity that is highly corre-
lated with “stand-alone” resting condition connectivity30

and is internally consistent between each contributing
task condition30,31. However, given evidence that func-
tional connectivity elicited by task conditions can persist
into periods of rest49, future studies should compare our
results to those using more traditional stand-alone rest-
ing-state scans.
These findings should be appreciated within the context

of certain limitations. Owing to the practical trial design,
antidepressants in the study were limited to those in
common use at each treatment site. It would be important
for future studies to verify whether functional connectivity
also predicts remission when using other antidepressants
and second-generation antipsychotics with antidepressant
properties that have distinct mechanisms of action, as well
as psychotherapy. Similarly, it would be important to
evaluate whether different disruptions to intrinsic func-
tional connectivity differentially predict outcomes for
multiple different active treatments. Moreover, in this
study treatment outcome was only assessed at the 8-week
time point. Including multiple follow-ups before and after
the 8-week time point would be important to determine
whether predictive relationships change as a function of
time during treatment.
In conclusion, our results advance the understanding of

the contribution of functional connectivity to the patho-
physiology of MDD and response to antidepressant
treatment. We show, in a relatively large treatment sam-
ple, that pretreatment functional connectivity profiles
hold promise for developing neuroscience-informed
approach to mental disorder and its management.
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