Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single nucleotide polymorphism-based formula to predict the risk of propofol TCI concentration being over 4 µg mL−1 at the time of loss of consciousness

Abstract

We aim to develop a formula based on single nucleotide polymorphisms (SNPs) to predict whether the propofol target-controlled infusion (TCI) concentration would be over 4 μg mL−1 at the time of loss of consciousness (LOC). We recruited 184 patients undergoing thyroid or breast surgeries with propofol anaesthesia. A total of 48 SNPs of CYP2B6, CYP2C9, UGT1A9, HNF4A, ABCB1, ABCC4, ABCG2, GABRA2, GABRA4, GABRB1, GABRB3, GABRG2, GABBR2, GAD1, SLC1A3, BDNF, and NRXN1, previously associated with propofol metabolic and pharmacology pathway, were genotyped. The formula was developed in the training cohort using the least absolute shrinkage and selection operator logistic regression model, and then validated in the testing cohort. The SNPs, GABBR2 rs1167768, GABBR2 rs1571927, NRXN1 rs601010, BDNF rs2049046, GABRA4 rs1512135, UGT1A9 rs11692021, GABBR2 rs2808536, HNF4A rs1884613, GABRB3 rs2017247, and CYP2B6 rs3181842 were selected to construct the SNP-based formula, which was used to calculate the risk score for over 4 μg mL−1 TCI concentration of propofol at the time of LOC. Patients in the high-risk group were more likely to require a propofol concentration higher than 4 μg mL−1 and presented a longer LOC latency. The SNP-based formula may significantly improve the safety and effectiveness of propofol-induced anaesthesia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The association between the TCI concentration of propofol at the time of LOC and LOC latency (a) and hypotension (b) in 184 patients.
Fig. 2: Mean AUC of the predictive model in 500 testing cohorts after adding different independent SNPs.
Fig. 3: Influence of SNPs markers on propofol TCI concentration (>4 μg mL−1 or not) at the time of LOC.
Fig. 4: ROC curves, risk score distribution and LOC latency variation in the training and testing cohorts.

Similar content being viewed by others

References

  1. Sahinovic MM, Struys M, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol. Clin Pharmacokinet. 2018;57:1539–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Absalom AR, Glen JIB, Zwart GJC, Schnider TW, Struys MMRF. Target-controlled infusion: a mature technology. Anesth Analg. 2016;122:70–78.

    Article  CAS  PubMed  Google Scholar 

  3. Kang H, Mohamed H, Takashina M, Mori T, Fujino Y, Hagihira S. Individual indicators of appropriate hypnotic level during propofol anesthesia: highest alpha power and effect-site concentrations of propofol at loss of response. J Anesth. 2017;31:502–9.

    Article  PubMed  Google Scholar 

  4. Conway A, Sutherland J. Depth of anaesthesia monitoring during procedural sedation and analgesia: a systematic review and meta-analysis. Int J Nurs Stud. 2016;63:201–12.

    Article  PubMed  Google Scholar 

  5. Bartels K, Esper SA, Thiele RH. Blood pressure monitoring for the anesthesiologist: a practical review. Anesth Analg. 2016;122:1866–79.

    Article  CAS  PubMed  Google Scholar 

  6. Bienert A, Wiczling P, Grześkowiak E, Cywiński JB, Kusza K. Potential pitfalls of propofol target controlled infusion delivery related to its pharmacokinetics and pharmacodynamics. Pharmacol Rep. 2012;64:782–95.

    Article  CAS  PubMed  Google Scholar 

  7. García GM, Fernandez MS, Sanchez ND, Salgado SS, Terrasa SA, Domenech G, et al. Deep sedation using propofol target-controlled infusion for gastrointestinal endoscopic procedures: a retrospective cohort study. BMC Anesthesiol. 2020;20:195.

    Article  Google Scholar 

  8. Obara S, Noji Y, Hasegawa T, Hanayama C, Oishi R, Murakawa M. A patient with intraoperative awareness history requiring high propofol effect-site concentrations for general anesthesia. J Clin Rep. 2019;5:71

    Article  Google Scholar 

  9. Amstutz U, Carleton BC. Pharmacogenetic testing: time for clinical practice guidelines. Clin Pharmacol Ther. 2011;89:924–7.

    Article  CAS  PubMed  Google Scholar 

  10. Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF, et al. Pharmacogenomics. Lancet 2019;394:521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCarthy JJ, Hilfiker R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat Biotechnol. 2000;18:505–8.

    Article  CAS  PubMed  Google Scholar 

  12. Mastrogianni O, Gbandi E, Orphanidis A, Raikos N, Goutziomitrou E, Kolibianakis EM, et al. Association of the CYP2B6 c.516G>T Polymorphism with high blood propofol concentrations in women from Northern Greece. Drug Metab Pharmacol. 2014;29:215–8.

    Article  CAS  Google Scholar 

  13. Kansaku F, Kumai T, Sasaki K, Yokozuka M, Shimizu M, Tateda T, et al. Individual differences in pharmacokinetics and pharmacodynamics of anesthetic agent propofol with regard to CYP2B6 and UGT1A9 genotype and patient. Age Drug Metab Pharmacol. 2011;26:532–7.

    Article  CAS  Google Scholar 

  14. Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016;6:413–25.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khan MS, Zetterlund E, Gréen H, Oscarsson A, Zackrisson A, Svanborg E, et al. Pharmacogenetics, plasma concentrations, clinical signs and EEG during propofol treatment. Basic Clin Pharmacol. 2014;115:565–70.

    Article  CAS  Google Scholar 

  16. Takahashi H, Maruo Y, Mori A, Iwai M, Sato H, Takeuchi Y. Effect of D256N and Y483D on Propofol Glucuronidation by Human Uridine 5′-diphosphate Glucuronosyltransferase (UGT1A9). Basic Clin Pharmacol. 2008;103:131–6.

    Article  CAS  Google Scholar 

  17. Schwieler L, Delbro DS, Engberg G, Erhardt S. The anaesthetic agent propofol interacts with GABAB-receptors: an electrophysiological study in rat. Life Sci. 2003;72:2793–801.

    Article  CAS  PubMed  Google Scholar 

  18. Yang B, Wang BF, Lai MJ, Zhang FQ, Yang XW, Zhou WH, et al. Differential involvement of GABAA and GABAB receptors in propofol self-administration in rats. Acta Pharmacol Sin. 2011;32:1460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li KY, Guan Y, Krnjevic K, Ye JH. Propofol facilitates glutamatergic transmission to neurons of the ventrolateral preoptic nucleus. Anesthesiology 2009;111:1271–8.

    Article  CAS  PubMed  Google Scholar 

  20. Graf ER. Structure function and splice site analysis of the synaptogenic activity of the Neurexin-1beta LNS domain. J Neurosci. 2006;26:4256–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang Y, Ko H, Cheung ZH, Yung KKL, Yao T, Wang J, et al. Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Exp Neurol. 2012;233:791–8.

    Article  CAS  PubMed  Google Scholar 

  22. Iohom G, Ni Chonghaile M, OʼBrien JK, Cunningham AJ, Fitzgerald DF, Shields DC. An investigation of potential genetic determinants of propofol requirements and recovery from anaesthesia. Eur J Anaesth. 2007;24:912–9.

    Article  CAS  Google Scholar 

  23. Marsh B, White M, Morton N, Kenny GNC. Pharmacokinetic model driven infusion of propofol in children. Brit J Anaesth. 1991;67:41–48.

    Article  CAS  PubMed  Google Scholar 

  24. Loparev VN, Cartas MA, Monken CE, Velpandi A, Srinivasan A. An efficient and simple method of DNA extraction from whole blood and cell lines to identify infectious agents. J Virol Methods. 1991;34:105–12.

    Article  CAS  PubMed  Google Scholar 

  25. Mikstacki A, Zakerska-Banaszak O, Skrzypczak-Zielinska M, Tamowicz B, Prendecki M, Dorszewska J, et al. The effect of UGT1A9, CYP2B6 and CYP2C9 genes polymorphism on individual differences in propofol pharmacokinetics among Polish patients undergoing general anaesthesia. J Appl Genet. 2017;58:213–20.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Zhang R, Huang S, Wang S, Xie J. Relationship between UGT1A9 gene polymorphisms, efficacy, and safety of propofol in induced abortions amongst Chinese population: a population-based study. Bioscience Rep. 2017;37:R20170722.

    Article  Google Scholar 

  27. Haller G, Stoelwinder J, Myles PS, McNeil J. Quality and safety indicators in anesthesia: a systematic review. Anesthesiology 2009;110:1158–75.

    Article  PubMed  Google Scholar 

  28. Yang LQ, Li JJ, Chen SQ, Wang YW. Effect of different depths of anesthesia on perioperative stress response in children undergoing adenoidectomy and tonsillectomy. CNS Neurosci Ther. 2013;19:134–5.

    Article  CAS  PubMed  Google Scholar 

  29. Wang K, Wu M, Xu J, Wu C, Zhang B, Wang G, et al. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: systematic review and meta-analysis. Br J Anaesth. 2019;123:777–94.

    Article  CAS  PubMed  Google Scholar 

  30. Castillo RL, Ibacache M, Cortínez I, Carrasco-Pozo C, Farías JG, Carrasco RA, et al. Dexmedetomidine improves cardiovascular and ventilatory outcomes in critically III patients: basic and clinical approaches. Front Pharmacol. 2019;10:1641.

    Article  CAS  PubMed  Google Scholar 

  31. Choong E, Loryan I, Lindqvist M, Nordling Å, el Bouazzaoui S, van Schaik RH, et al. Sex difference in formation of propofol metabolites: a replication study. Basic Clin Pharmacol. 2013;113:126–31.

    Article  CAS  Google Scholar 

  32. Dinis-Oliveira RJ. Metabolic profiles of propofol and fospropofol: clinical and forensic interpretative aspects. Biomed Res Int. 2018;2018:6852857.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Levesque E, Belanger AS, Harvey M, Couture F, Jonker D, Innocenti F, et al. Refining the UGT1A haplotype associated with irinotecan-induced hematological toxicity in metastatic colorectal cancer patients treated with 5-fluorouracil/irinotecan-based regimens. J Pharmacol Exp Ther. 2013;345:95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burgess KS, Ipe J, Swart M, Metzger IF, Lu J, Gufford BT, et al. Variants in the CYP2B6 3’UTR alter in vitro and in vivo CYP2B6 activity: potential role of MicroRNAs. Clin Pharmacol Ther. 2018;104:130–8.

    Article  CAS  PubMed  Google Scholar 

  35. Xuan FL, Wang HW, Cao LX, Bing YH, Chu CP, Jin R, et al. Propofol inhibits cerebellar parallel fiber-purkinje cell synaptic transmission via activation of Presynaptic GABA(B) receptors in vitro in mice. Front Neurosci. 2018;12:922.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu M, Lee MH, Mak VW, Tomlinson B. Effect of central obesity, low high-density lipoprotein cholesterol and C-reactive protein polymorphisms on C-reactive protein levels during treatment with Rosuvastatin (10 mg Daily). Am J Cardiol. 2010;106:1588–93.

    Article  CAS  PubMed  Google Scholar 

  37. Beckman L, Fröhlander N. Heterozygosity effects in studies of genetic markers and disease. Hum Hered. 1990;40:322–9.

    Article  CAS  PubMed  Google Scholar 

  38. Williams J, Spurlock G, Holmans P, Mant R, Murphy K, Jones L, et al. A meta-analysis and transmission disequilibrium study of association between the dopamine D3 receptor gene and schizophrenia. Mol Psychiatry. 1998;3:141–9.

    Article  CAS  PubMed  Google Scholar 

  39. Morahan G, Huang D, Wu M, Holt BJ, White GP, Kendall GE, et al. Association of IL12B promoter polymorphism with severity of atopic and non-atopic asthma in children. Lancet 2002;360:455–9.

    Article  CAS  PubMed  Google Scholar 

  40. Pooley EC, Fairburn CG, Cooper Z, Sodhi MS, Cowen PJ, Harrison PJ. A 5-HT2C receptor promoter polymorphism (HTR2C − 759C/T) is associated with obesity in women, and with resistance to weight loss in heterozygotes. Am J Med Genet B Neuropsychiatr Genet. 2004;126B:124–7.

    Article  PubMed  Google Scholar 

  41. Crocq MA, Mant R, Asherson P, Williams J, Hode Y, Mayerova A, et al. Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J Med Genet. 1992;29:858–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant 81601711, 81971877], the Key Training Programs for Young Teachers of Sun Yat-sen University [Grant 19ykzd12], the Guangdong Provincial Key Laboratory of Construction Foundation [Grant 2017B030314030, 2020B1212060034] and the National Key Research and Development Program [Grant 2018YFC0116701].

Author information

Authors and Affiliations

Authors

Contributions

ZZ, FX, ZW and JL designed the research. HW, LZ, WH and MH conducted sample selection and data management. YH, WM, FY, and YW performed the DNA isolation and genotyping. ZZ, CZ, YG and XL analyzed data and wrote the manuscript. All authors gave approval of the final version to be published, and agreed to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Zhongxing Wang or Jiali Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1. Information of 48 Candidate SNPs

Supplementary Table 2. Forward, reverse, and extend primers for 48 target SNPs

41397_2021_263_MOESM3_ESM.docx

Supplementary Table 3. Influence of demographic factors on propofol TCI concentration at the time of LOC (Chi-square tests)

41397_2021_263_MOESM4_ESM.docx

Supplementary Table 4. Influence of demographic factors on propofol TCI concentration at the time of LOC (Mann-Whitney U test)

Supplementary Table 5. Genotype and allele frequencies of candidate SNPs in the 184 enroled patients

41397_2021_263_MOESM6_ESM.docx

Supplementary Table 6. Influence of gene polymorphisms on propofol TCI concentration at the time of LOC in the training cohort

Supplementary Table 7. Baseline demographic characteristics in the high-risk and low-risk groups

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Xue, F., Wang, H. et al. A single nucleotide polymorphism-based formula to predict the risk of propofol TCI concentration being over 4 µg mL−1 at the time of loss of consciousness. Pharmacogenomics J 22, 109–116 (2022). https://doi.org/10.1038/s41397-021-00263-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00263-3

This article is cited by

Search

Quick links