Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A systematic review on the cost effectiveness of pharmacogenomics in developing countries: implementation challenges

Abstract

The major challenges that delay the implementation of pharmacogenomics based clinical practice in the developing countries, primarily the low- and middle-income countries need to be recognized. This review was conducted to systematically review evidence of the cost-effectiveness for the conduct of pharmacogenomics testing in the developing countries. Studies that evaluated the cost-effectiveness of pharmacogenomics testing in the developing countries as defined by the United Nations were included in this study. Twenty-seven articles met the criteria. Pharmacogenomics effectiveness were evaluated for drugs used in the treatment of cancers, cardiovascular diseases and severe cutaneous adverse reactions in gout and epilepsy. Most studies had reported pharmacogenomics testing to be cost-effective (cancers, cardiovascular diseases, and tuberculosis) and economic models were evaluated from multiple perspectives, different cost categories and time horizons. Additionally, most studies used a single gene, rather than a gene panel for the pharmacogenomics testing. Genotyping cost and frequency of risk alleles in the populations influence the cost-effectiveness outcome. Further studies are warranted to examine the clinical and economic validity of pharmacogenomics testing in the developing countries.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Study overview.
Fig. 2: Cost categories included in the studies based on study perspectives.
Fig. 3: Cost-effectiveness based on study perspective, including healthcare system, societal, payer, provider, and a study conducted based on both healthcare and societal perspectives.
Fig. 4: Cost-effectiveness according to funding type.
Fig. 5: Cost-effectiveness and the countries where the studies were conducted.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF, et al. Pharmacogenomics. Lancet. 2019;394:521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charlab R, Zhang L. Pharmacogenomics: historical perspective and current status. Methods Mol Biol. 2013;1015:3–22.

    Article  CAS  PubMed  Google Scholar 

  3. Juran BD, Egan LJ, Lazaridis KN. The AmpliChip CYP450 test: principles, challenges, and future clinical utility in digestive disease. Clin Gastroenterol Hepatol. 2006;4:822–30.

    Article  CAS  PubMed  Google Scholar 

  4. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369:2294–303.

    Article  CAS  PubMed  Google Scholar 

  5. Kleinjan JP, Brinkman I, Bakema R, van Zanden JJ, van Rooijen JM. Tolerance-based capecitabine dose escalation after DPYD genotype-guided dosing in heterozygote DPYD variant carriers: a single-center observational study. Anticancer Drugs. 2019;30:410–5.

    Article  CAS  PubMed  Google Scholar 

  6. Jung JW, Kim DK, Park HW, Oh KH, Joo KW, Kim YS, et al. An effective strategy to prevent allopurinol-induced hypersensitivity by HLA typing. Genet Med. 2015;17:807–14.

    Article  CAS  PubMed  Google Scholar 

  7. Askanase AD, Wallace DJ, Weisman MH, Tseng CE, Bernstein L, Belmont HM, et al. Use of pharmacogenetics, enzymatic phenotyping, and metabolite monitoring to guide treatment with azathioprine in patients with systemic lupus erythematosus. J Rheumatol. 2009;36:89–95.

    Article  CAS  PubMed  Google Scholar 

  8. Huerta-García G, Vazquez-Rosales JG, Mata-Marín JA, Peregrino-Bejarano L, Flores-Ruiz E, Solórzano-Santos F. Genotype-guided antiretroviral regimens in children with multidrug-resistant HIV-1 infection. Pediatr Res. 2016;80:54–9.

    Article  PubMed  CAS  Google Scholar 

  9. Nauman J, Soteriades ES, Hashim MJ, Govender R, Al Darmaki RS, Al, et al. Global incidence and mortality trends due to adverse effects of medical treatment, 1990-2017: a systematic analysis from the global burden of diseases, injuries and risk factors study. Cureus. 2020;12:e7265.

    PubMed  PubMed Central  Google Scholar 

  10. Patel TK, Patel PB. Mortality among patients due to adverse drug reactions that lead to hospitalization: a meta-analysis. Eur J Clin Pharm. 2018;74:819–32.

    Article  CAS  Google Scholar 

  11. Sunshine JE, Meo N, Kassebaum NJ, Collison ML, Mokdad AH, Naghavi M. Association of adverse effects of medical treatment with mortality in the United States: a secondary analysis of the global burden of diseases, injuries, and risk factors study. JAMA Netw Open. 2019;2:e187041.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Du W, Gnjidic D, Chong S, Glasgow N. Trends in adverse drug reaction-related hospitalisations over 13 years in New South Wales, Australia. Intern Med J. 2019;49:84–93.

    Article  CAS  PubMed  Google Scholar 

  13. Angamo MT, Chalmers L, Curtain CM, Bereznicki LR. Adverse-drug-reaction-related hospitalisations in developed and developing countries: a review of prevalence and contributing factors. Drug Saf. 2016;39:847–57.

    Article  CAS  PubMed  Google Scholar 

  14. Ampadu HH, Hoekman J, de Bruin ML, Pal SN, Olsson S, Sartori D, et al. Adverse drug reaction reporting in Africa and a comparison of individual case safety report characteristics between Africa and the rest of the world: analyses of spontaneous reports in VigiBase®. Drug Saf. 2016;39:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alshabeeb MA, Deneer VHM, Khan A, Asselbergs FW. Use of pharmacogenetic drugs by the Dutch population. Front Genet. 2019;10:567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giannopoulou E, Katsila T, Mitropoulou C, Tsermpini EE, Patrinos GP. Integrating next-generation sequencing in the clinical pharmacogenomics workflow. Front Pharm. 2019;10:384.

    Article  CAS  Google Scholar 

  17. Schneider JA, Cohen PR. Stevens-Johnson syndrome and toxic epidermal necrolysis: a concise review with a comprehensive summary of therapeutic interventions emphasizing supportive measures. Adv Ther. 2017;34:1235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thornley T, Esquivel B, Wright DJ, Dop HVD, Kirkdale CL, Youssef E. Implementation of a pharmacogenomic testing service through community pharmacy in the Netherlands: results from an early service evaluation. Pharm (Basel). 2021;9:38.

    Google Scholar 

  19. B Tata E, A Ambele M, S Pepper M. Barriers to implementing clinical pharmacogenetics testing in sub-Saharan Africa. A critical review. Pharmaceutics/. 2020;12:809.

    Article  Google Scholar 

  20. Deverka PA, Vernon J, McLeod HL. Economic opportunities and challenges for pharmacogenomics. Annu Rev Pharm Toxicol. 2010;50:423–37.

    Article  CAS  Google Scholar 

  21. Nimdet K, Chaiyakunapruk N, Vichansavakul K, Ngorsuraches S. A systematic review of studies eliciting willingness-to-pay per quality-adjusted life year: does it justify CE threshold? PLoS ONE. 2015;10:e0122760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Turner HC, Archer RA, Downey LE, Isaranuwatchai W, Chalkidou K, Jit M, et al. An introduction to the main types of economic evaluations used for informing priority setting and resource allocation in healthcare: key features, uses, and limitations. Front Public Health. 2021;9:722927.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim DD, Silver MC, Kunst N, Cohen JT, Ollendorf DA, Neumann PJ. Perspective and costing in cost-effectiveness analysis, 1974-2018. Pharmacoeconomics. 2020;38:1135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu Y, Swanson KM, Rojas RL, Wang Z, St Sauver JL, Visscher SL, et al. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet Med. 2020;22:475–86.

    Article  PubMed  Google Scholar 

  25. United Nations. World Economic Situation and Prospects 2021. Available from: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2021_ANNEX.pdf.

  26. Wijnen B, Van Mastrigt G, Redekop WK, Majoie H, De Kinderen R, Evers S. How to prepare a systematic review of economic evaluations for informing evidence-based healthcare decisions: data extraction, risk of bias, and transferability (part 3/3). Expert Rev Pharmacoecon Outcomes Res. 2016;16:723–32.

    Article  PubMed  Google Scholar 

  27. Ofman JJ, Sullivan SD, Neumann PJ, Chiou CF, Henning JM, Wade SW, et al. Examining the value and quality of health economic analyses: implications of utilizing the QHES. J Manag Care Pharm. 2003;9:53–61.

    Article  PubMed  Google Scholar 

  28. Jiang M, You JH. Cost-effectiveness analysis of personalized antiplatelet therapy in patients with acute coronary syndrome. Pharmacogenomics. 2016;17:701–13.

    Article  CAS  PubMed  Google Scholar 

  29. Fu Y, Zhang XY, Qin SB, Nie XY, Shi LW, Shao H, et al. Cost-effectiveness of CYP2C19 LOF-guided antiplatelet therapy in Chinese patients with acute coronary syndrome. Pharmacogenomics. 2020;21:33–42.

    Article  CAS  PubMed  Google Scholar 

  30. Teng GG, Tan-Koi WC, Dong D, Sung C. Is HLA-B*58:01 genotyping cost effective in guiding allopurinol use in gout patients with chronic kidney disease? Pharmacogenomics. 2020;21:279–91.

    Article  CAS  PubMed  Google Scholar 

  31. Chong HY, Saokaew S, Dumrongprat K, Permsuwan U, Wu DB, Sritara P, et al. Cost-effectiveness analysis of pharmacogenetic-guided warfarin dosing in Thailand. Thromb Res. 2014;134:1278–84.

    Article  CAS  PubMed  Google Scholar 

  32. Wei X, Cai J, Sun H, Li N, Xu C, Zhang G, et al. Cost-effectiveness analysis of UGT1A1*6/*28 genotyping for preventing FOLFIRI-induced severe neutropenia in Chinese colorectal cancer patients. Pharmacogenomics. 2019;20:241–9.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Z, Liew D, Kwan P. Real-world cost-effectiveness of pharmacogenetic screening for epilepsy treatment. Neurology. 2016;86:1086–94.

    Article  CAS  PubMed  Google Scholar 

  34. Wei X, Cai J, Zhuang J, Zheng B, Sui Y, Zhang G, et al. CYP2D6*10 pharmacogenetic-guided SERM could be a cost-effective strategy in Chinese patients with hormone receptor-positive breast cancer. Pharmacogenomics. 2020;21:43–53.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Yan BP, Liew D, Lee VWY. Cost-effectiveness of cytochrome P450 2C19 *2 genotype-guided selection of clopidogrel or ticagrelor in Chinese patients with acute coronary syndrome. Pharmacogenomics J. 2018;18:113–20.

    Article  PubMed  CAS  Google Scholar 

  36. Ke CH, Chung WH, Wen YH, Huang YB, Chuang HY, Tain YL, et al. Cost-effectiveness analysis for genotyping before allopurinol treatment to prevent severe cutaneous adverse drug reactions. J Rheumatol. 2017;44:835–43.

    Article  CAS  PubMed  Google Scholar 

  37. Kim DJ, Kim HS, Oh M, Kim EY, Shin JG. Cost Effectiveness of genotype-guided warfarin dosing in patients with mechanical heart valve replacement under the fee-for-service system. Appl Health Econ Health Policy. 2017;15:657–67.

    Article  PubMed  Google Scholar 

  38. Dong D, Tan-Koi WC, Teng GG, Finkelstein E, Sung C. Cost-effectiveness analysis of genotyping for HLA-B*5801 and an enhanced safety program in gout patients starting allopurinol in Singapore. Pharmacogenomics. 2015;16:1781–93.

    Article  CAS  PubMed  Google Scholar 

  39. Kim JH, Tan DS, Chan MYY. Cost-effectiveness of CYP2C19-guided antiplatelet therapy for acute coronary syndromes in Singapore. Pharmacogenomics J. 2021;21:243–50.

    Article  PubMed  CAS  Google Scholar 

  40. Lu S, Zhang J, Ye M, Wang B, Wu B. Economic analysis of ALK testing and crizotinib therapy for advanced non-small-cell lung cancer. Pharmacogenomics. 2016;17:985–94.

    Article  CAS  PubMed  Google Scholar 

  41. You JH, Chan FW, Wong RS, Cheng G. The potential clinical and economic outcomes of pharmacogenetics-oriented management of warfarin therapy—a decision analysis. Thromb Haemost. 2004;92:590–7.

    Article  CAS  PubMed  Google Scholar 

  42. de Lima Lopes G Jr, Segel JE, Tan DS, Do YK, Mok T, Finkelstein EA. Cost-effectiveness of epidermal growth factor receptor mutation testing and first-line treatment with gefitinib for patients with advanced adenocarcinoma of the lung. Cancer. 2012;118:1032–9.

    Article  PubMed  CAS  Google Scholar 

  43. Wei X, Sun H, Zhuang J, Weng X, Zheng B, Lin Q, et al. Cost-effectiveness Analysis of CYP2D6*10 pharmacogenetic testing to guide the adjuvant endocrine therapy for postmenopausal women with estrogen receptor positive early breast cancer in China. Clin Drug Investig. 2020;40:25–32.

    Article  CAS  PubMed  Google Scholar 

  44. Lu S, Yu Y, Fu S, Ren H. Cost-effectiveness of ALK testing and first-line crizotinib therapy for non-small-cell lung cancer in China. PLoS ONE. 2018;13:e0205827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kapoor R, Martinez-Vega R, Dong D, Tan SY, Leo YS, Lee CC, et al. Reducing hypersensitivity reactions with HLA-B*5701 genotyping before abacavir prescription: clinically useful but is it cost-effective in Singapore? Pharmacogenet Genomics. 2015;25:60–72.

    Article  CAS  PubMed  Google Scholar 

  46. Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*5801 testing in preventing allopurinol-induced SJS/TEN in Thai population. PLoS ONE. 2014;9:e94294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dong D, Sung C, Finkelstein EA. Cost-effectiveness of HLA-B*1502 genotyping in adult patients with newly diagnosed epilepsy in Singapore. Neurology. 2012;79:1259–67.

    Article  PubMed  Google Scholar 

  48. Rens NE, Uyl-de Groot CA, Goldhaber-Fiebert JD, Croda J, Andrews JR. Cost-effectiveness of a pharmacogenomic test for stratified isoniazid dosing in treatment of active tuberculosis. Clin Infect Dis. 2020;71:3136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pruis SL, Jeon YK, Pearce F, Thong BY, Aziz MIA. Cost-effectiveness of sequential urate lowering therapies for the management of gout in Singapore. J Med Econ. 2020;23:838–47.

    Article  PubMed  Google Scholar 

  50. You JH, Tsui KK, Wong RS, Cheng G. Cost-effectiveness of dabigatran versus genotype-guided management of warfarin therapy for stroke prevention in patients with atrial fibrillation. PLoS ONE. 2012;7:e39640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park DJ, Kang JH, Lee JW, Lee KE, Wen L, Kim TJ, et al. Cost-effectiveness analysis of HLA-B5801 genotyping in the treatment of gout patients with chronic renal insufficiency in Korea. Arthritis Care Res (Hoboken). 2015;67:280–7.

    Article  Google Scholar 

  52. Oh KT, Anis AH, Bae SC. Pharmacoeconomic analysis of thiopurine methyltransferase polymorphism screening by polymerase chain reaction for treatment with azathioprine in Korea. Rheumatol (Oxf). 2004;43:156–63.

    Article  CAS  Google Scholar 

  53. Chong HY, Lim YH, Prawjaeng J, Tassaneeyakul W, Mohamed Z, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*58: 01 genetic testing before initiation of allopurinol therapy to prevent allopurinol-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in a Malaysian population. Pharmacogenet Genomics. 2018;28:56–67.

    Article  CAS  PubMed  Google Scholar 

  54. Chong HY, Mohamed Z, Tan LL, Wu DBC, Shabaruddin FH, Dahlui M, et al. Is universal HLA-B*15:02 screening a cost-effective option in an ethnically diverse population? A case study of Malaysia. Br J Dermatol. 2017;177:1102–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rattanavipapong W, Koopitakkajorn T, Praditsitthikorn N, Mahasirimongkol S, Teerawattananon Y. Economic evaluation of HLA-B*15:02 screening for carbamazepine-induced severe adverse drug reactions in Thailand. Epilepsia. 2013;54:1628–38.

    Article  CAS  PubMed  Google Scholar 

  56. Diamandis EP. Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst. 2010;102:1462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.

  58. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Berm EJ, Looff MD, Wilffert B, Boersma C, Annemans L, Vegter S, et al. Economic evaluations of pharmacogenetic and pharmacogenomic screening tests: a systematic review. Second update Lit PLoS ONE. 2016;11:e0146262.

    Article  CAS  Google Scholar 

  60. Wong WB, Carlson JJ, Thariani R, Veenstra DL. Cost effectiveness of pharmacogenomics: a critical and systematic review. Pharmacoeconomics. 2010;28:1001–13.

    Article  PubMed  Google Scholar 

  61. Karamperis K, Koromina M, Papantoniou P, Skokou M, Kanellakis F, Mitropoulos K, et al. Economic evaluation in psychiatric pharmacogenomics: a systematic review. Pharmacogenomics J. 2021;21:533–41.

    Article  CAS  PubMed  Google Scholar 

  62. McKillip RP, Borden BA, Galecki P, Ham SA, Patrick-Miller L, Hall JP, et al. Patient perceptions of care as influenced by a large institutional pharmacogenomic implementation program. Clin Pharm Ther. 2017;102:106–14.

    Article  CAS  Google Scholar 

  63. Planelles B, Margarit C, Inda MD, Ballester P, Muriel J, Barrachina J, et al. Gender based differences, pharmacogenetics and adverse events in chronic pain management. Pharmacogenomics J. 2020;20:320–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AS was supported by Universiti Teknologi MARA under grant no. 600-RMC/DINAMIK-POSTDOC 5/3 (010/2020). We would like to thank Nur Izzati Izni Rusli from Center for Diploma Studies, Universiti Tun Hussein Onn Malaysia and Siti Arifah Mohd Turjah from Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia for their kind help in data management. CM participation was enabled by funding from the European Developing Countries Clinical Trial Partnerships (EDCTP) grant TMA2016SF.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, LKT and MZS; methodology, AS; validation, LKT, MZS, and CM; formal analysis, AS; data curation, AS; writing—original draft preparation, AS; writing—review and editing, LKT, MZS, and CM; supervision, LKT and MZS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lay Kek Teh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sukri, A., Salleh, M.Z., Masimirembwa, C. et al. A systematic review on the cost effectiveness of pharmacogenomics in developing countries: implementation challenges. Pharmacogenomics J 22, 147–159 (2022). https://doi.org/10.1038/s41397-022-00272-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-022-00272-w

Search

Quick links