Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of ITPA gene polymorphisms with adverse effects of AZA/6-MP administration: a systematic review and meta-analysis

Abstract

Azathioprine (AZA) and its metabolite, mercaptopurine (6-MP), are widely used immunosuppressant drugs. Polymorphisms in genes implicated in AZA/6-MP metabolism, reportedly, could account in part for their potential toxicity. In the present study we performed a systematic review and a meta-analysis, comprising 30 studies and 3582 individuals, to investigate the putative genetic association of two inosine triphosphatase (ITPA) polymorphisms with adverse effects in patients treated with AZA/6-MP. We found that rs1127354 is associated with neutropenia in general populations and in children (OR: 2.39, 95%CI: 1.97–2.90, and OR: 2.43, 95%CI: 2.12–2.79, respectively), and with all adverse effects tested herein in adult populations (OR: 2.12, 95%CI: 1.22–3.69). We also found that rs7270101 is associated with neutropenia and leucopenia in all-ages populations (OR: 2.93, 95%CI: 2.36–3.63, and OR: 2.82, 95%CI: 1.76–4.50, respectively) and with all adverse effects tested herein in children (OR: 1.74, 95%CI: 1.06–2.87). Stratification according to background disease, in combination with multiple comparisons corrections, verified neutropenia to be associated with both polymorphisms, in acute lymphoblastic leukemia (ALL) patients. These findings suggest that ITPA polymorphisms could be used as predictive biomarkers for adverse effects of thiopurine drugs to eliminate intolerance in ALL patients and clarify dosing in patients with different ITPA variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow diagram.
Fig. 2: Influence of rs1127354 in AZA/6-MP adverse effects.
Fig. 3: Influence of rs7270101 in AZA/6-MP adverse effects.

Similar content being viewed by others

References

  1. Breen DP, Marinaki AM, Arenas M, Hayes PC. Pharmacogenetic association with adverse drug reactions to azathioprine immunosuppressive therapy following liver transplantation. Liver Transpl. 2005;11:826–33.

    Article  PubMed  Google Scholar 

  2. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78.

    Article  CAS  PubMed  Google Scholar 

  3. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–43.

    Article  CAS  PubMed  Google Scholar 

  4. Teml A, Schaeffeler E, Herrlinger KR, Klotz U, Schwab M. Thiopurine treatment in inflammatory bowel disease: clinical pharmacology and implication of pharmacogenetically guided dosing. Clin Pharmacokinetics. 2007;46:187–208.

    Article  CAS  Google Scholar 

  5. Connell WR, Kamm MA, Ritchie JK, Lennard-Jones JE. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut. 1993;34:1081–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Floyd A, Pedersen L, Nielsen GL, Thorlacius-Ussing O, Sorensen HT. Risk of acute pancreatitis in users of azathioprine: a population-based case-control study. Am J Gastroenterol. 2003;98:1305–8.

    Article  CAS  PubMed  Google Scholar 

  7. Moon W, Loftus EV Jr. Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease. Alimentary Pharmacol Therapeut. 2016;43:863–83.

    Article  CAS  Google Scholar 

  8. Schwab M, Schaffeler E, Marx C, Fischer C, Lang T, Behrens C, et al. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics. 2002;12:429–36.

    Article  CAS  PubMed  Google Scholar 

  9. Ansari A, Arenas M, Greenfield SM, Morris D, Lindsay J, Gilshenan K, et al. Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease. Alimentary Pharmacol Therapeut. 2008;28:973–83.

    Article  CAS  Google Scholar 

  10. Marinaki AM, Duley JA, Arenas M, Ansari A, Sumi S, Lewis CM, et al. Mutation in the ITPA gene predicts intolerance to azathioprine. Nucleosides Nucleotides Nucleic Acids. 2004;23:1393–7.

    Article  CAS  PubMed  Google Scholar 

  11. Chaparro M, Ordas I, Cabre E, Garcia-Sanchez V, Bastida G, Penalva M, et al. Safety of thiopurine therapy in inflammatory bowel disease: long-term follow-up study of 3931 patients. Inflamm Bowel Dis. 2013;19:1404–10.

    Article  PubMed  Google Scholar 

  12. Watanabe A, Hobara N, Nagashima H. Demonstration of enzymatic activity converting azathioprine to 6-mercaptopurine. Acta Med Okayama. 1978;32:173–9.

    CAS  PubMed  Google Scholar 

  13. Siegel CA, Sands BE. Review article: practical management of inflammatory bowel disease patients taking immunomodulators. Alimentary Pharmacol Therapeut. 2005;22:1–16.

    Article  CAS  Google Scholar 

  14. Hareedy MS, El Desoky ES, Woillard JB, Thabet RH, Ali AM, Marquet P, et al. Genetic variants in 6-mercaptopurine pathway as potential factors of hematological toxicity in acute lymphoblastic leukemia patients. Pharmacogenomics. 2015;16:1119–34.

    Article  CAS  PubMed  Google Scholar 

  15. Marinaki AM, Ansari A, Duley JA, Arenas M, Sumi S, Lewis CM, et al. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics. 2004;14:181–7.

    Article  CAS  PubMed  Google Scholar 

  16. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Investig. 2003;111:1133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fairchild CR, Maybaum J, Kennedy KA. Concurrent unilateral chromatid damage and DNA strand breakage in response to 6-thioguanine treatment. Biochemical Pharmacol. 1986;35:3533–41.

    Article  CAS  Google Scholar 

  18. Lennard L. TPMT in the treatment of Crohn’s disease with azathioprine. Gut. 2002;51:143–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aberra FN, Lichtenstein GR. Review article: monitoring of immunomodulators in inflammatory bowel disease. Alimentary Pharmacol Therapeut. 2005;21:307–19.

    Article  CAS  Google Scholar 

  20. Derijks LJ, Gilissen LP, Engels LG, Bos LP, Bus PJ, Lohman JJ, et al. Pharmacokinetics of 6-thioguanine in patients with inflammatory bowel disease. Therapeutic Drug Monit. 2006;28:45–50.

    Article  CAS  Google Scholar 

  21. Stocco G, Cheok MH, Crews KR, Dervieux T, French D, Pei D, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Therapeut. 2009;85:164–72.

    Article  CAS  Google Scholar 

  22. Yin D, Xia X, Zhang J, Zhang S, Liao F, Zhang G, et al. Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines tolerance dose. Oncotarget. 2017;8:13575–85.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang AL, Yang J, Wang H, Lu JL, Tang S, Zhang XJ. Association of NUDT15 c.415C>T allele and thiopurine-induced leukocytopenia in Asians: a systematic review and meta-analysis. Ir J Med Sci. 2018;187:145–53.

    Article  CAS  PubMed  Google Scholar 

  24. Nielsen OH, Bjerrum JT, Herfarth H, Rogler G. Recent advances using immunomodulators for inflammatory bowel disease. J Clin Pharmacol. 2013;53:575–88.

    Article  CAS  PubMed  Google Scholar 

  25. Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Therapeutic. 2019;105:5.

    Google Scholar 

  26. Gisbert JP, Luna M, Mate J, Gonzalez-Guijarro L, Cara C, Pajares JM. Choice of azathioprine or 6-mercaptopurine dose based on thiopurine methyltransferase (TPMT) activity to avoid myelosuppression. A prospective study. Hepato-Gastroenterol. 2006;53:399–404.

    CAS  Google Scholar 

  27. Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118:1025–30.

    Article  CAS  PubMed  Google Scholar 

  28. Koutsilieri S, Caudle KE, Alzghari SK, Monte AA, Relling MV, Patrinos GP. Optimizing thiopurine dosing based on TPMT and NUDT15 genotypes: It takes two to tango. Am J Hematol. 2019;94:737–40. Wiley-Liss Inc

    PubMed  Google Scholar 

  29. Azimi F, Mortazavi Y, Alavi S, Khalili M, Ramazani A. Frequency of ITPA gene polymorphisms in Iranian patients with acute lymphoblastic leukemia and prediction of its myelosuppressive effects. Leuk Res. 2015;39:1048–54.

    Article  CAS  PubMed  Google Scholar 

  30. Ma X, Zheng J, Jin M, Li W, Gao C, Zhang D, et al. Inosine triphosphate pyrophosphohydrolase (ITPA) polymorphic sequence variants in Chinese ALL children and possible association with mercaptopurine related toxicity. Int J Clin Exp Pathol. 2014;7:4552–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Uchiyama K, Nakamura M, Kubota T, Yamane T, Fujise K, Tajiri H. Thiopurine S-methyltransferase and inosine triphosphate pyrophosphohydrolase genes in Japanese patients with inflammatory bowel disease in whom adverse drug reactions were induced by azathioprine/6-mercaptopurine treatment. J Gastroenterol. 2009;44:197–203.

    Article  CAS  PubMed  Google Scholar 

  32. Zelinkova Z, Derijks LJ, Stokkers PC, Vogels EW, van Kampen AH, Curvers WL, et al. Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol. 2006;4:44–9.

    Article  CAS  PubMed  Google Scholar 

  33. Stenmark P, Kursula P, Flodin S, Gräslund S, Landry R, Nordlund P, et al. Crystal structure of human inosine triphosphatase. Substrate binding and implication of the inosine triphosphatase deficiency mutation P32T. J Biol Chem. 2007;282:3182–7.

    Article  CAS  PubMed  Google Scholar 

  34. Lin S, McLennan AG, Ying K, Wang Z, Gu S, Jin H, et al. Cloning, expression, and characterization of a human inosine triphosphate pyrophosphatase encoded by the itpa gene. J Biol Chem. 2001;276:18695–701.

    Article  CAS  PubMed  Google Scholar 

  35. Shipkova M, Lorenz K, Oellerich M, Wieland E, von Ahsen N. Measurement of Erythrocyte Inosine Triphosphate Pyrophosphohydrolase (ITPA) Activity by HPLC and Correlation of ITPA Genotype-Phenotype in a Caucasian Population. Clin Chem. 2006;52:240–47.

    Article  CAS  PubMed  Google Scholar 

  36. Sumi S, Marinaki AM, Arenas M, Fairbanks L, Shobowale-Bakre M, Rees DC, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet. 2002;111:360–7.

    Article  CAS  PubMed  Google Scholar 

  37. Biebermann H, Krude H, Elsner A, Chubanov V, Gudermann T, Grüters A. Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization. Diabetes. 2003;52:2984–88.

    Article  CAS  PubMed  Google Scholar 

  38. Hendy GN, Geoffrey N, Vito Guarnieri, Lucie Canaff. Chapter 3 calcium-sensing receptor and associated diseases. Prog Mol Biol Transl Sci. 2009;89:31–95.

    Article  CAS  PubMed  Google Scholar 

  39. Kouwenberg TW, van den Bosch BJC, Bierau J, Te Loo DMWM, Coenen MJH, Hagleitner MM. Dosage of 6-mercaptopurine in relation to genetic TPMT and ITPA variants: toward individualized pediatric acute lymphoblastic leukemia maintenance treatment. J Pediatr Hematol/Oncol. 2020;42:E94–97.

    Article  CAS  Google Scholar 

  40. Van Dieren JM, Hansen BE, Kuipers EJ, Nieuwenhuis EE, Van der Woude CJ. Meta-analysis: Inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease. Alimentary Pharmacol Therapeut. 2007;26:643–52.

    Article  Google Scholar 

  41. Counsell C. Formulating questions and locating primary studies for inclusion in systematic reviews. Ann Intern Med. 1997;127:380–7. American College of Physicians

    Article  CAS  PubMed  Google Scholar 

  42. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hopewell S, McDonald S, Clarke M, Egger M. Grey literature in meta-analyses of randomized trials of health care interventions. Cochrane Database Syst Rev. 2007;18:MR000010.

    Google Scholar 

  44. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.

    Article  CAS  PubMed  Google Scholar 

  45. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919.

  46. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  47. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  49. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bagos PG, Nikolopoulos GK. Generalized least squares for assessing trends in cumulative meta-analysis with applications in genetic epidemiology. J Clin Epidemiol. 2009;62:1037–44.

    Article  PubMed  Google Scholar 

  51. Aickin M, Gensler H. Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. Am J Public Health. 1996;86:726–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

    Google Scholar 

  53. Šidák Z. Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc. 1967;62:626–33.

    Google Scholar 

  54. Keselman HJ, Cribbie R, Holland B. Controlling the rate of Type I error over a large set of statistical tests. Br J Math Stat Psychol. 2002;55:27–39.

    Article  CAS  PubMed  Google Scholar 

  55. Wahlund M, Nilsson A, Kahlin AZ, Broliden K, Myrberg IH, Appell ML, et al. The role of TPMT, ITPA, and NUDT15 variants during mercaptopurine treatment of swedish pediatric patients with acute lymphoblastic leukemia. J Pediatr. 2020;216:150–.e1.

    Article  CAS  PubMed  Google Scholar 

  56. De Ridder L, Van Dieren JM, Van Deventer HJ, Stokkers PC, Van der Woude JC, Van, et al. Pharmacogenetics of thiopurine therapy in paediatric IBD patients. Alimentary Pharmacol Therapeut. 2006;23:1137–41.

    Article  Google Scholar 

  57. Kurzawski M, Dziewanowski K, Lener A, Drozdzik M. TPMT but not ITPA gene polymorphism influences the risk of azathioprine intolerance in renal transplant recipients. Eur J Clin Pharmacol. 2009;65:533–40.

    Article  CAS  PubMed  Google Scholar 

  58. Odahara S, Uchiyama K, Kubota T, Ito Z, Takami S, Kobayashi H, et al. A prospective study evaluating metabolic capacity of thiopurine and associated adverse reactions in Japanese patients with inflammatory bowel disease (IBD). PloS One. 2015;10:e0137798.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Palmieri O, Latiano A, Bossa F, Vecchi M, D’Inca R, Guagnozzi D, et al. Sequential evaluation of thiopurine methyltransferase, inosine triphosphate pyrophosphatase, and HPRT1 genes polymorphisms to explain thiopurines’ toxicity and efficacy. Alimentary Pharmacol Therapeut. 2007;26:737–45.

    Article  CAS  Google Scholar 

  60. Steponaitiene R, Kupcinskas J, Survilaite S, Varkalaite G, Jonaitis L, Kiudelis G, et al. TPMT and ITPA genetic variants in Lithuanian inflammatory bowel disease patients: prevalence and azathioprine-related side effects. Adv Med Sci. 2016;61:135–40.

    Article  PubMed  Google Scholar 

  61. Kim JH, Cheon JH, Hong SS, Eun CS, Byeon JS, Hong SY, et al. Influences of thiopurine methyltransferase genotype and activity on thiopurine-induced leukopenia in Korean patients with inflammatory bowel disease: a retrospective cohort study. J Clin Gastroenterol. 2010;44:e242–8.

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka Y, Nakadate H, Kondoh K, Nakamura K, Koh K, Manabe A. Interaction between NUDT15 and ABCC4 variants enhances intolerability of 6-mercaptopurine in Japanese patients with childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2018;18:275–80.

    Article  CAS  PubMed  Google Scholar 

  63. van Dieren JM, van Vuuren AJ, Kusters JG, Nieuwenhuis EE, Kuipers EJ, van der Woude CJ. ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut. 2005;54:1664.

    PubMed  PubMed Central  Google Scholar 

  64. Gearry RB, Roberts RL, Barclay ML, Kennedy MA. Lack of association between the ITPA 94C>A polymorphism and adverse effects from azathioprine. Pharmacogenetics. 2004;14:779–81.

    Article  CAS  PubMed  Google Scholar 

  65. Zabala-Fernandez W, Barreiro-de Acosta M, Echarri A, Carpio D, Lorenzo A, Castro J, et al. A pharmacogenetics study of TPMT and ITPA genes detects a relationship with side effects and clinical response in patients with inflammatory bowel disease receiving Azathioprine. J Gastrointest Liver Dis. 2011;20:247–53.

    Google Scholar 

  66. Hindorf U, Lindqvist M, Peterson C, Soderkvist P, Strom M, Hjortswang H, et al. Pharmacogenetics during standardised initiation of thiopurine treatment in inflammatory bowel disease. Gut. 2006;55:1423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hawwa AF, Millership JS, Collier PS, Vandenbroeck K, McCarthy A, Dempsey S, et al. Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. Br J Clin Pharmacol. 2008;66:517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiong H, Xin HW, Wu XC, Li Q, Xiong L, Yu AR. Association between inosine triphosphate pyrophosphohydrolase deficiency and azathioprine-related adverse drug reactions in the Chinese kidney transplant recipients. Fundamental Clin Pharmacol. 2010;24:393–400.

    Article  CAS  Google Scholar 

  69. Tanaka Y, Manabe A, Fukushima H, Suzuki R, Nakadate H, Kondoh K, et al. Multidrug resistance protein 4 (MRP4) polymorphisms impact the 6-mercaptopurine dose tolerance during maintenance therapy in Japanese childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15:380–4.

    Article  CAS  PubMed  Google Scholar 

  70. von Ahsen N, Armstrong VW, Behrens C, von Tirpitz C, Stallmach A, Herfarth H, et al. Association of inosine triphosphatase 94C>A and thiopurine S-methyltransferase deficiency with adverse events and study drop-outs under azathioprine therapy in a prospective Crohn disease study. Clin Chem. 2005;51:2282–8.

    Article  Google Scholar 

  71. Al-Judaibi B, Schwarz UI, Huda N, Dresser GK, Gregor JC, Ponich T, et al. Genetic predictors of azathioprine toxicity and clinical response in patients with inflammatory bowel disease. J Popul Therapeutics Clin Pharmacol. 2016;23:e26–36.

    CAS  Google Scholar 

  72. Suzuki R, Fukushima H, Noguchi E, Tsuchida M, Kiyokawa N, Koike K, et al. Influence of SLCO1B1 polymorphism on maintenance therapy for childhood leukemia. Pediatr Int. 2015;57:572–7.

    Article  CAS  PubMed  Google Scholar 

  73. Kim H, Kang HJ, Kim HJ, Jang MK, Kim NH, Oh Y, et al. Pharmacogenetic analysis of pediatric patients with acute lymphoblastic leukemia: a possible association between survival rate and ITPA polymorphism. PLoS One. 2012;7:e45558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smid A, Karas-Kuzelicki N, Milek M, Jazbec J, Mlinaric-Rascan I. Association of ITPA genotype with event-free survival and relapse rates in children with acute lymphoblastic leukemia undergoing maintenance therapy. PLoS One. 2014;9:e109551.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tsuchiya A, Aomori T, Sakamoto M, Takeuchi A, Suzuki S, Jibiki A, et al. Effect of genetic polymorphisms of azathioprine-metabolizing enzymes on response to rheumatoid arthritis treatment. Pharmazie. 2017;72:22–28.

    CAS  PubMed  Google Scholar 

  76. Kishibe M, Nozaki H, Fujii M, Iinuma S, Ohtsubo S, Igawa S, et al. Severe thiopurine-induced leukocytopenia and hair loss in Japanese patients with defective NUDT15 variant: Retrospective case-control study. J Dermatol. 2018;45:1160–5.

    Article  CAS  PubMed  Google Scholar 

  77. Bierau J, Lindhout M, Bakker JA. Pharmacogenetic significance of inosine triphosphatase. Pharmacogenomics. 2007;8:1221–1228.

    Article  CAS  PubMed  Google Scholar 

  78. Walkovich K, Connelly JA. Congenital neutropenia and rare functional phagocyte disorders in children. Hematol/Oncol Clin North Am. 2019;33:533–51. W.B. Saunders

    Article  Google Scholar 

  79. Marinaki AM, Arenas-Hernandez M. Reducing risk in thiopurine therapy. Xenobiotica. 2020;50:101–9. Taylor and Francis Ltd

    Article  CAS  PubMed  Google Scholar 

  80. Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet. 1994;8:303–7.

    Article  CAS  PubMed  Google Scholar 

  81. Cao H, Hegele RA. DNA polymorphisms in ITPA including basis of inosine triphosphatase deficiency. J Hum Genet. 2002;47:620–22.

    Article  CAS  PubMed  Google Scholar 

  82. Marsh S, King CR, Ahluwalia R, McLeod HL. Distribution of ITPA P32T Alleles in Multiple World Populations. J Hum Genet. 2004;49:579–81.

    Article  CAS  PubMed  Google Scholar 

  83. Lakiotaki K, Kanterakis A, Kartsaki E, Katsila T, Patrinos GP, Potamias G. Exploring public genomics data for population pharmacogenomics. PLoS One. 2017;8:12.

    Google Scholar 

  84. Katara P, Yadav A Pharmacogenes (PGx-genes): Current understanding and future directions. Gene. Nov, 2019;718. Elsevier B.V.

  85. Al-Mahayri ZN, Patrinos GP, Ali BR. Pharmacogenomics in pediatric acute lymphoblastic leukemia: Promises and limitations. Pharmacogenomics. 2017;18:687–99. Future Medicine Ltd

    Article  CAS  PubMed  Google Scholar 

  86. Simeonidis S, Koutsilieri S, Vozikis A, Cooper DN, Mitropoulou C, Patrinos GP. Application of economic evaluation to assess feasibility for reimbursement of genomic testing as part of personalized medicine interventions. Front Pharmacol. 2019;10:830.

Download references

Funding

PIK and PGB acknowledge support of this work by the project “ELIXIR-GR: The Greek Research Infrastructure for Data Management and Analysis in Life Sciences”, Grant Number (MIS) 5002780.

Author information

Authors and Affiliations

Authors

Contributions

GGB participated in the conception of the study, in data collection, in the analysis and in the interpretation of the results. PGB participated in the conception of the study, in data collection, in the analysis and in the interpretation of the results. EB did most of data collection, performed most of the analysis, participated in the interpretation of the results, and drafted the initial version of the manuscript. PIK participated in the analysis and in interpretation of the results. IM participated in the interpretation of the results. All authors participated in drafting the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Pantelis G. Bagos or Georgia G. Braliou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba, E., Kontou, P.I., Michalopoulos, I. et al. Association of ITPA gene polymorphisms with adverse effects of AZA/6-MP administration: a systematic review and meta-analysis. Pharmacogenomics J 22, 39–54 (2022). https://doi.org/10.1038/s41397-021-00255-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00255-3

Search

Quick links