Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Implementation of pharmacogenomic clinical decision support for health systems: a cost-utility analysis

Abstract

We constructed a cost-effectiveness model to assess the clinical and economic value of a CDS alert program that provides pharmacogenomic (PGx) testing results, compared to no alert program in acute coronary syndrome (ACS) and atrial fibrillation (AF), from a health system perspective. We defaulted that 20% of 500,000 health-system members between the ages of 55 and 65 received PGx testing for CYP2C19 (ACS-clopidogrel) and CYP2C9, CYP4F2 and VKORC1 (AF-warfarin) annually. Clinical events, costs, and quality-adjusted life years (QALYs) were calculated over 20 years with an annual discount rate of 3%. In total, 3169 alerts would be fired. The CDS alert program would help avoid 16 major clinical events and 6 deaths for ACS; and 2 clinical events and 0.9 deaths for AF. The incremental cost-effectiveness ratio was $39,477/QALY. A PGx-CDS alert program was cost-effective, under a willingness-to-pay threshold of $100,000/QALY gained, compared to no alert program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model schematics.
Fig. 2: One-way probabilistic sensitivity analysis (OWSA).
Fig. 3: Cost-effectiveness acceptability curve (CEAC).

Similar content being viewed by others

Data availability

All data used in the model are publicly available and available by directly contacting the authors, as well as being included in the manuscript.

References

  1. Collins FS, Varmus H. A New Initiative on Precision Medicine. N Engl J Med. 2015;372:793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Relling M, Evans W. Pharmacogenomics in the clinic. Nature. 2015;526:343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. CPIC [Internet]. [cited 2022 Mar 22]. Available from: https://cpicpgx.org/.

  4. Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, Howard SC, et al. Preemptive clinical pharmacogenetics implementation: Current programs in five us medical centers. Annu Rev Pharmacol Toxicol. 2015;55:89–106.

    Article  CAS  PubMed  Google Scholar 

  5. Hocum BT, White JR, Heck JW, Thirumaran RK, Moyer N, Newman R, et al. Cytochrome P-450 gene and drug interaction analysis in patients referred for pharmacogenetic testing. Am J Health Syst Pharm. 2016;73:61–7.

    Article  CAS  PubMed  Google Scholar 

  6. van der Wouden CH, Cambon-Thomsen A, Cecchin E, Cheung KC, Dávila-Fajardo CL, Deneer VH, et al. Implementing Pharmacogenomics in Europe: Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium. Clin Pharmacol Ther. 2017;101:341–58.

    Article  PubMed  Google Scholar 

  7. Institute of Medicine (US) Roundtable on Evidence-Based Medicine. The learning healthcare system. In: Olsen L, Aisner D, McGinnis JM,eds. Workshop Summary. Washington (DC): National Academies Press(US); 2007. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53494/.

  8. Foley T, Fairmichael F. The potential of learning health care systems. The Learning Health Care Project. [Internet]. [cited 2022 Mar 23]. Available from: https://learninghealthcareproject.org/wp-content/uploads/2015/11/LHS_Report_2015.pdf.

  9. Greene SM, Reid RJ, Larson EB. Implementing the learning health system: from concept to action. Ann Intern Med. 2012;157:207–10.

    Article  PubMed  Google Scholar 

  10. Welch BM, Eilbeck K, Del FG, Meyer LJ, Kawamoto K. Technical desiderata for the integration of genomic data with clinical decision support. J Biomed Inform. 2014;51:3–7.

    Article  PubMed  Google Scholar 

  11. Hess GP, Fonseca E, Scott R, Fagerness J. Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: current state and factors impacting acceptance by stakeholders. Genet Res (Camb). 2015;97:e13.

    Article  Google Scholar 

  12. Stanek EJ, Sanders CL, Taber KAJ, Khalid M, Patel A, Verbrugge RR, et al. Adoption of pharmacogenomic testing by US physicians: Results of a nationwide survey. Clin Pharmacol Ther. 2012;91:450–8.

    Article  CAS  PubMed  Google Scholar 

  13. Haga S, Burke W, Ginsburg G, Mills R, Agans R. Primary care physicians’ knowledge of and experience with pharmacogenetic testing. Clin Genet. 2012;82:388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim K, Magness JW, Nelson R, Baron V, Brixner DI. Clinical utility of pharmacogenetic testing and a clinical decision support tool to enhance the identification of drug therapy problems through medication therapy management in polypharmacy patients. J Manag Care Spec Pharm. 2018;24:1251–9.

    Google Scholar 

  15. Blagec K, Koopmann R, Crommentuijn-Van Rhenen M, Holsappel I, Van Der Wouden CH, Konta L, et al. Implementing pharmacogenomics decision support across seven European countries: The Ubiquitous Pharmacogenomics (U-PGx) project. J Am Med Inform Assoc. 2018;25:893–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berner ES, La Lande TJ. Overview of Clinical Decision Support Systems. In: Berner ES, eds. Clinical Decision Support Systems: Theory and Practice. New York, NY: Springer New York; 2007. p. 3–22.

  17. Eichner J, Das M. Challenges and Barriers to Clinical Decision Support (CDS) Design and Implementation Experienced in the Agency for Healthcare Research and Quality CDS Demonstrations [Internet]. 2010. Available from: https://healthit.ahrq.gov/sites/default/files/docs/page/CDS_challenges_and_barriers.pdf.

  18. Welch BM, Kawamoto K. Clinical decision support for genetically guided personalized medicine: a systematic review. J Am Med Inform Assoc. 2013;20:388–400.

    Article  PubMed  Google Scholar 

  19. Sebastian A, Carroll JC, Oldfield LE, Mighton C, Shickh S, Uleryk E, et al. Effect of genetics clinical decision support tools on health-care providers’ decision making: a mixed-methods systematic review. Genet Med. 2021;23:593–602.

    Article  PubMed  Google Scholar 

  20. Liberati EG, Ruggiero F, Galuppo L, Gorli M, González-Lorenzo M, Maraldi M, et al. What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation. Implement Sci. 2017;12:1–13.

    Article  Google Scholar 

  21. Devaraj S, Sharma SK, Fausto DJ, Viernes S, Kharrazi H. Barriers and facilitators to clinical decision support systems adoption: a systematic review. J Bus Adm Res. 2014;3:36–53.

    Google Scholar 

  22. Zhu Y, Swanson KM, Rojas RL, Wang Z, St. Sauver JL, Visscher SL, et al. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet Med. 2020;22:475–86.

    Article  PubMed  Google Scholar 

  23. AlMukdad S, Elewa H, Al-Badriyeh D. Economic Evaluations of CYP2C19 Genotype-Guided Antiplatelet Therapy Compared to the Universal Use of Antiplatelets in Patients With Acute Coronary Syndrome: A Systematic Review. J Cardiovasc Pharmacol Ther. 2020;25:201–11.

    Article  PubMed  Google Scholar 

  24. Yoon HY, Lee N, Seong JM, Gwak HS. Efficacy and safety of clopidogrel versus prasugrel and ticagrelor for coronary artery disease treatment in patients with CYP2C19 LoF alleles: a systemic review and meta-analysis. Br J Clin Pharmacol. 2020;86:1489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vries MJA, van der Meijden PEJ, Henskens YMC, ten Cate-Hoek AJ, ten Cate H. Assessment of bleeding risk in patients with coronary artery disease on dual antiplatelet therapy: a systematic review. Thromb Haemost. 2016;115:7–24.

    Article  PubMed  Google Scholar 

  26. Dahabreh IJ, Moorthy D, Lamont JL, Chen ML, Kent DM, Lau J. Testing of CYP2C19 Variants and Platelet Reactivity for Guiding Antiplatelet Treatment. Agency for Healthcare Research and Quality (US), Rockville (MD); 2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK236984/.

  27. Goulding R, Dawes D, Price M, Wilkie S, Dawes M. Genotype-guided drug prescribing: a systematic review and meta-analysis of randomized control trials. Br J Clin Pharmacol. 2015;80:868–77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tang Q, Zou H, Guo C, Liu Z. Outcomes of pharmacogenetics-guided dosing of warfarin: a systematic review and meta-analysis. Int J Cardiol. 2014;175:587–91.

    Article  PubMed  Google Scholar 

  29. Wang ZQ, Zhang R, Zhang PP, Liu XH, Sun J, Wang J, et al. Pharmacogenetics-based warfarin dosing algorithm decreases time to stable anticoagulation and the risk of major hemorrhage: an updated meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol. 2015;65:364–70.

    Article  CAS  PubMed  Google Scholar 

  30. Franchini M, Mengoli C, Cruciani M, Bonfanti C, Mannucci PM. Effects on bleeding complications of pharmacogenetic testing for initial dosing of vitamin K antagonists: a systematic review and meta-analysis. J Thromb Haemost. 2014;12:1480–7.

    Article  CAS  PubMed  Google Scholar 

  31. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316:1093–103.

    Article  PubMed  Google Scholar 

  32. U.S. Census Bureau QuickFacts: United States [Internet]. [cited 2022 Mar 22]. Available from: https://www.census.gov/quickfacts/fact/table/US/PST045219.

  33. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94:317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharmacol Ther. 2017;102:397–404.

    Article  CAS  PubMed  Google Scholar 

  35. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116:2563–70.

    Article  CAS  PubMed  Google Scholar 

  36. Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2008;83:460–70.

    Article  CAS  PubMed  Google Scholar 

  37. Burmester JK, Berg RL, Yale SH, Rottscheit CM, Glurich IE, Schmelzer JR, et al. A randomized controlled trial of genotype-based Coumadin initiation. Genet Med. 2011;13:509–18.

    Article  CAS  PubMed  Google Scholar 

  38. Borgman MP, Pendleton RC, McMillin GA, Reynolds KK, Vazquez S, Freeman A, et al. Prospective pilot trial of PerMIT versus standard anticoagulation service management of patients initiating oral anticoagulation. Thromb Haemost. 2012;108:561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369:2283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jonas DE, Evans JP, McLeod HL, Brode S, Lange LA, Young ML, et al. Impact of genotype-guided dosing on anticoagulation visits for adults starting warfarin: a randomized controlled trial. Pharmacogenomics. 2013;14:1593–603.

    Article  CAS  PubMed  Google Scholar 

  41. Verhoef TI, Ragia G, de Boer A, Barallon R, Kolovou G, Kolovou V, et al. A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. N Engl J Med. 2013;369:2304–12.

    Article  CAS  PubMed  Google Scholar 

  42. MarketScan Research Databases | IBM [Internet]. [cited 2022 Mar 22]. Available from: https://www.ibm.com/products/marketscan-research-databases.

  43. McCoy AB, Thomas EJ, Krousel-Wood M, Sittig DF. Clinical decision support alert appropriateness: a review and proposal for improvement. Ochsner J. 2014;14:195–202.

    PubMed  PubMed Central  Google Scholar 

  44. Brodowy B, Nguyen D. Optimization of clinical decision support through minimization of excessive drug allergy alerts. Am J Health Syst Pharm. 2016;73:526–8.

    Article  PubMed  Google Scholar 

  45. Bryant AD, Fletcher GS, Payne TH. Drug interaction alert override rates in the Meaningful Use era: no evidence of progress. Appl Clin Inform. 2014;5:802–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsieh TC, Kuperman GJ, Jaggi T, Hojnowski-Diaz P, Fiskio J, Williams DH, et al. Characteristics and consequences of drug allergy alert overrides in a computerized physician order entry system. J Am Med Inform Assoc. 2004;11:482–91.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lam JH, Ng O. Monitoring clinical decision support in the electronic health record. Am J Health Syst Pharm. 2017;74:1130–4.

    Article  PubMed  Google Scholar 

  48. Nanji KC, Seger DL, Slight SP, Amato MG, Beeler PE, Her QL, et al. Medication-related clinical decision support alert overrides in inpatients. J Am Med Inform Assoc. 2018;25:476–81.

    Article  PubMed  Google Scholar 

  49. Kawamanto K, Flynn MC, Kukhareva P, ElHalta D, Hess R, Gregory T, et al. A Pragmatic Guide to Establishing Clinical Decision Support Governance and Addressing Decision Support Fatigue: a Case Study. AMIA Annu Symp Proc. 2018;2018:624–33.

    PubMed  PubMed Central  Google Scholar 

  50. Duke JD, Li X, Dexter P. Adherence to drug-drug interaction alerts in high-risk patients: a trial of context-enhanced alerting. J Am Med Inform Assoc. 2013;20:494–8.

    Article  PubMed  Google Scholar 

  51. Kazi DS, Garber AM, Shah RU, Dudley RA, Mell MW, Rhee C, et al. Cost-effectiveness of genotype-guided and dual antiplatelet therapies in acute coronary syndrome. Ann Intern Med. 2014;160:221–32.

    Article  PubMed  Google Scholar 

  52. Dhanda DS, Guzauskas GF, Carlson JJ, Basu A, Veenstra DL. Are Evidence Standards Different for Genomic- vs. Clinical-Based Precision Medicine? A Quantitative Analysis of Individualized Warfarin Therapy. Clin Pharmacol Ther. 2017;102:805–14.

    Article  CAS  PubMed  Google Scholar 

  53. Mathias PC, Tarczy-Hornoch P, Shirts BH. Modeling the costs of clinical decision support for genomic precision medicine. AMIA Jt Summits Transl Sci Proc. 2016;2016:60–4.

    PubMed  PubMed Central  Google Scholar 

  54. CPI Home: U.S. Bureau of Labor Statistics [Internet]. [cited 2022 Mar 22]. Available from: https://www.bls.gov/cpi/.

  55. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model parameter estimation and uncertainty: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6. Value Health. 2012;15:835–42.

    Article  PubMed  Google Scholar 

  56. Overby CL, Kohane I, Kannry JL, Williams MS, Starren J, Bottinger E, et al. Opportunities for genomic clinical decision support interventions. Genet Med. 2013;15:817–23.

    Article  PubMed  Google Scholar 

  57. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kawamoto K, Del Fiol G, Lobach DF, Jenders RA. Standards for scalable clinical decision support: need, current and emerging standards, gaps, and proposal for progress. Open Med Inform J. 2010;4:235–44.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu D, Olson KL, Manzi SF, Mandl KD. Patients dispensed medications with actionable pharmacogenomic biomarkers: rates and characteristics. Genet Med. 2021;23:782–6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Value and Science-Driven Health Care - National Academy of Medicine [Internet]. [cited 2022 Mar 22]. Available from: https://nam.edu/programs/value-science-driven-health-care/.

  61. McGinnis JM, Fineberg HV, Dzau VJ. Advancing the Learning Health System. N Engl J Med. 2021;385:1–5.

    Article  PubMed  Google Scholar 

  62. Digital Healthcare Research [Internet]. [cited 2022 Mar 23]. Available from: https://digital.ahrq.gov/.

Download references

Funding

This project was funded by Agency for Healthcare Research and Quality (AHRQ) R21-HS26544.

Author information

Authors and Affiliations

Authors

Contributions

SJ was responsible for performing literature review, analyzing data, and manuscript preparation. SJ, PCM, NH, DV and BD developed the cost-utility model. PCM, BHS, PTH, DV, DM, and BD contributed to research development. All authors provided with constructive suggestions in the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Beth Devine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Mathias, P.C., Hendrix, N. et al. Implementation of pharmacogenomic clinical decision support for health systems: a cost-utility analysis. Pharmacogenomics J 22, 188–197 (2022). https://doi.org/10.1038/s41397-022-00275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-022-00275-7

Search

Quick links