Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Economic evaluation in psychiatric pharmacogenomics: a systematic review

Abstract

Nowadays, many relevant drug–gene associations have been discovered, but pharmacogenomics (PGx)-guided treatment needs to be cost-effective as well as clinically beneficial to be incorporated into standard health care. To address current challenges, this systematic review provides an update regarding previously published studies, which assessed the cost-effectiveness of PGx testing for the prescription of antidepressants and antipsychotics. From a total of 1159 studies initially identified by literature database querying, and after manual assessment and curation of all of them, a mere 18 studies met our inclusion criteria. Of the 18 studies evaluations, 16 studies (88.89%) drew conclusions in favor of PGx testing, of which 9 (50%) genome-guided interventions were cost-effective and 7 (38.9%) were less costly compared to standard treatment based on cost analysis. More precisely, supportive evidence exists for CYP2D6 and CYP2C19 drug–gene associations and for combinatorial PGx panels, but evidence is limited for many other drug–gene combinations. Amongst the limitations of the field are the unclear explanation of perspective and cost inputs, as well as the underreporting of study design elements, which can influence though the economic evaluation. Overall, the findings of this article demonstrate that although there is growing evidence on the cost-effectiveness of genome-guided interventions in psychiatric diseases, there is still a need for performing additional research on economic evaluations of PGx implementation with an emphasis on psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main pillars of the systematic review.
Fig. 2: Schematic pipeline/flowchart of the literature screening.

Similar content being viewed by others

References

  1. Hannah R, Max R. “Mental Health”. 2018. https://ourworldindata.org/mental-health. Accessed 10 Oct 2020.

  2. WHO. Mental disorders. 2019. https://www.who.int/news-room/fact-sheets/detail/mental-disorders Accessed 10 Oct 2020.

  3. National Institute of Mental Health. 2019. https://www.nimh.nih.gov/health/statistics/mental-illness.shtml. Accessed 10 Oct 2020.

  4. John A, McGregor J, Jones I, Lee SC, Walters JTR, Owen MJ, et al. Premature mortality among people with severe mental illness—new evidence from linked primary care data. Schizophr Res. 2018;199:154–62.

    Article  PubMed  Google Scholar 

  5. Liu NH, Daumit GL, Dua T, Aquila R, Charlson F, Cuijpers P, et al. Excess mortality in persons with severe mental disorders: a multilevel intervention framework and priorities for clinical practice, policy and research agendas. World Psychiatry. 2017;16:30–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berto P, D’Ilario D, Ruffo P, Virgilio RDI, Rizzo F. Depression: cost-of-illness studies in the international literature, a review. J Ment Health Policy Econ. 2000;3:3–10.

    Article  PubMed  Google Scholar 

  7. Wang PS, Simon G, Kessler RC. The economic burden of depression and the cost-effectiveness of treatment. Int J Methods Psychiatr Res. 2003;12:22–33.

    Article  CAS  PubMed  Google Scholar 

  8. Trautmann S, Rehm J, Wittchen HU. The economic costs of mental disorders: Do our societies react appropriately to the burden of mental disorders? EMBO Rep. 2016;17:1245–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. OECD. OECD Health at a Glance 2019. In OECD iLibrary. 2019. https://www.oecd-ilibrary.org/sites/health_glance_eur-2018-4-en/index.html?itemId=/content/component/health_glance_eur-2018-4-en.

  10. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–858.

    Article  Google Scholar 

  11. Fabbri C, Corponi F, Souery D, Kasper S, Montgomery S, Zohar J, et al. The genetics of treatment-resistant depression: a critical review and future perspectives. Int J Neuropsychopharmacol. 2019;22:93–104.

    Article  CAS  PubMed  Google Scholar 

  12. Anderson IM, Haddad PM, Scott J. Bipolar disorder. BMJ. 2012;345:e8508.

    Article  PubMed  Google Scholar 

  13. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    Article  PubMed  Google Scholar 

  14. Undurraga J, Baldessarini RJ. Randomized, placebo-controlled trials of antidepressants for acute major depression: Thirty-year meta-analytic review. Neuropsychopharmacology. 2012;37:851–64.

    Article  CAS  PubMed  Google Scholar 

  15. Warden D, Rush AJ, Trivedi MH, Fava M, Wisniewski SR. The STAR*D Project results: a comprehensive review of findings. Curr Psychiatry Rep. 2007;9:449–59.

    Article  PubMed  Google Scholar 

  16. Mrazek MD, Mooneyham BW, Schooler JW. Insights from quiet minds: the converging fields of mindfulness and mind-wandering. 2014. https://doi.org/10.1007/978-3-319-01634-4_13.

  17. Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry. 2010;15:473–500.

    Article  CAS  PubMed  Google Scholar 

  18. Laje G, Allen AS, Akula N, Manji H, John Rush A, McMahon FJ. Genome-wide association study of suicidal ideation emerging during citalopram treatment of depressed outpatients. Pharmacogenet Genomics. 2009;19:666–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Serretti A, Kato M, De Ronchi D, Kinoshita T. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry. 2007;12:247–57.

    Article  CAS  PubMed  Google Scholar 

  20. Villafuerte SM, Vallabhaneni K, Śliwerska E, McMahon FJ, Young EA, Burmeister M. SSRI response in depression may be influenced by SNPs in HTR1B and HTR1A. Psychiatr Genet. 2009;19:281–91.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alagoz O, Durham D, Kasirajan K. Cost-effectiveness of one-time genetic testing to minimize lifetime adverse drug reactions. Pharmacogenomics J. 2016;16:129–36. 2016

    Article  CAS  PubMed  Google Scholar 

  22. Gardner JR, Livingston PM, Fraser SF. Effects of exercise on treatment-related adverse effects for patients with prostate cancer receiving androgen-deprivation therapy: a systematic review. J Clin Oncol. 2014;32:335–46.

    Article  PubMed  Google Scholar 

  23. Vegter S, Jansen E, Postma MJ, Boersma C. Economic evaluations of pharmacogenetic and genomic screening programs: update of the literature. Drug Dev Res. 2010;71:492–501.

    Article  CAS  Google Scholar 

  24. Vegter S, Boersma C, Rozenbaum M, Wilfert B, Navis G, Postma J. Pharmacoeconomic evaluations of pharmacogenetic and genomic screening programmes: a systematic review on content and adherence to guidelines. Pharmacoeconomics. 2008;26:569–87.

    Article  CAS  PubMed  Google Scholar 

  25. Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and tamoxifen therapy. Clin Pharm Ther. 2018;103:770–7.

    Article  Google Scholar 

  26. Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease-implications for personalized medicine’. Pharm Rev. 2013;65:987–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahungu T, Owen A. Current progress in the pharmacogenetics of infectious disease therapy. In: Tibayrenc M., editor. Genetics and Evolution of Infectious Disease. 2nd ed. Elsevier: Amsterdam; 2011.

  28. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. PREDICT-1 Study Team. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl J Med. 2008;358:568–79.

    Article  PubMed  Google Scholar 

  29. Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Müller DJ, Shimoda K, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharm Ther. 2017;102:37–44.

    Article  CAS  Google Scholar 

  30. Westergaard N, Søgaard Nielsen R, Jørgensen S, Vermehren C. Drug use in Denmark for drugs having pharmacogenomics (PGx) based dosing guidelines from CPIC or DPWG for CYP2D6 and CYP2C19 drug–gene pairs: Perspectives for introducing PGx test to polypharmacy patients. J Pers Med. 2020;10:3.

    Article  PubMed Central  Google Scholar 

  31. Kordou Z, Skokou M, Tsermpini EE, Chantratita W, Fukunaga K, Mushiroda T, et al. Discrepancies and similarities in the genome-informed guidance for psychiatric disorders amongst different regulatory bodies and research consortia using next generation sequencing-based clinical pharmacogenomics data [published online ahead of print, 2021 Mar 9]. Pharm Res. 2021;167:105538.

    Article  CAS  Google Scholar 

  32. Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry. 2018;51:9–62.

    Article  CAS  PubMed  Google Scholar 

  33. Bousman CA, Bengesser SA, Aitchison KJ, Amare AT, Aschauer H, Baune BT, et al. Review and consensus on pharmacogenomic testing in psychiatry. Pharmacopsychiatry. 2021;54:5–17.

    Article  PubMed  Google Scholar 

  34. Berm EJJ, De Looff M, Wilffert B, Boersma C, Annemans L, Vegter S, et al. Economic evaluations of pharmacogenetic and pharmacogenomic screening tests: a systematic review. Second update of the literature. PLoS ONE 2016;11:e0146262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Peterson K, Dieperink E, Anderson J, Boundy E, Ferguson L, Helfand M. Rapid evidence review of the comparative effectiveness, harms, and cost-effectiveness of pharmacogenomics-guided antidepressant treatment versus usual care for major depressive disorder. Psychopharmacology. 2017;234:1649–61.

    Article  CAS  PubMed  Google Scholar 

  36. Chiou CF, Hay JW, Wallace JF, Bloom BS, Neumann PJ, Sullivan SD, et al. Development and validation of a grading system for the quality of cost-effectiveness studies. Med Care. 2003;41:32–44.

    Article  PubMed  Google Scholar 

  37. Djalalov S, Musa Z, Mendelson M, Siminovitch K, Hoch J. A review of economic evaluations of genetic testing services and interventions (2004–2009). Genet Med. 2011;13:89–94.

    Article  PubMed  Google Scholar 

  38. Wong WB, Carlson JJ, Thariani R, Veenstra DL. Cost effectiveness of pharmacogenomics: a critical and systematic review. Pharmacoeconomics. 2010;28:1001–13.

    Article  PubMed  Google Scholar 

  39. Zhu Y, Swanson KM, Rojas RL, Wang Z, St. Sauver JL, Visscher SL, et al. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet Med. 2020;22:475–86.

    Article  PubMed  Google Scholar 

  40. King KR, Grazette LP, Paltoo DN, McDevitt JT, Sia SK, Barrett PM, et al. Point-of-care technologies for precision cardiovascular care and clinical research: National Heart, Lung, and Blood Institute Working Group. JACC Basic Transl Sci. 2016;1:73–86.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Benitez J, Cool CL, Scotti DJ. Use of combinatorial pharmacogenomic guidance in treating psychiatric disorders. Per Med. 2018;15:481–94.

    Article  CAS  PubMed  Google Scholar 

  42. Berm EJJ, Gout-Zwart JJ, Luttjeboer J, Wilffert B, Postma MJ. A model based cost-effectiveness analysis of routine genotyping for CYP2D6 among older, depressed inpatients starting nortriptyline pharmacotherapy. PLoS ONE. 2016;11:e0169065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Brown LC, Lorenz RA, Li J, Dechairo BM. Economic utility: combinatorial pharmacogenomics and medication cost savings for mental health care in a primary care setting. Clin Ther. 2017;39:592–602.e1.

    Article  PubMed  Google Scholar 

  44. Fagerness J, Fonseca E, Hess GP, Scott R, Gardner KR, Koffler M, et al. Pharmacogenetic-guided psychiatric intervention associated with increased adherence and cost savings. Am J Manag Care. 2014;20:e146–e156.

    PubMed  Google Scholar 

  45. Girardin FR, Poncet A, Perrier A, Vernaz N, Pletscher M, F. Samer C, et al. Cost-effectiveness of HLA-DQB1/HLA-B pharmacogenetic-guided treatment and blood monitoring in US patients taking clozapine. Pharmacogenomics J. 2019;19:211–8.

    Article  CAS  PubMed  Google Scholar 

  46. Groessl EJ, Tally SR, Hillery N, Maciel A, Garces JA. Cost-effectiveness of a pharmacogenetic test to guide treatment for major depressive disorder. J Manag Care Spec Pharm. 2018;24:726–34.

    PubMed  Google Scholar 

  47. Herbild L, Andersen SE, Werge T, Rasmussen HB, Jürgens G. Does pharmacogenetic testing for CYP450 2D6 and 2C19 among patients with diagnoses within the schizophrenic spectrum reduce treatment costs? Basic Clin Pharm Toxicol. 2013;113:266–72.

    Article  CAS  Google Scholar 

  48. Hornberger J, Li Q, Quinn B. Cost-effectiveness of combinatorial pharmacogenomic testing for treatment-resistant major depressive disorder patients. Am J Manag Care. 2015;21:e357–e365.

    PubMed  Google Scholar 

  49. Maciel A, Cullors A, Alukowiak A, Garces J. Estimating cost savings of pharmacogenetic testing for depression in real-world clinical settings. Neuropsychiatr Dis Treat. 2018;14:225–30.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Najafzadeh M, Garces JA, Maciel A. Economic evaluation of implementing a novel pharmacogenomic test (IDgenetix®) to guide treatment of patients with depression and/or anxiety. Pharmacoeconomics. 2017;35:1297–310.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Olgiati P, Bajo E, Bigelli M, De Ronchi D, Serretti A. Should pharmacogenetics be incorporated in major depression treatment? Economic evaluation in high- and middle-income European countries. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36:147–54.

    Article  PubMed  Google Scholar 

  52. Perlis RH, Ganz DA, Avorn J, Schneeweiss S, Glynn RJ, Smoller JW, et al. Pharmacogenetic testing in the clinical management of schizophrenia: A decision-analytic model. J Clin Psychopharmacol. 2005;25:427–34.

    Article  PubMed  Google Scholar 

  53. Perlis RH, Patrick A, Smoller JW, Wang PS. When is pharmacogenetic testing for antidepressant response ready for the clinic? A cost-effectiveness analysis based on data from the STAR*D study. Neuropsychopharmacology. 2009;34:2227–36.

    Article  CAS  PubMed  Google Scholar 

  54. Rejon-Parrilla JC, Nuijten M, Redekop WK, Gaultney JG (2014). Economic evaluation of the use of a pharmacogenetic diagnostic test in schizophrenia. Health Policy Technol. 2014. https://doi.org/10.1016/j.hlpt.2014.08.004.

  55. Serretti A, Olgiati P, Bajo E, Bigelli M, De Ronchi D. A model to incorporate genetic testing (5-HTTLPR) in pharmacological treatment of major depressive disorders. World J Biol Psychiatry. 2011;12:501–15.

    Article  PubMed  Google Scholar 

  56. Sluiter RL, Janzing JGE, van der Wilt GJ, Kievit W, Teichert M. An economic model of the cost-utility of pre-emptive genetic testing to support pharmacotherapy in patients with major depression in primary care. Pharmacogenomics J. 2019;19:480–9.

    Article  CAS  PubMed  Google Scholar 

  57. Winner JG, Carhart JM, Altar CA, Goldfarb S, Allen JD, Lavezzari G, et al. Combinatorial pharmacogenomic guidance for psychiatric medications reduces overall pharmacy costs in a 1 year prospective evaluation. Curr Med Res Opin. 2015;31:1633–43.

    Article  PubMed  Google Scholar 

  58. Winner JG, Carhart JM, Altar CA, Allen JD, Dechairo BM. A prospective, randomized, double-blind study assessing the clinical impact of integrated pharmacogenomic testing for major depressive disorder. Disco Med. 2013;16:219–27.

    Google Scholar 

  59. Mitropoulou C, Fragoulakis V, Rakicevic LB, Novkovic MM, Vozikis A, Matic DM, et al. Economic analysis of pharmacogenomic-guided clopidogrel treatment in Serbian patients with myocardial infarction undergoing primary percutaneous coronary intervention. Pharmacogenomics. 2016;17:1775–84.

    Article  CAS  PubMed  Google Scholar 

  60. Mitropoulou C, Fragoulakis V, Bozina N, Vozikis A, Supe S, Bozina T, et al. Economic evaluation of pharmacogenomic-guided warfarin treatment for elderly Croatian atrial fibrillation patients with ischemic stroke. Pharmacogenomics. 2015;16:137–48.

    Article  CAS  PubMed  Google Scholar 

  61. Cooper C, Dewe P. Well-being—Absenteeism, presenteeism, costs and challenges. Occup Med. 2008;58:522–4.

    Article  Google Scholar 

  62. Kigozi J, Jowett S, Lewis M, Barton P, Coast J. The estimation and inclusion of presenteeism costs in applied economic evaluation: a systematic review. Value Health. 2017;20:496–506.

    Article  PubMed  Google Scholar 

  63. Bousman CA, Zierhut H, Müller DJ. Navigating the labyrinth of pharmacogenetic testing: a guide to test selection. Clin Pharm Ther. 2019;106:309–12.

    Article  Google Scholar 

  64. Payne K, Gavan SP, Wright SJ, Thompson AJ. Cost-effectiveness analyses of genetic and genomic diagnostic tests. Nat Rev Genet. 2018;19:235–46.

    Article  CAS  PubMed  Google Scholar 

  65. Eichler HG, Kong SX, Gerth WC, Mavros P, Jönsson B. Use of cost-effectiveness analysis in health-care resource allocation decision-making: How are cost-effectiveness thresholds expected to emerge? Value Health. 2004;7:518–28.

    Article  PubMed  Google Scholar 

  66. Claxton K, Martin S, Soares M, Rice N, Spackman E, Hinde S, et al. Methods for the estimation of the National Institute for Health and care excellence cost-effectiveness threshold. Health Technol Assess. 2015;19:1–vi.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Woods B, Revill P, Sculpher M, Claxton K. Country-level cost-effectiveness thresholds: initial estimates and the need for further research. Value Health. 2016;19:929–35.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Devlin N, Parkin D. Does NICE have a cost-effectiveness threshold and what other factors influence its decisions? A binary choice analysis. Health Econ. 2004;13:437–52.

    Article  PubMed  Google Scholar 

  69. Simoens S. ‘Pricing and reimbursement of orphan drugs: The need for more transparency’. Orphanet J Rare Dis. 2011;6:42.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Birch S, Gafni A. The biggest bang for the buck or bigger bucks for the bang: the fallacy of the cost-effectiveness threshold. J Health Serv Res Policy. 2006;11:46–51.

    Article  PubMed  Google Scholar 

  71. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharm Ther. 2013;138:103–41.

    Article  CAS  Google Scholar 

  72. Petrović J, Pešić V, Lauschke VM. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 2020;28:88–94.

    Article  PubMed  CAS  Google Scholar 

  73. Zastrozhin MS, Grishina EA, Ryzhikova KA, Smirnov VV, Savchenko LM, Bryun EA, et al. The influence of CYP3A5 polymorphisms on haloperidol treatment in patients with alcohol addiction. Pharmgenomics Pers Med. 2017;11:1–5.

    PubMed  PubMed Central  Google Scholar 

  74. Ragia G, Dahl ML, Manolopoulos VG. Influence of CYP3A5 polymorphism on the pharmacokinetics of psychiatric drugs. Curr Drug Metab. 2016;17:227–36.

    Article  CAS  PubMed  Google Scholar 

  75. Patrinos GP, Mitropoulou C. Measuring the value of pharmacogenomics evidence. Clin Pharm Ther. 2017;102:739–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been partly funded by the European Union’s Horizon 2020 research and innovation grant (H2020’ 668353; Ubiquitous Pharmacogenomics) to GPP and CM and, partly funded by the European Union’s Horizon 2020 research and innovation under the Marie Skłodowska - Curie grant agreement (H2020’ 860895; TranSYS) to GPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Mitropoulou.

Ethics declarations

Competing interests

The authors declare no competing interests. GPP is Full Member and national Representative of the European Medicines Agency, Committee for Human medicinal Product (CHMP) – Pharmacogenomics Working Party (Amsterdam, the Netherlands) and member of the Clinical Pharmacogenetics Implementation Consortium (CPIC). DJM is a member of CPIC and co-investigator in two pharmacogenetic studies where genetic test kits were provided as in-kind contribution by Myriad Neuroscience. No payment or any equity, stocks, or options from any pharmacogenetic testing company was obtained.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamperis, K., Koromina, M., Papantoniou, P. et al. Economic evaluation in psychiatric pharmacogenomics: a systematic review. Pharmacogenomics J 21, 533–541 (2021). https://doi.org/10.1038/s41397-021-00249-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00249-1

This article is cited by

Search

Quick links