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Schizophrenia-risk and urban birth are
associated with proteomic changes in
neonatal dried blood spots
Jason D. Cooper1, Sureyya Ozcan1, Renee M. Gardner2, Nitin Rustogi1, Susanne Wicks2,3, Geertje F. van Rees1,
F. Markus Leweke4, Christina Dalman2,3, Håkan Karlsson2 and Sabine Bahn1

Abstract
In the present study, we tested whether there were proteomic differences in blood between schizophrenia patients
after the initial onset of the disorder and controls; and whether those differences were also present at birth among
neonates who later developed schizophrenia compared to those without a psychiatric admission. We used multiple
reaction monitoring mass spectrometry to quantify 77 proteins (147 peptides) in serum samples from 60 first-onset
drug-naive schizophrenia patients and 77 controls, and 96 proteins (152 peptides) in 892 newborn blood-spot (NBS)
samples collected between 1975 and 1985. Both serum and NBS studies showed significant alterations in protein
levels. Serum results revealed that Haptoglobin and Plasma protease C1 inhibitor were significantly upregulated in
first-onset schizophrenia patients (corrected P < 0.05). Alpha-2-antiplasmin, Complement C4-A and Antithrombin-III
were increased in first-onset schizophrenia patients (uncorrected P-values 0.041, 0.036 and 0.013, respectively) and also
increased in newborn babies who later develop schizophrenia (P-values 0.0058, 0.013 and 0.044, respectively). We also
tested whether protein abundance at birth was associated with exposure to an urban environment during pregnancy
and found highly significant proteomic differences at birth between urban and rural environments. The prediction
model for urbanicity had excellent predictive performance in both discovery (area under the receiver operating
characteristic curve (AUC) = 0.90) and validation (AUC = 0.89) sample sets. We hope that future biomarker studies
based on stored NBS samples will identify prognostic disease indicators and targets for preventive measures for
neurodevelopmental conditions, particularly those with onset during early childhood, such as autism spectrum
disorder.

Introduction
Despite decades of research, the aetiology of schizo-

phrenia is poorly understood. Schizophrenia is a severe
and disabling psychiatric disorder involving impairments
in perception, cognition and motivation that usually
become evident in late adolescence or early adulthood.

Early diagnosis of schizophrenia is beneficial for patients
as shorter periods of untreated psychosis have been linked
to better patient outcomes1. However, as there are no
diagnostic tests for schizophrenia, diagnosis is still based
on the evaluation of signs and symptoms in clinical
interviews. Consequently, misdiagnosis is common2 as
patients are required to acknowledge the occurrence of
symptoms of psychosis, such as hallucinations and delu-
sions. Furthermore, other psychiatric disorders can pre-
sent with overlapping symptoms.
To date, most proteomic and biomarker studies have

focused on the detection of changes in protein levels in
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patients with confirmed disease status versus healthy
individuals. However, for certain adult onset diseases such
as type 2 diabetes, hypertension and stroke, increasing
attention is being given to detecting prognostic disease
markers in early life and even in newborn babies3. Early
detection of disease predisposition could allow for tar-
geted prevention or amelioration of disease course before
overt symptoms develop. This could be achieved by
therapeutic or lifestyle interventions.
Since the late 1960s, newborn blood-spot (NBS)

screening programs have become routine to test for rare
but serious metabolic health conditions, such as cystic
fibrosis and sickle cell disease. The stability of DNA, RNA,
small molecules and proteins within the dried blood-spot
(DBS), combined with the ease of collection, shipping and
storage provide a powerful tool for screening programs
and for large population-based surveys. DBS sampling will
be particularly important for diseases like psychiatric
disorders in which patient recruitment is notoriously
difficult and expensive. We4 and other researchers5, have
previously demonstrated the potential utility of DBS
sampling for clinical proteomics and personalised medi-
cine applications using multiple reaction monitoring
(MRM). In MRM, a highly specific, reproducible and
sensitive mass spectrometry (MS) technique, pre-defined
protein peptides or small molecules of interest can be
robustly quantified from small sample volumes.
Reported environmental risk factors for schizophrenia

that potentially affect early neurodevelopment during
pregnancy include infections6 and nutritional defi-
ciencies7, intrauterine growth restriction8 and other
pregnancy and birth complications. Established risk fac-
tors following birth include infections6, socioeconomic
and childhood adversity. Epidemiological studies have
also revealed an increased risk of developing psychiatric
disorders for individuals born9,10 and living11 in urban
environments. However, whether the effect of urbanicity
on schizophrenia incidence is a consequence of unknown
risk factors associated with place of birth, place of resi-
dence or both is unclear.
In the present study, we tested whether serum protein

abundance differed between first-onset drug-naive schi-
zophrenia patients and controls. We then tested whether
those protein differences were present in NBS samples
collected from newborn babies who later developed
schizophrenia (‘future schizophrenia patients’) and those
without a psychiatric admission. For the latter analysis, we
had to initially determine whether we could detect the
targeted protein peptides in stored NBS samples collected
from neonates born in Sweden between 1975 and 1985.
As our study population included babies exposed to urban
and rural environments during pregnancy, we also tested
whether protein abundance at birth was associated with
urbanicity.

Materials and methods
Subjects
The Cologne study, as previously described12,13, con-

sisted of serum samples from 60 first-onset drug-naive
schizophrenia patients and 79 age and sex matched con-
trols recruited by the Department of Psychiatry, Uni-
versity of Cologne (Table 1a). The ethical committees of
the Medical Faculty of the University of Cologne and
Addenbrooke’s Hospital (Cambridge, UK) approved the
protocols of this study including procedures for sample
collection and analysis. Informed consent was given in
writing by all participants.
The Stockholm population, as previously described14,

consisted of all persons (born in Sweden 1975–1985) and
treated for non-affective psychosis within psychiatric
services in Stockholm County as inpatients (from 1987) or
outpatients (from 1997 until 2004). The other population
consisted of persons born between 1975 and 1985 in two
Northern counties (Västerbotten and Norrbotten) and
treated for non-affective and other psychoses between
1987 and 2005. Control subjects had no history of inpa-
tient psychiatric admission, according to the National
Patient Register15, and had to be alive and resident in
Sweden. The controls were matched for sex, birth year
and birth hospital. The aim was to recruit two controls
per patient. Schizophrenia was defined as ICD9-code 295
(excluding 295F and 295H) or ICD10-code F20. Non-
affective psychosis (excluding schizophrenia) was defined
as ICD9-code 297, 298C–298X, 295F and 295H or ICD10-
code F21–F29. The Northern Sweden data also included
affective psychosis patients defined as ICD9-code 296 and
299 or ICD10-code F39, F333, F323, F315, F312 and F302.
We only formed a ‘psychosis patient group’ consisting of
patients with either non-affective or affective psychosis as
a validation sample set to assess whether the urban–rural
associations identified in controls could also be detected
in an independent cohort (i.e. the future disease status is
not relevant for this comparison). At the end of December
2003, the neonatal study consisted of 645 controls (no
psychiatric diagnosis, subsequently referred to as ‘con-
trols’), 172 psychosis patients and 75 schizophrenia
patients (Table 1b). All samples were stored in the same
NBS sample repository in Stockholm. We obtained the
following information through linkage to the Medical
Birth Register:16 gestational age at birth, birth weight and
length, birth order, Apgar score, head circumference,
maternal eclampsia, maternal immigration, maternal age
and place of residency (municipality) at delivery. Data on
population density (number of inhabitants per km2) for
each municipality in 1991 was obtained from Statistics
Sweden. The study was approved by the regional ethics
committee in Stockholm and all participants provided
their signed consent.
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Targeted protein quantification in NBS and serum
NBS and serum samples were prepared in a 96 plate

format as described previously4. Briefly, proteins were
extracted from serum and NBS samples using ammonium
bicarbonate. Then, disulphide bond reduction and
cysteine alkylation were performed using dithiothreitol
and iodoacetamide, respectively. Proteins digested over-
night using trypsin (Supplementary Information). Iso-
topically labelled internal standard peptides were spiked
into both NBS and serum samples prior to MS run.
Quality control (QC) samples were used in this study to
monitor method performance and instrument stability
(Supplementary Information).
In this study, a total of 101 serum proteins (172 pep-

tides), the majority previously associated with psychiatric
disorders, were selected. Three to four interference-free
transitions were selected for each targeted peptide as
described previously4. Tryptic digested peptides were
monitored using an Agilent 1290 Liquid Chromatography
(LC) system coupled with 6495 Triple Quadrupole MS
equipped with jet-stream nano ESI source operated in
positive mode. MS data were acquired in MRM mode.
The chromatographic separation was carried out on
Agilent AdvanceBio Peptide Map column (2.1× 150mm
2.7-micron) at 50 °C. Peptides were eluted over a linear
gradient from 3% to 30% acetonitrile in 0.1% formic acid
in 45 min.

Statistical analysis
Data pre-processing and quality control
Raw MS files were processed using the Skyline software

package (Version 3.1.0). Peaks were manually checked,
and peak integrations were adjusted accordingly when
necessary. The endogenous and internal standard
peptide-transition peak areas were estimated and expor-
ted as a comma delimited data file for statistical analysis in
R (Version 3.2.3)17. MS data pre-processing is described
in the Supplementary Information.

Coefficient of variation
We used the geometric coefficient of variation (CV),

which describes the amount of variability relative to the
mean, to quantify the degree of variation for the peptides
across the MS runs. For natural log transformed data, the
geometric CV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

esd
2 � 1

p

´ 100 (ref. 18), where sd is the
standard deviation of the log-transformed data. Note that
the geometric CV was used as it is important to estimate
the variability on the original scale of measurement.

Patient-control association analysis
We tested the association between relative peptide

abundance and disease status (0 control and 1 schizo-
phrenia) in the Cologne study using a logistic regression
model. As body mass index was missing for over 20% of

the participants and smoking for over 20% of patients
(Table 1a), only age and sex were available for selection.
In the analysis of schizophrenia patients and controls
from the neonatal study, we used a generalised additive
model (GAM)19. As proteins dried on filter paper can
degrade overtime20 and degradation may not be a linear
function of time, we used a GAM to allow for a smooth to
be fitted for year of birth, which represents the time of
storage. The smooth may also better fit any changes in
protein decay associated with the 1981 change in the
storage of the Swedish NBS collection cards from room
temperature to 4° and 30% humidity. In the R package
mgcv21, smooth functions of the GAM are represented
using penalised regression splines. The following covari-
ates were available for selection: sex, year of birth (linear
or smooth; Supplementary Table 1), whether the mother
was born abroad, Apgar score at 1 min, Apgar score at 5
min, parity, whether the child was the first born, caesarean
section, completed weeks of gestation, birth weight,
length at birth, head circumference, whether the baby was
small for their gestation age, age of mother, whether the
mother suffered from eclampsia, and population density
of the municipality where the mother was living at the
time of the birth of the child (grouped as 0.1–49, 50–99,
100–499, 500–999, 1000–2999 and 3000–3999 per km2).
We used the R package mice22 to replace missing cov-
ariate values using multiple-imputation (Supplementary
Table 2). Model selection was based on forward-selection
with Bayesian information criterion. We also fitted a joint
effects model to predict disease status using ten-fold
cross-validation with least absolute shrinkage and selec-
tion operator (lasso; Supplementary Information) regres-
sion as implemented in the R package glmnet23,24.

Urban–rural association analysis
We tested the association between relative peptide

abundance and urbanicity at birth (0 rural and 1 urban) in
controls from the neonatal study using a GAM. Rural was
defined as a population density <50 per km2 and urban
centre as a population density ≥1000 per km2 (1500 per
km2 used by European Union Organisation for Economic
Co-operation and Development25 which falls within our
population density group 1000–2999 per km2), respec-
tively containing 182 and 214 controls. Model selection,
including lasso regression, and variables available for
selection were as in the case–control comparison. We
attempted to validate the urbanicity prediction model in
34 rural and 45 urban future (affective and non-affective)
psychosis patients from the neonatal study. However, only
location of birth and not future disease status were rele-
vant for this comparison.
We measured the predictive performance of the diag-

nostic biomarker panel using sensitivity, specificity and
area under the receiver operating characteristic curves
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(AUC: 0.9–1= excellent; 0.8–0.9= good; 0.7–0.8= fair;
0.6–0.7= poor; 0.5–0.6= fail). Optimal trade-offs
between sensitivity and specificity were determined by
maximising Youden’s index J; where J= sensitivity+
specificity− 1.

Results
Targeted protein detection and their coefficients of
variation
We monitored 77 proteins (147 peptides) in 139 serum

samples from Cologne. These samples were randomly
assigned to two 96-well plates, the second plate was half
filled, and run over one and a half weeks on the MS. We
used the CV to quantify the degree of variation (robust-
ness) in the relative peptide abundances measured in a
pooled serum sample. The median CV across the plates
was 7.23% (6.54% in plate 1 and 7.92% in plate 2; Sup-
plementary Fig. 1a).
As we have previously only processed DBS samples

within 6 months of collection4, we had to determine
whether we could detect the targeted protein peptides in
stored NBS samples collected between 1975 and 1985
(Supplementary Table 1). We initially tested ten samples
collected in 1975 and 1985, five from each year. A total of
101 serum proteins were monitored in these test samples
(data not shown) and 96 proteins (152 peptides) were
selected and subsequently, monitored in 892 NBS sam-
ples. The samples were randomly assigned to ten 96-well
plates and run over 10 weeks on the MS.
The median CV for the relative peptide abundances

measured in a pooled NBS sample across plates 2–10 was
10.83% (range 9.50–11.52%; Supplementary Fig. 1b),
clearly demonstrating that we could reproducibly measure
the targeted peptides in stored NBS samples collected
between 1975 and 1985.

Patient and control analysis
After QC, we analysed 68 proteins (128 peptides; Sup-

plementary Table 3) in 60 first-onset drug-naive schizo-
phrenia patients and 77 controls from Cologne. A total of
14 proteins (22 peptides) had an uncorrected P< 0.05 for
abundance differences between patients and controls
(Table 2a). After P-values were corrected for multiple
testing, three Haptoglobin (HPT) peptides and a Plasma
Protease C1 Inhibitor (IC1) peptide were significant. The
volcano plot suggested that there were more peptide-
transitions with higher abundances in schizophrenia
patients than would be expected by chance alone (Fig. 1a);
which would result in a more symmetric pattern about
around the log2 fold-change of zero. We note that only
the apolipoproteins A2, A3, A4, C1 and C3 were down-
regulated in patients compared to controls (Table 2a; Fig.
1a). In total, 13 of these 14 proteins have previously been
associated with schizophrenia (Table 4). Although IC1 has

not been linked to schizophrenia before, recent reports
have linked IC1 dysregulation to Alzheimer’s disease26,27.
The lasso prediction model consisted of 11 proteins (11
peptides; Supplementary Table 6a), and despite the
absence of a clinical rating scale predictor, had a good
predictive performance (area under the receiver operating
characteristic curve (AUC= 0.80)).
We then investigated whether any of these 14 proteins

(Table 2a) also differed in abundance at birth. To this end,
we analysed NBS samples obtained from 75 future schi-
zophrenia patients and 644 controls. In total, 12 of the 14
proteins were available for analysis. We found Alpha-2-
antiplasmin (A2AP), Complement C4-A (CO4A) and
Antithrombin-III (ANT3) to be significantly different at
birth (one-sided P< 0.05; Table 2b) as well as after the
onset of the disorder. We also analysed the remaining 73
proteins (110 peptides) measured in the neonatal study to
investigate whether the abundance of any other proteins
was significantly different at birth. No other proteins were
significantly different between future schizophrenia
patients and controls after P-values were corrected for
multiple testing (Table 2c). As in the first-onset schizo-
phrenia analysis (Fig. 1a), there were more peptide-
transitions with higher abundances in future schizo-
phrenia patients compared to controls (Fig. 1b).

Urbanicity
As birth in an urban environment has been associated

with an increased risk for psychiatric disorders, we ana-
lysed 85 proteins (125 peptides) measured in 396 controls,
214 from urban and 182 from rural environments, to test
whether protein abundance ratios at birth differed by
urban–rural environment. Abundancies of 24 proteins (26
peptides) differed significantly after P-values were cor-
rected for multiple testing and had a fold-change >10%
(Fig. 1c; Table 3). We then attempted to validate these 24
proteins using NBS from 79 psychosis patients, 45 from
urban and 34 from rural environments. Fifteen of the 24
proteins were validated (16 peptides; one-sided P< 0.05;
Table 3). We did not attempt to further validate the
associations in the future schizophrenia patients because
of the relatively small number of patients from urban and
rural environments, 17 and 38 respectively.
The lasso urbanicity prediction model, fitted to the

controls, consisted of one covariate and 13 proteins (13
peptides; Supplementary Table 6b) and had an excellent
predictive performance (AUC= 0.90; Supplementary Fig.
2). We attempted to validate the fitted model in the
psychosis patients and found that the excellent predictive
performance was maintained (AUC= 0.89; Supplemen-
tary Fig. 2).
The common functional pathways of the differentially

expressed peptides listed in Tables 1 and 2 are sum-
marised in Table 4.
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Table 2 (a) The most associated protein peptides with an uncorrected P < 0.05 for the difference between 60 first-onset
schizophrenia patients and 77 controls from the Cologne study. (b) The association for 12 of the 14 proteins reported in
(a) and available in the 75 future schizophrenia patients and 644 controls from the neonatal study. (c) The most
associated protein peptides with an uncorrected P < 0.10 for the 75 future schizophrenia patients and 644 controls from
the neonatal study

(a) Cologne study

Protein Peptide First-onset schizophrenia and controls

Fold-change P Corrected P

Haptoglobin (HPT) VTSIQDWVQK 1.54 0.000535 0.0283

Haptoglobin (HPT) DYAEVGR 1.56 0.000542 0.0283

Haptoglobin (HPT) VGYVSGWGR 1.53 0.000653 0.0283

Plasma protease C1 inhibitor (IC1) TNLESILSYPK 1.36 0.001480 0.0481

Apolipoprotein C-III (APOC3) GWVTDGFSSLK −1.25 0.00308 0.0801

Apolipoprotein A-IV (APOA4) IDQNVEELK −1.26 0.00829 0.172

Plasma protease C1 inhibitor (IC1) FQPTLLTLPR 1.34 0.0116 0.172

Apolipoprotein C-III (APOC3) DALSSVQESQVAQQAR −1.21 0.0120 0.172

Antithrombin-III (ANT3) FDTISEK 1.26 0.0121 0.172

Antithrombin-III (ANT3) LPGIVAEGR 1.25 0.0132 0.172

Complement C4-A (CO4A) VLSLAQEQVGGSPEK 1.24 0.0159 0.188

Alpha-1-antichymotrypsin (AACT) EQLSLLDR 1.38 0.0190 0.206

Apolipoprotein A-II (APOA2) SPELQAEAK −1.13 0.0211 0.209

Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) GPDVLTATVSGK 1.18 0.0225 0.209

Complement component C9 (CO9) VVEESELAR 1.23 0.0291 0.242

Apolipoprotein C-I (APOC1) EFGNTLEDK −1.26 0.0339 0.242

Complement component C9 (CO9) LSPIYNLVPVK 1.24 0.0354 0.242

Complement C4-A (CO4A) ITQVLHFTK 1.22 0.0357 0.242

Ficolin-3 (FCN3) YGIDWASGR 1.23 0.0364 0.242

Apolipoprotein A-IV (APOA4) ISASAEELR −1.21 0.0372 0.242

Alpha-2-antiplasmin (A2AP) FDPSLTQR 1.23 0.0412 0.255

Beta-2-glycoprotein 1 (APOH) EHSSLAFWK 1.26 0.0488 0.288

(b) Neonatal study

Protein Peptide Future schizophrenia and controls

Fold-change P aOne-sided P

Haptoglobin (HPT) VTSIQDWVQK — — —

Haptoglobin (HPT) DYAEVGR — — —

Haptoglobin (HPT) VGYVSGWGR — — —

Plasma protease C1 inhibitor (IC1) TNLESILSYPK 1.001 0.9710 —

Apolipoprotein C-III (APOC3) GWVTDGFSSLK 1.002 0.9750 —

Apolipoprotein A-IV (APOA4) IDQNVEELK 1.123 0.0592 b

Plasma protease C1 inhibitor (IC1) FQPTLLTLPR — — —

cApolipoprotein C-III (APOC3) DALSSVQESQVAQQAR 1.005 0.9200 —

Antithrombin-III (ANT3) FDTISEK — — —
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Table 2 continued

(b) Neonatal study

Protein Peptide Future schizophrenia and controls

Fold-change P aOne-sided P

Antithrombin-III (ANT3) LPGIVAEGR 1.092 0.0887 0.0444

Complement C4-A (CO4A) VLSLAQEQVGGSPEK 1.061 0.1860 —

cAlpha-1-antichymotrypsin (AACT) EQLSLLDR 1.062 0.2340 —

cApolipoprotein A-II (APOA2) SPELQAEAK 1.120 0.0397 b

Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) GPDVLTATVSGK 1.015 0.7250 —

Complement component C9 (CO9) VVEESELAR — — —

Apolipoprotein C-I (APOC1) EFGNTLEDK 1.030 0.5260 —

cComplement component C9 (CO9) LSPIYNLVPVK 1.003 0.9700 —

cComplement C4-A (CO4A) ITQVLHFTK 1.105 0.0267 0.01340

Ficolin-3 (FCN3) YGIDWASGR — — —

Apolipoprotein A-IV (APOA4) ISASAEELR 1.087 0.1180 —

Alpha-2-antiplasmin (A2AP) FDPSLTQR 1.107 0.0116 0.00580

Beta-2-glycoprotein 1 (APOH) EHSSLAFWK 1.073 0.2990 —

(c) Neonatal study

Protein Peptide Future schizophrenia and controls

Fold-change P

Transthyretin (TTHY) VLDAVR 1.156 0.00264

Alpha-2-antiplasmin (A2AP) FDPSLTQR 1.1074 0.0116

Protein AMBP (AMBP) ETLLQDFR 1.1102 0.0129

Serotransferrin (TRFE) EGYYGYTGAFR 1.1307 0.0166

C4b-binding protein alpha chain (C4BPA) YTCLPGYVR −1.1866 0.0204

Complement C4-A (CO4A) ITQVLHFTK 1.1055 0.0267

Tubulin alpha-4A chain (TBA4A) EIIDPVLDR 1.1094 0.0392

Apolipoprotein A-II (APOA2) SPELQAEAK 1.1203 0.0397

Clusterin (CLUS) IDSLLENDR 1.0977 0.0413

Ig gamma-3 chain C region (IGHG3) DTLMISR 1.0869 0.0418

Kininogen-1 (KNG1) DFVQPPTK 1.0769 0.0529

Ig gamma-3 chain C region (IGHG3) NQVSLTCLVK 1.0967 0.0534

Apolipoprotein A-IV (APOA4) IDQNVEELK 1.1225 0.0592

Apolipoprotein D (APOD) VLNQELR 1.0961 0.0643

Purine nucleoside phosphorylase (PNPH) VFGFSLITNK −1.0679 0.069

Apolipoprotein A-I (APOA1) ATEHLSTLSEK 1.0885 0.073

Alpha-2-antiplasmin (A2AP) DFLQSLK 1.0677 0.0844

Antithrombin-III (ANT3) LPGIVAEGR 1.0918 0.0887

Histone H4 (H4) DAVTYTEHAK 1.1005 0.0894

P-values were corrected for multiple testing using the false discovery rate. The selected covariates are listed in Supplementary Table 4a. The table also includes APOA4
(IDQNVEELK), ANT3 (LPGIVAEGR), APOA2 (SPELQAEK), CO4A (ITQVLHFTK) and A2P2 (FDPSLTQR) from (b). The selected covariates are listed in Supplementary Table 4b.
aOne-sided test conducted when the direction of the fold-change is consistent with that from the Cologne study and the two-sided P < 0.10. bTwo-sided P < 0.10, but
direction of the fold-change is not consistent. cSame protein peptide but different transition in (b) compared to (a)
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Discussion
We have previously demonstrated that we can suc-

cessfully detect and reproducibly monitor tens of proteins

isolated from serum and DBS4 samples using MRM, and
here, we demonstrate that we can also do this in stored
NBS samples collected between 1975 and 1985 (median

Fig. 1 a A volcano plot summarising the association between protein abundance in 60 first-onset schizophrenia patients and 77 controls from
Cologne (Table 2a). Light blue points indicate proteins that were significant after correction for multiple testing using the false discovery rate and had
a fold-change >10%. Labelled proteins had uncorrected P < 0.05. b A volcano plot summarising the association between protein abundance in 75
future schizophrenia patients and 644 controls from the neonatal study (Table 2c). Note that none of the protein changes remained significant after
correction for multiple testing using the false discovery rate. Labelled proteins had uncorrected P < 0.05. Interestingly, we identified a significantly
greater number of increased proteins in the blood of newborn babies who were later diagnosed with schizophrenia. c A volcano plot summarising
the association between protein abundance in urban and rural environments at birth. Note that serum albumin (ALBU) was excluded for display
purposes only (Table 3). Light blue points indicate proteins that were significant after correction for multiple testing using the false discovery rate and
had a fold-change >10%. Ctrl control, Scz schizophrenia
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CV 10.8%; Supplementary Fig. 2). This has important
research implications for countries that routinely store
NBS samples and have an associated patient registry (such
as Sweden and other Nordic countries) because of the
potential to identify prognostic markers for conditions
with an onset during early childhood, such as autism,
attention deficit hyperactivity disorder and certain types
of epilepsy.
We identified serum proteins that differ between first-

onset drug-naive patients and controls (Table 2a), 13 of
which have previously been associated with schizophrenia
(Table 4). We also tested whether any of these proteins

were significantly different in NBS samples from newborn
babies who later developed schizophrenia and those
without a psychiatric diagnosis. The levels of A2AP,
CO4A and ANT3 were found to be significantly different
at birth (Table 2b). Both A2AP and ANT3 are protease
inhibitors, regulating a wide variety of biological processes
including coagulation and inflammation and are involved
in oxidative stress responses28–30.
Genetic variants associated with greater expression of

CO4A, a split product of C4, have previously been asso-
ciated with an increased risk of schizophrenia31. The
classic complement cascade, of which C4 is a member, is

Table 3 Peptide-transitions significantly associated with urban–rural environment at birth

Protein Peptide Controls Psychosis

Fold-change P Corrected P Fold-change One-sided P

Serum albumin (ALBU) ETYGEMADCCAK 3.220 3.79E−29 3.15E−27 4.050 7.29E−10

Plasma kallikrein (KLKB1) LSMDGSPTR 1.497 7.85E−13 6.52E−11 1.818 1.19E−06

Zinc-alpha-2-glycoprotein (ZA2G) AGEVQEPELR −1.286 9.00E−11 7.47E−09 −1.211 0.0117

Apolipoprotein A-IV (APOA4) IDQNVEELK −1.324 1.32E−07 1.10E−05 −1.254 0.0143

Apolipoprotein C-I (APOC1) EFGNTLEDK −1.203 6.98E−07 5.79E−05 −1.216 0.0147

Ceruloplasmin (CERU) EVGPTNADPVCLAK 1.232 7.00E−07 5.81E−05 1.222 0.0129

Hemopexin (HEMO) VDGALCMEK 1.265 2.21E−06 0.00018343 1.086 0.268

Protein deglycase DJ-1 (PARK7) DGLILTSR −1.152 3.16E−06 0.00026228 −1.135 0.0345

Apolipoprotein M (APOM) SLTSCLDSK 1.243 4.23E−06 0.00035109 1.356 0.000394

Fructose-bisphosphate aldolase A (ALDOA) ALANSLACQGK 1.200 5.98E−06 0.00049634 1.271 0.00479

Clusterin (CLUS) IDSLLENDR −1.188 1.25E−05 0.0010375 −1.233 0.0122

C4b-binding protein alpha chain (C4BPA) YTCLPGYVR 1.315 1.40E−05 0.001162 −1.015 a

Apolipoprotein A-I (APOA1) ATEHLSTLSEK −1.189 2.11E−05 0.0017513 −1.009 0.462

Prothrombin (THRB) SGIECQLWR 1.333 2.35E−05 0.0019505 1.356 0.00339

Apolipoprotein E (APOE) AATVGSLAGQPLQER −1.148 3.20E−05 0.002656 −1.019 0.385

Serum amyloid P-component (SAMP) IVLGQEQDSYGGK −1.214 5.24E−05 0.0043492 −1.161 0.0623

Alpha-1-antichymotrypsin (AACT) EQLSLLDR −1.188 9.81E−05 0.0081423 −1.237 0.0104

Protein AMBP (AMBP) TVAACNLPIVR 1.148 0.000136 0.011288 1.118 0.0581

Protein S100-A6 (S10A6) LQDAEIAR −1.188 0.000144 0.011952 −1.015 0.438

Apolipoprotein A-II (APOA2) SPELQAEAK −1.199 0.000145 0.012035 −1.06 0.288

Ig gamma-3 chain C region (IGHG3) NQVSLTCLVK 1.162 0.00015 0.01245 1.240 0.00564

Apolipoprotein A-IV (APOA4) ALVQQMEQLR −1.191 0.000219 0.018177 −1.229 0.0153

Antithrombin-III (ANT3) LPGIVAEGR −1.182 0.000235 0.019505 −1.206 0.0157

Phosphoglycerate kinase 1 (PGK1) AGGFLMK −1.127 0.000312 0.025896 −1.074 0.179

Alpha-1-antichymotrypsin (AACT) EIGELYLPK −1.162 0.000473 0.039259 −1.218 0.0116

Inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2) FYNQVSTPLLR −1.128 0.000489 0.040587 −1.090 0.141

P-values were corrected for multiple testing using the false discovery rate. The selected covariates are listed in Supplementary Table 5. aThe direction of the fold-
change in psychosis patients was not consistent with that in control subjects and so a one-sided test was not conducted (two-sided P = 0.00116)
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critically involved in synaptic pruning processes32. In the
immune system, C4 promotes the activation of comple-
ment component C3, which in turn modulates inflam-
mation processes in blood. Interestingly, studies in mice
indicate that C4 can also mediate synapse elimination
during postnatal development31–33. In support of our
current findings, Hakobyan et al.34 previously reported
elevated C4 activity in serum from individuals diagnosed
with schizophrenia as compared to controls. Futhermore,
the volcano plot (Fig. 1b) of the neonatal study results
suggest a greater number of proteins with increased levels
in the blood of newborn babies who were later diagnosed
with schizophrenia than would be expected by chance
alone; suggesting an increase in several inflammation-
related proteins, as previously reported for adult first-
onset schizophrenia patients12 and evident in the Cologne
study (Fig. 1a).
Although the pathogenesis of schizophrenia remains

unknown, increasing evidence from genomic, tran-
scriptomic and proteomic studies supports a role for
coagulation, metabolism and inflammation35–39. Other
predisposing factors include ethnicity, lifestyle, pre-natal
and neonatal infections, maternal malnutrition and
complications during birth. A common pathological
pathway for these predisposing factors could be their
common propensity to induce cellular metabolic stress
which increase the possibility of oxidative stress and
damage40. Our findings could suggest that an increased
oxidative stress response may represent an inherent
schizophrenia vulnerability.
As birth in an urban environment has been associated

with an increased risk for psychiatric disorders10, we
tested whether protein abundance at birth was associated
with urbanicity. We found 24 proteins significantly asso-
ciated with urbanicity in 397 controls (214 urban and 183
rural; Table 3) and confirmed 15 of the 24 proteins in a
validation cohort of 97 psychosis patients (45 urban and
52 rural; Table 3). The majority of these 15 differentially
expressed proteins relate to immune, especially the acute
phase response, and metabolic function (Table 4). The
protein with the greatest fold-change was albumin, 3.2-
fold and 4.1-fold in controls and psychosis patients,
respectively. This is of interest, as albumin has been
shown to be the main plasma protein in newborn babies
which is modified by oxidative stress, especially through
non-bound plasma metals such as iron41. Furthermore,
several calcium and copper binding proteins were found
to differ between urban and rural birth environments,
notably ceruloplasmin (CERU; Tables 2 and 3). CERU is a
major copper binding protein in plasma42 and has pre-
viously been associated with neuropsychiatric diseases
including schizophrenia43–47. Interestingly, altered levels
of CERU has also been linked to Wilson’s disease which
can present with schizophrenia-like psychosis and can

result in misdiagnosis48,49. An urban environment is not
only associated with more stress and trauma, adverse
lifestyles such as drug and alcohol problems among
pregnant mothers, but also with air pollution50. Previous
studies indicate that air pollution in urban locations can
affect cognitive and brain development directly. Some air
pollutants, such as lead, can cross the blood brain barrier
resulting in immune dysregulation and oxidative stress
responses at both systemic and brain levels50. The pre-
dictive performance of the lasso derived model for birth
environment was excellent (AUC= 0.90; Supplementary
Fig. 2), and this was maintained when we applied the
fitted model to the psychosis patient group (AUC= 0.89;
Supplementary Fig. 2). Although the ability to distinguish
between birth in urban and rural environments per se
may not be clinically relevant, it is of great interest that
oxidative stress-related protein changes could be identi-
fied in both newborn babies who later develop schizo-
phrenia as well as in babies born in an urban setting. The
newborn infant is very susceptible to oxidative damage
and a wide variety of consumer products and industrial
pollutants have been associated with neurotoxicity in
distinct developmental time windows51. Antioxidant
protection for pregnant mothers and newborn infants in
the form of dietary supplementation could be evaluated in
future epidemiological studies.
There are several limitations to the present study. First,

the number of patients and controls from Cologne limit
the statistical power of the analysis. Second, given the
time lag between birth and schizophrenia diagnosis,
relatively few differences in protein abundance were
observed. The investigation of a larger number of indivi-
duals who later develop schizophrenia will be required to
provide the statistical power to identify robust protein
abundance differences at birth. Third, as none of the
analysed studies have been genotyped, we cannot test
whether genetic variants are also associated with elevated
levels of CO4A abundance. Fourth, as population density
is based on municipality, and some municipalities are
geographically large and include smaller and densely
populated areas, the indicator of urbanicity used here is
crude.
In conclusion, we have demonstrated that reproducible

multiplexed quantitation of proteins in stored NBS sam-
ples can be achieved using MRM. We have provided
further evidence that A2AP, CO4A and ANT3 may be
associated with schizophrenia risk and the early disease
process. The CO4A association is of particular interest
given that genetic variants in CO4A have previously been
associated with schizophrenia risk and offer additional
support for its potential role in the aetiology of schizo-
phrenia. In addition, we found and validated proteomic
differences associated with birth environment. Future
biomarker studies based on stored NBS samples used in
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conjunction with MRM could have the potential to
identify risk factors and/or early disease indicators for
conditions with onset during early childhood.
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