
Polushina et al. Translational Psychiatry  (2017) 7:1289 
DOI 10.1038/s41398-017-0033-2 Translational Psychiatry

ART ICLE Open Ac ce s s

Analysis of the joint effect of SNPs to
identify independent loci and allelic
heterogeneity in schizophrenia GWAS data
Tatiana Polushina1,2, Sudheer Giddaluru1,2, Francesco Bettella3,4, Thomas Espeseth 4,5, Astri J. Lundervold6,7,
Srdjan Djurovic1, Sven Cichon8,9,10,11, Per Hoffmann 8,9,10, Markus M. Nöthen9,10, Vidar M. Steen1,2,
Ole A. Andreassen 3,4 and Stéphanie Le Hellard1,2

Abstract
We have tested published methods for capturing allelic heterogeneity and identifying loci of joint effects to uncover
more of the “hidden heritability” of schizophrenia (SCZ). We used two tools, cojo-GCTA and multi-SNP, to analyze
meta-statistics from the latest genome-wide association study (GWAS) on SCZ by the Psychiatric Genomics
Consortium (PGC). Stepwise regression on markers with p values <10−7 in cojo-GCTA identified 96 independent
signals. Eighty-five passed the genome-wide significance threshold. Cross-validation of cojo-GCTA by CLUMP was 76%,
i.e., 26 of the loci identified by the PGC using CLUMP were found to be dependent on another locus by cojo-GCTA.
The overlap between cojo-GCTA and multi-SNP was better (up to 92%). Three markers reached genome-wide
significance (5 × 10−8) in a joint effect model. In addition, two loci showed possible allelic heterogeneity within 1-Mb
genomic regions, while CLUMP analysis had identified 16 such regions. Cojo-GCTA identified fewer independent loci
than CLUMP and seems to be more conservative, probably because it accounts for long-range LD and interaction
effects between markers. These findings also explain why fewer loci with possible allelic heterogeneity remained
significant after cojo-GCTA analysis. With multi-SNP, 86 markers were selected at the threshold 10−7. Multi-SNP
identifies fewer independent signals, due to splitting of the data and use of smaller samples. We recommend that
cojo-GCTA and multi-SNP are used for post-GWAS analysis of all traits to call independent loci. We conclude that only a
few loci in SCZ show joint effects or allelic heterogeneity, but this could be due to lack of power for that data set.

Introduction
Schizophrenia (SCZ) places a heavy burden on patients

and on society. Its heritability is estimated by recent twin
or family studies to be between 641 and 75%2. Genome-
wide association studies (GWAS) have contributed
important information about genetic markers of the dis-
order; the most recent Psychiatric Genomics Consortium
(PGC) meta-analysis identified 108 genomic loci

containing common genetic variants associated with
SCZ3. However, each of these common genetic factors
has only a small effect on the disease susceptibility. The
relatively low proportion of variance explained by
genome-wide-significant hits from GWAS data is a
typical observation for complex traits with polygenic
architecture.
In classical GWAS analysis, the collection of signals

with an association p value below the genome-wide
threshold (5× 10−8) constitutes the set of associated loci.
Although this cutoff is necessary to avoid type 1 errors, it
has been shown since such a conservative approach
probably creates many type 2 errors, leaving numerous
associations of smaller effect undetected. Purcell et al.4

first showed that with increasingly liberal significance
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thresholds, more variability in complex disorders,
including SCZ, could be explained. The proportion of
variance in case–control status that can be explained by
the genotyped single-nucleotide polymorphisms (SNPs)
significantly increases when the threshold is lowered from
the genome-wide significance level to 0.05 for each of 40
target subgroups of the primary GWAS (for example, for
the Edinburgh cohort it increases from 0.027 to 0.286)3.
Across all the samples, the estimated variance rises from
0.026 to 0.184. The polygenic risk score calculated using
the significance threshold of 0.05 explains nearly 7% of
variance on the liability scale across all the samples,
whereas the genome-wide significant hits only explain
about 3.4% of variance. This difference between the
phenotypic variance explained by genome-wide sig-
nificant SNPs and the phenotypic variance explained by
genotyped variation is well-documented and known as
“hidden heritability.” It will probably become smaller as
larger samples are analyzed, but alternative statistical
methods may also help to capture some of this association
signal. For instance, joint effects tools focus on allelic
heterogeneity and imperfect tagging data5,6. In the case of
imperfect tagging, a single genotyped (or imputed) variant
might not entirely explain the variation at a locus that
occurs due to a single unknown causal variant. In the case
of allelic heterogeneity, a single hit is unlikely to capture
all the linkage disequilibrium (LD) between the several
unknown causal SNPs and the genotyped variants at the
locus. For example, the locus may contain two causal
variants, the first increasing the risk for a trait, and the
second one being protective. If these markers are corre-
lated, marginal effect methods cannot detect the asso-
ciations, because individuals who carry both variants have
very little or no increased risk for a disorder. For those
situations, a model where observed phenotype is influ-
enced at each locus by variants that could be approxi-
mated by a linear combination of several independent
observed markers is more reasonable and would explain
more phenotypic variation. Using joint and conditional
(cojo-GCTA) analysis of GWAS data for height, Yang
et al.5 identified loci with multiple independent SNPs, and
found 49 additional associated SNPs that explained
around 1.3% of the phenotypic variation. Using the multi-
SNP approach, Ehret et al.6 showed that 3, 2, and 1% of
additional phenotypic variance could be explained for
height, body mass index, and waist-to-hip ratio,
respectively.
Our goal is to better understand the complex genetic

architecture of SCZ using post-GWAS analysis tools. One
of the most common approaches is to apply conditional
regression within the locus of interest. However, this
requires genotype data that is not available for meta-
statistics. Cojo-GCTA and multi-SNP are the only
methods with robust approximations for conditional

regression analysis of summary data. We therefore applied
these two statistical methods to the meta-statistics from
the latest PGC SCZ GWAS (35,476 cases and 46,839
controls3) to test whether they can identify loci with joint
effects.

Subjects and methods
Participant samples
The PGC performed a meta-analysis of GWAS data in a

discovery set with 35,476 cases and 46,839 controls from
46 cohorts of European ancestry, 3 cohorts of East Asian
ancestry, and 3 family-based samples of European
ancestry, including 1235 parent affected-offspring trios3.
Since we planned to perform a comparison with the PCG-
SCZ CLUMP analysis, we used the quality control (QC)
protocol (Supplementary Methods) from the PGC-SCZ
paper, retaining a final set of 3,485,365 SNPs3.

Norwegian and German LD reference samples
The Norwegian reference sample comprised individual

genotypes from the Norwegian Cognitive NeuroGenetics
sample (NCNG, N= 670)7 and the Norwegian Themati-
cally Organized Psychosis sample (TOP, N= 1578)8. QC
for each of these cohorts was performed with the PLINK
tool9. Samples were excluded based on heterogeneity,
relatedness, and call rate. Parameters for QC were: HWE
p value of <1× 10−3; minor allele frequency of <0.01;
missingness 0.05. SNP data for the NCNG and TOP
cohorts were imputed to the 1000 Genomes panel by
MACH10 separately and merged after QC.
The German reference samples comprised indivi-

dual genotypes from the Heinz Nixdorf RECALL
study11. Genotyping was performed on the HNR-
HumanOmniExpress_12v1_B, HNR-HumanOmniEx-
press_12v1_H, and HNR-HumanOmni1-Quad_v1_H
chips. The QC parameters for retaining SNPs and sub-
jects were: SNP missingness <0.05 (before sample
removal); subject missingness <0.05; HWE p value >10−4.
In addition, only individuals with concordant sex infor-
mation were retained, and only one subject was kept for
each pair of individuals with π̂ > 0.1875. The processed
samples were merged and imputed to the 1000 Genomes
panel using the ENIGMA imputation protocol12,13.
The imputed Norwegian and German samples were

both checked for HWE p values, imputation score,
missingness, and outliers. After stringent QC (Supple-
mentary Methods), the number of unrelated individuals in
the Norwegian and German cohorts was 2200 and 2478,
respectively. For the conditional analysis, we kept
7,111,233 markers that were present in both the Norwe-
gian and German genotypes.
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Statistical analyses with cojo-GCTA
In this model5, each locus is interrogated with a joint

combination of several independent markers. The
approximate LD structure is obtained from an external
reference sample, and the SNPs are selected in a stepwise
manner using the GCTA tool presented by Yang et al.5

For replication, the authors5 recommend performing the
joint analysis with two reference populations that are
independent from each other, each containing >2000
unrelated individuals to avoid bias. We conducted the
stepwise procedure in GCTA with various thresholds
from 10−3 to 5× 10−8 and two external LD reference
samples, the Norwegian and German cohorts. In this step,
the Norwegian LD reference sample was used for identi-
fication of SNPs, and the German LD reference sample
was used for validation of the findings. We observed that
below the threshold of 10−7, the validation rate drops
substantially. Therefore, we selected the threshold of 10−7

for the main analysis with the merged Norwegian and
German samples as the LD reference.

Validation with multi-SNP
Since we wanted to further validate the results from

cojo-GCTA, we also compared the list of independent
SNPs identified by cojo-GCTA with the list of loci of joint
effect identified by the multi-SNP method6. Both methods
apply joint effect models, but the validation methods vary.
Ehret et al.6 recommend splitting the sample into dis-
covery and validation subsets to avoid bias in the SNP
selection process. The discovery subset is used to extract a
set of markers that (1) show significant association in the
discovery subset (p value <10−7) and (2) are not in pair-
wise LD (r2> 0.1) with any other markers with the lowest
p value. The replication subset is used for unbiased esti-
mation of the effect sizes for the selected multi-SNP list.
In this step, the tool performs estimation of the joint
effect of the multi-SNP list.
We applied the multi-SNP association method to the

summary statistics from the PGC SCZ subsets. We
obtained access to summary statistics for 52 individual
subsamples and randomly split the subsamples into dis-
covery and validation sets. Using the METAL tool14, we
performed meta-analysis on the summary statistics from
26 individual subsamples as the discovery set and on the
summary statistics from 26 individual subsamples as the
validation set. We kept the same 3,485,365 SNPs in both
sets that were analyzed by cojo-GCTA. The European
cohort from the HapMap project release II+ III15 was
used to estimate the LD structure6.

Gene annotation
The final list of SNPs that showed joint effects and

genome-wide significant p values after cojo-GCTA, and
which had not been reported previously by the PGC-SCZ,

was used to define new genomic loci associated with SCZ.
The genomic loci were defined by the associated SNP and
all SNPs in LD with the associated SNP (r2> 0.2). Gene
annotations were performed with the aid of the LDsnpR
package16 and the RefSeq gene list17.

Code availability
The following programs were used in this study: GCTA

(cojo-GCTA option)5; multi-SNP6; PLINK9; MACH10;
METAL14; and LDSnpR16. All are publicly available.

Results
We applied conditional regression-GCTA (cojo-

GCTA)5 and multi-SNP6 to the PGC-SCZ GWAS sum-
mary data. In these two methods, each locus is analyzed
with a combination of several independent markers, cor-
rected for LD between the markers.

Identification of an independent set of SNPs associated
with SCZ using cojo-GCTA
Cojo-GCTA requires summary statistics (effect size,

standard error, p value, and allele frequency) and geno-
types from a reference population for LD estimation. We
used about 3.5 million SNPs from the publicly available
PGC-SCZ summary statistics3. Since the LD structure of
the major histocompatibility complex (MHC) region on
chromosome 6 is challenging for “multi-SNP” analysis and
requires specific analyses based on genotypes, we chose to
exclude this region from our study. In the PGC SCZ
paper3, the MHC is represented only by the single most
significant SNP. We used a Norwegian sample (N= 2200
after QC) for LD reference, and an independent reference
sample of German origin (N= 2478) for validation.
The stepwise conditional regression implemented in

cojo-GCTA corrects β and p values of neighboring SNPs
(in a sliding window of 10Mb) based on the LD between
the SNPs. This stepwise procedure ensures that the SNP
with the lowest p value is selected first for conditioning
the effect on neighboring loci based on the LD between
the neighboring SNPs and the selected SNP. Following
LD-based correction of effect, all SNPs that remained
significant under a fixed threshold are run through the
same process in a stepwise manner. This process identifies
(1) the number of independent signals in a region, and (2)
association signals due to the joint effect of several SNPs.
By lowering the threshold for cojo-GCTA, we can include
more SNPs in the analysis and potentially identify more
loci with joint effects that failed to be identified by single-
marker analysis. We still keep the genome-wide sig-
nificance threshold to call associated loci, whether they
are due to a single effect or to a joint effect.
We first tested the effect of lowering the significance

threshold for the stepwise regression on the level of
validation when the Norwegian or German samples were
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used for LD reference (Table 1). When the threshold was
lowered from 10−3 to 5× 10−8, several SNPs became
significant at the genome-wide significance threshold due
to the joint effects of neighboring markers. The SNPs
identified using the Norwegian LD reference sample were
then tested for validation using the German LD reference
sample. SNPs were considered to be validated if the joint
p values passed the genome-wide significance threshold
(5× 10−8) with both LD references and if the joint p
values did not change between the two LD references. The
procedure is summarized in Supplementary Fig. 1.
By decreasing the threshold to <10−7, we observed that

the increase in additional loci identified by joint effects in
the Norwegian sample did not lead to an increase in loci
validated using the German sample as LD reference. This
is probably because by lowering the significance thresh-
old, we identified more signals due to population-specific
LD patterns.
The allele frequencies of the selected SNPs at the

threshold 10−7 estimated from either the Norwegian or
the German cohort were concordant with the frequencies
for the list used for the PGC-SCZ data (Supplementary
Fig. 2).
Thus, we established the optimal threshold to perform

the stepwise conditional regression on all SNPs with p
value <10−7, and we set 5× 10−8 as the significance
threshold for the combined effect p value after conditional
regression. In addition, after establishing those thresholds,
we used the merged German and Norwegian samples (N
= 4628, Supplementary Fig. 3) to apply cojo-GCTA to the
PGC-SCZ summary statistics to identify loci showing
allelic heterogeneity and joint effects. This better reflects
the mixed European populations used in the PGC-SCZ,
and thus lowers the risk of spurious hits while also
increasing the accuracy of joint effect estimation5.

Stepwise regression identified 96 independent markers
associated at the 10−7 threshold. Eighty-five of them
passed the genome-wide significance level (Supplemen-
tary Table 1). The other loci, with a joint p value <10−7

but >5× 10−8, are presented in Supplementary Table 2.
Next, we compared our results with independent signals

identified in the publicly available PGC-SCZ discovery
data (N= 82,315) using CLUMP3,9. A total of 108 inde-
pendent SNPs were identified as significant by the PGC-
SCZ CLUMP analysis (Supplementary Methods). In the
PGC study, the strongest associated SNP, rs114541829 (p
value of 3.48× 10−31), represents the MHC region. For
comparison with the cojo-GCTA results, we excluded this
SNP and used the remaining 107 markers.
Of the 85 independent markers identified by cojo-

GCTA, 81 were matched to genome-wide significant
SNPs in the CLUMP PGC-SCZ data. The matching cojo-
GCTA markers were either exactly the same as, or in LD
with, the CLUMP PGC-SCZ SNPs. Of the 107 CLUMP
PGC-SCZ markers, 26 were not significant after cojo-
GCTA. A major reason for this difference is that cojo-
GCTA uses a 10Mb window for LD estimation, whereas
CLUMP was performed with a 500 kb window. From the
original study5, for an LD window of 10Mb or larger, the
observed LD correlation between SNPs does not differ
substantially from that expected by chance. Supplemen-
tary Table 1 shows that the p value of all 26 markers
identified by CLUMP but not cojo-GCTA was reduced
after conditioning to another associated SNP lying within
a 10Mb window. If we use a 500 kb window, cojo-GCTA
selects 101 signals that passed the genome-wide sig-
nificance threshold. We compared these 101 SNPs with
those identified by CLUMP and by cojo-GCTA with a 10
Mb window (Supplementary Methods and Supplementary
Table 3). We found that cojo-GCTA with a 10Mb

Table 1 Number of independent SNPs for different thresholds

Threshold pth 10−3 10−4 10−5 10−6 10−7 5 × 10−8

Number of markers below threshold before CRa 82,041 35,630 18,710 11,028 6533 5706

Number of markers below threshold after CRb 7038 1048 460 200 101 88

Number of markers below 5 × 10−8 after CRc 2504 186 134 92 90 88

Number of markers validated with German cohort as LD referenced — 69 74 80 83 83

% Markers validated with German cohort as LD referencee 37% 55% 87% 92% 94%

CR conditional regression, LD linkage disequilibrium, pGerm joint p values with German LD reference, pNorg joint p values with Norwegian LD reference
aNumber of SNPs below the indicated threshold in the initial data set
bNumber of markers that were selected using the stepwise procedure with the Norwegian LD reference sample
cNumber of signals that passed the genome-wide significance threshold in the joint model
dNumber of validated SNPs: a marker is deemed validated for joint effect if it passes the genome-wide significance level (5 × 10−8) after stepwise analysis with the
Norwegian LD reference sample and after joint analysis with the German LD reference sample, and if −log10(pGerm)/−log10(pNorg) <2 (the joint p values estimated
using the Norwegian sample as LD reference do not differ essentially from the joint p values estimated using the German LD reference)
ePercentages of validated SNPs for different thresholds. For the threshold 10−3, the list of selected markers after the stepwise procedure could not be fitted with the
German sample because of redundant signals
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window produces more stable results. At the same time, it
accounts for joint effects in long-range LD, which cannot
be estimated by CLUMP.

Identification of loci with joint effects
Out of the 85 significant independent SNPs identified by

cojo-GCTA (Supplementary Table 1), four did not reach
significance in the PGC-SCZ discovery sample (Table 2).
One of these markers became significant in the replication
and discovery samples tested in the PGC-SCZ study,
when an additional sample of 1513 cases and 66,236
controls was included in the meta-analysis. This high-
lights that in some cases, cojo-GCTA can increase the
power to detect additional association signals without
having to increase the sample size.
In addition, SNPs in three loci showed increased sig-

nificance after joint model analysis (Supplementary
Table 1). Two of these loci are on chromosome 15. The
significance level of the corresponding markers, rs950169
(7.62× 10−11) and rs4702 (2.30× 10−12), substantially
increased to 5.44× 10−18 and 2.06× 10−24 respectively,
after combined analysis. The third locus, on chromosome
22, contains the signals rs61298040 (3.90× 10−8) and
rs1023500 (5.04× 10−8). The significance levels of these
two markers were improved to 4.02× 10−12 and 5.59×
10−12, respectively.
In the original cojo-GCTA article, the authors com-

pared the proportion of explained phenotypic variance
based on only the strongest signal per locus or based on
multiple signals after running the joint model. They
showed that by including additional markers, the total
explained phenotypic variance increases. We were unable
to test for the increase in variance explained by these joint
effects because we do not have access to the genotypes
and case–control status of the samples.

Identification of two loci with allelic heterogeneity
Most of the genomic regions identified by cojo-GCTA

contained only one signal of association when a genomic

window of 1Mb was examined around the association.
However, we found two regions that contained several
independent signals within <1Mb (Fig. 1a). One region,
on chromosome 18, contains two independent SNPs,
rs11874716, and rs9636107, with joint p values of 8.67×
10−12 and 3.73× 10−8, respectively. This region covers
449 kb and contains just one gene, TCF418. The second
region (Fig. 1b) contains two independent markers,
rs61298040 and rs1023500, with joint p values of 4.02×
10−12 and 5.59× 10−13. This 640 kb region on chromo-
some 22 contains 18 genes. Using the same 1Mb window
criterion, 16 loci with potential allelic heterogeneity were
identified by CLUMP (Supplementary Table 1). Thus, it
seems that cojo-GCTA is also more conservative in its
estimates than the CLUMP procedure in assessing allelic
heterogeneity.

Annotation of loci
We annotated only the regions that became significant

in cojo-GCTA at the genome-wide significance level, and
that were not described previously by the PGC-SCZ study.
For these three regions of association (Table 3), the
genomic boundaries were defined based on the LD
around the associated markers. Two genes mapped to a
genomic region on chromosome 15 that contains the
genes NR2F2 and NR2F2-AS1 (Supplementary Table 4).
These two genes were previously associated with migraine
and motion sickness19,20. Ten genes mapped to a locus on
chromosome 2 containing the genes C2orf16, ZNF512,
CCDC121, GPN1, SUPT7L, SLC4A1AP, MRPL33, RBKS,
BRE, and MIR4263 (Supplementary Table 4). SLC4A1AP
has been associated with Alzheimer’s disease21. C2orf16
and ZNF512 are related to triglyceride and calcium
levels22–24. In the third genomic locus, also on chromo-
some 2, the marker rs1509378 maps to LOC102723362,
which is associated with self-rated health and low-density
lipoprotein cholesterol level25,26 (Supplementary Table 4).

Table 2 SNPs that became significant in the joint analysis using the merged Norwegian and German cohorts as LD
reference

SNPa Positionb p value PGC discoveryc pJ after CRd PGC p value discovery + replicatione

rs1509378 2: 22,754,466 8.37 × 10−8 4.23 × 10−8 Not reported

rs12474906 2: 28,033,538 1.01 × 10−7 4.99 × 10−8 1.36 × 10−7

rs12148337 15: 70,589,272 5.33 × 10−8 6.51 × 10−9 1.78 × 10−8

rs2398180 15: 96,863,169 0.002 6.37 × 10−9 Not reported

adbSNP reference ID for the SNP
bGenomic position (chromosome:base pair) of the marker based on UCSC hg19/NCBI build 37
cp values in the PGC-SCZ discovery sample
d p values in the joint effect model with merged Norwegian and German LD reference samples
e Information from the PGC for replication testing of each marker
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Fig. 1 (See legend on next page.)
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Validation of findings with multi-SNP
We next analyzed the same GWAS summary statistics

with multi-SNP. This method6 filters markers based on
their marginal effects and p values and pairwise LD. The
authors recommend splitting the meta-statistics into
discovery and validation subsets to avoid any bias in
estimations6. Thus, we performed a discovery meta-
analysis of 26 single sample summary statistics and a
validation meta-analysis of 26 single sample summary
statistics. Markers were declared associated if they were
identified in the discovery sample and validated in the
replication sample at 10−7 after running multi-SNP. For
this procedure, the LD window was 1Mb and the r2

threshold was 0.1 (HapMap 2 CEU reference sample). A
total of 86 loci were identified.
We then compared the 86 multi-SNP SNPs with the 96

cojo-GCTA markers with joint pj value <10−7. As many
as 84 of the 86 multi-SNP loci corresponded to loci
identified by the cojo-GCTA procedure, i.e., 87% of the
loci identified by cojo-GCTA are validated by multi-SNP
(Supplementary Table 5). Remarkably, if we consider only
the 85 loci that reach genome-wide significance after
cojo-GCTA, 79 of them overlap with the multi-SNP loci
(i.e., 92% validation). Two markers identified by multi-
SNP, rs10860964, and rs2434531, did not reach the sig-
nificance threshold after cojo-GCTA analysis (Supple-
mentary Table 5). Two markers identified by multi-SNP
(rs1451488 and rs12996313) corresponded to one marker
identified by cojo-GCTA (rs796364). Out of the 84
regions of association identified by multi-SNP, 74 SNPs
corresponded to either the same SNPs identified by cojo-
GCTA or to markers in strong LD. The remaining nine

markers are located within 1Mb of the genomic loci
identified by cojo-GCTA.
The additional 13 regions identified with cojo-GCTA

but not with multi-SNP analysis are most likely explained
by differences in (1) the external LD reference (since cojo-
GCTA uses a German/Norwegian genotyped sample,
whereas multi-SNP uses the HapMap 2 CEU reference
sample11), and (2) the statistical method used to calculate
the joint effects and the power of the studies, since the
multi-SNP meta p values were calculated using smaller
discovery and validation sets.

Discussion
In this study, we have used the conditional regression

method from Yang et al.5 (cojo-GCTA) and the multi-
SNP method from Ehret et al.6 on the meta-statistics from
the latest analysis of SCZ by the PGC3, to try and capture
allelic heterogeneity and loci of joint effects in this
GWAS. At present, there is no “gold standard” for con-
ditional regression analysis of metastatistics, but these
approaches have successfully identified additional inde-
pendent signals in GWAS of height (N= 49 in the paper
by Yang et al.5 and N= 44 in the paper by Ehret et al.6). In
the body mass index (BMI) GWAS, Yang et al.5 did not
find additional SNPs, while Ehret et al.6 found 10 new
signals. These results suggest that the portion of the
missing heritability due to multiple independent effects
per locus is not insignificant, but varies across human
traits, which might be due to different polygenicity level
or to power.
Using the strict threshold of p value <10−7 to select

SNPs in stepwise regression, cojo-GCTA identified 96
independent signals, 85 of which passed the genome-wide
significance threshold. The PGC-SCZ study, using the
CLUMP method, identified 107 SNPs (excluding the
MHC region) in independent loci in the discovery sample.
One reason for this difference is that the two methods
correct for LD and assess the range of LD in different
ways. For a single locus, cojo-GCTA can account for
longer range LD effects up to 10Mb, while CLUMP has so
far been limited to 500 kb. Therefore, with cojo-GCTA,
we can correct for LD effects in larger regions. The other
main difference is that cojo-GCTA adjusts the β values of
neighboring markers, thus taking into consideration both
LD and the direction of effects between SNPs. While the

(see figure on previous page)
Fig. 1 Loci with multiple independent signals of association. The plots show the results for the joint and conditional analysis with merged
Norwegian and German cohorts as the LD reference sample for the loci on chromosome 18 (a) and chromosome 22 (b). On each plot, several
independent signals are identified using the stepwise procedure within a 10 Mb window in cojo-GCTA. SNPs are plotted according to their
chromosomal positions based on UCSC hg19/NCBI build 37. The –log10(p values) of the SNPs are shown on each plot. LD values between the lead
SNP and the other markers are indicated by color. Genes located in the region of interest are indicated at the bottom. Plots were generated using the
LocusZoom tool34

Table 3 Annotation of the independent markers to genes

Positiona Gene(s) in regionb

2: 22,621,296–22,821,666 LOC102723362

2: 27,784,034–28,281,545 C2orf16, ZNF512, CCDC121, GPN1, SUPT7L,

SLC4A1AP, MRPL33, RBKS, BRE, MIR4263

15: 96,817,467–96,866,320 NR2F2, NR2F2-AS1

aLocus positions are displayed as chromosome:start–end based on UCSC hg19/
NCBI build 37. Loci were delimited by taking into account all markers in LD with
the marker selected by cojo-GCTA
bRegions were screened for gene content using RefSeq in the UCSC genome
browser
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validation of cojo-GCTA by multi-SNP was up to 92%, the
validation of cojo-GCTA by CLUMP was 76%. Taking
these findings into consideration, it appears that the set of
independent SNPs identified by cojo-GCTA is more
conservative than that identified by CLUMP. Thus, in
future studies and in analyses of independent markers in
GWAS, we would recommend applying the cojo-GCTA
and/or multi-SNP methods as complementary approaches
to the standard CLUMP procedure, since the tools are
easy, versatile, and computationally fast. Both methods
have shown good agreement with each other and with the
CLUMP analysis. In contrast to cojo-GCTA, the multi-
SNP protocol suggests splitting the summary statistics
into discovery and validation sets. This avoids selection
bias, but at the same time, the sample sizes are decreased,
and therefore there is less power to identify signals of
association27. These secondary analyses of GWAS were
performed recently with cojo-GCTA for several pheno-
types (coronary artery disease28, educational attainment29,
subjective well-being, depressive symptoms, and neuroti-
cism30), and will most likely become more common in
future GWASs.
After including cojo-GCTA, four additional SNPs

became significant in the joint effect model, and the level
of significance of three of them increased substantially.
The significance level was unchanged for the majority of
independent markers. Applying the same method to a
GWAS of height, Yang et al.5 found that the significance
of 29 SNPs (out of a total of 247) was greatly improved,
while 2 SNPs for BMI were improved at the threshold 5×
10−6 and none at the genome-wide significance level.
Similarly, the number of loci with multiple independent
SCZ-associated SNPs was relatively low, i.e., only two 1
Mb loci had possible allelic heterogeneity. In comparison,
Yang et al.5 identified 36 loci showing allelic heterogeneity
for height in the GIANT samples, but none for BMI. We
have provided comparison of cojo-GCTA results across
several traits with complex polygenic architecture in
the Supplementary Material and conclude that the density
of markers is unlikely to explain the difference seen in the
number of loci with joint effects or allelic heterogeneity
between GWAS. The number of independent markers
probably depends on the power of the initial GWAS.
Thus, it will be interesting to perform cojo-GCTA in
studies of larger SCZ samples, to evaluate how much
allelic heterogeneity is then found.
The two loci with evidence of allelic heterogeneity in

SCZ are located on chromosomes 18 and 22. The locus on
chromosome 18 encompasses the gene TCF4, which has
previously been shown to have potential allelic hetero-
geneity, since other markers in the gene are associated
with phenotypes related to SCZ18. The locus on chro-
mosome 22 encompasses several genes and has been
reported previously to be associated with SCZ31 and

Alzheimer disease32. More work will be needed to
understand the relationship between these independent
markers and whether they target the same genes (espe-
cially for the locus on chromosome 22).
We excluded the MHC region from the analysis because

this region presents a complex LD structure. Although
conditional regression analyses have successfully identi-
fied the number of independent associations in other
complex phenotypes associated with the MHC region,
these analyses require access to genotypes, which were
not available to us. Identifying the number of independent
associations in the MHC was not the purpose of our
investigation, and other studies have successfully focused
specifically on this region. For instance, a recent study
showed that the C4 structure is crucial for the develop-
ment of SCZ and might explain the main signal of asso-
ciation to this region in SCZ33.
Contrary to our expectations, we found that the number

of markers showing genome-wide significance was lower
when independent signals were identified with cojo-
GCTA than with CLUMP, and we show that this is likely
due to long-range LD. However, we confirm the associa-
tion of 85 independent loci with SCZ (in addition to the
MHC locus), and we identified two loci with multiple
signals that should be further examined. Thus, the sys-
tematic analysis of independent markers located at the
same loci with the methods we used here can enrich our
current understanding of complex disease architecture
and provide insights into designing further tools for post-
GWAS studies.
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