Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased expression of IFI16 predicts adverse prognosis in multiple myeloma

Abstract

Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells and does not have sufficient prognostic indicators. Interferon gamma inducible protein 16 (IFI16) plays a crucial role in B-cell differentiation. Several studies have shown that IFI16 predicted prognosis in many cancers. However, the relationship between MM prognosis and IFI16 expression has not been studied. In our study, we analyzed the prognostic role of IFI16 expression and explored the possible mechanism in MM progression by using 4498 myeloma patients and 52 healthy donors from 13 independent gene expression omnibus (GEO) datasets. The IFI16 expression increased with myeloma progression, ISS stage, 1q21 amplification, and relapse (all P < 0.01). MM patients with higher IFI16 expression had shorter survival in six datasets (all P < 0.05). Furthermore, multivariate analysis indicated that enhanced IFI16 expression was an independent poor prognostic factor for EFS and OS (P = 0.007, 0.009, respectively). And PPI, GO, KEGG, and GSEA also confirmed that IFI16 promoted MM progression by participating in tumor-related pathways. In conclusion, our study confirmed that IFI16 was a poor prognostic biomarker in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression level of IFI16 in several GEO datasets of normal and myeloma patients in different stages.
Fig. 2: The expression of IFI16 in different relapse status, amplification levels of 1q21, and different ISS stages of MM patients.
Fig. 3: Survival analysis of IFI16high and IFI16low groups.
Fig. 4: Differentially expressed genes (DEGs), the correlation analysis, and PPI results of DEGs.
Fig. 5: The results of GO enrichment and KEGG pathway analysis.
Fig. 6: Enrichment plots from GSEA.

Similar content being viewed by others

References

  1. Kumar S, Rajkumar V, Kyle R, van Duin M, Sonneveld P, Mateos M, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3:17046.

    Article  PubMed  Google Scholar 

  2. Gonsalves WI, Gertz MA, Gupta V, Rajkumar SV, Morice WG, Timm MM, et al. Prognostic significance of quantifying circulating plasma cells in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2014;14:S147.

    Article  Google Scholar 

  3. Went M, Sud A, Speedy H, Sunter NJ, Försti A, Law PJ, et al. Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology. Blood Cancer J. 2019;9:1.

    Article  Google Scholar 

  4. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:E538–48.

    Article  PubMed  Google Scholar 

  5. Walker B, Mavrommatis K, Wardell C, Ashby T, Bauer M, Davies F. et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33:159–70.

    Article  CAS  PubMed  Google Scholar 

  6. Landgren O, Kyle R, Pfeiffer R, Katzmann J, Caporaso N, Hayes R. et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113:5412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kyle R, Remstein E, Therneau T, Dispenzieri A, Kurtin P, Hodnefield J, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl J Med. 2007;356:2582–90.

    Article  CAS  PubMed  Google Scholar 

  8. de Larrea C, Kyle R, Durie B, Ludwig H, Usmani S, Vesole D. et al. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia. 2013;27:780–91.

    Article  CAS  Google Scholar 

  9. Tiedemann RE, Gonzalez-Paz N, Kyle RA, Santana-Davila R, Price-Troska T, Van Wier SA. et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia. 2008;22:1044–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ludlow LEA, Johnstone RW, Clarke CJP. The HIN-200 family: more than interferon-inducible genes? Exp Cell Res. 2005;308:1–17.

    Article  CAS  PubMed  Google Scholar 

  11. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ. et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science. 2014;343:428–32.

    Article  CAS  PubMed  Google Scholar 

  12. Clarke CJP, Hii LL, Bolden JE, Johnstone RW. Inducible activation of IFI 16 results in suppression of telomerase activity, growth suppression and induction of cellular senescence. J Cell Biochem. 2010;109:103–12.

    CAS  PubMed  Google Scholar 

  13. Song LL, Ponomareva L, Shen H, Duan X, Alimirah F, Choubey D. Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT) gene. PLoS ONE. 2010;5:e8569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kondo Y, Nagai K, Nakahata S, Saito Y, Ichikawa T, Suekane A, et al. Overexpression of the DNA sensor proteins, absent in melanoma 2 and interferon-inducible 16, contributes to tumorigenesis of oral squamous cell carcinoma with p53 inactivation. Cancer Sci. 2012;103:782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi XL, Liu JL, Liu QJ, Li MY. IFI16 mis-localization can be a contributing factor to hepatocellular carcinoma progression. Med Hypotheses. 2014;82:398–400.

    Article  CAS  PubMed  Google Scholar 

  16. Tian WJ, Shan B, Zhang YZ, Ren YL, Liang SH, Zhao J. et al. Association between DNA damage repair gene somatic mutations and immune-related gene expression in ovarian cancer. Cancer Med. 2020;9:2190–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai HN, Yan L, Liu N, Xu M, Cai HB. IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway. Biomed Pharmacother. 2020;123:109790.

    Article  CAS  PubMed  Google Scholar 

  18. Piccaluga P, Agostinelli C, Righi S, Ciccone M, Re M, Musumeci G. et al. IFI16 reduced expression is correlated with unfavorable outcome in chronic lymphocytic leukemia. APMIS. 2017;125:511–22.

    Article  CAS  PubMed  Google Scholar 

  19. Piccaluga PP, Navari M, Visani A, Rigotti F, Agostinelli C, Righi S. et al. Interferon gamma inducible protein 16 (IFI16) expression is reduced in mantle cell lymphoma. Heliyon. 2019;5:e02643

    Article  PubMed  PubMed Central  Google Scholar 

  20. Piccaluga PP, Agostinelli C, Fuligni F, Righi S, Tripodo C, Re MC, et al. IFI16 expression is related to selected transcription factors during B-cell differentiation. J Immunol Res. 2015;2015:747645.

  21. Mitchell J, Li N, Weinhold N, Forsti A, Ali M, van Duin M, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun. 2016;7:12050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst H, Goldschmidt H, Rosinol L, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33:2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yu GC, Wang LG, Han YY, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding J, Karp JE, Emadi A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomark. 2017;19:353–63.

    Article  CAS  PubMed  Google Scholar 

  26. Mao HW, Wang M, Cao BY, Zhou HB, Zhang ZB, Mao XL. Interferon-stimulated gene 15 induces cancer cell death by suppressing the NF-kappa B signaling pathway. Oncotarget. 2016;7:70143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Veirman K, De Beule N, Maes K, Menu E, De Bruyne E, De, et al. Extracellular S100A9 protein in bone marrow supports multiple myeloma survival by stimulating angiogenesis and cytokine secretion. Cancer Immunol Res. 2017;5:839–46.

    Article  PubMed  CAS  Google Scholar 

  28. Chen MS, Mithraprabhu S, Ramachandran M, Choi K, Khong T, Spencer A. Utility of circulating cell-free RNA analysis for the characterization of global transcriptome profiles of multiple myeloma patients. Cancers. 2019;11:887.

    Article  CAS  PubMed Central  Google Scholar 

  29. Sawai Y, Yamanaka Y, Nomura S. Clinical significance of factor XIII activity and monocyte-derived microparticles in cancer patients. Vasc Health Risk Manag. 2020;16:103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li XY, Guo YL, Kuang XY, Zhao L, Li HS, Cheng BQ, et al. Histone deacetylase inhibitor LMK-235-mediated HO-1 expression induces apoptosis in multiple myeloma cells via the JNK/AP-1 signaling pathway. Life Sci. 2019;223:146–57.

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Hu WM, Xia ZJ, Liang Y, Lu Y, Lin SX, et al. High numbers of CD163+tumor-associated macrophages correlate with poor prognosis in multiple myeloma patients receiving bortezomib-based regimens. J Cancer. 2019;10:3239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang KF, Xu ZY, Sun ZY. Identification of the key genes connected with plasma cells of multiple myeloma using expression profiles. Oncotargets Ther. 2015;8:1795–803.

    Article  CAS  Google Scholar 

  33. Bulla R, Tripodo C, Rami D, Ling GS, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lam P, Huttenlocher A. Interstitial leukocyte migration in vivo. Curr Opin Cell Biol. 2013;25:650–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SFT, et al. Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res. 2005;65:11429–36.

    Article  CAS  PubMed  Google Scholar 

  36. Sakai M, Kato H, Sano A, Tanaka N, Inose T, Kimura H, et al. Expression of lysyl oxidase is correlated with lymph node metastasis and poor prognosis in esophageal squamous cell carcinoma. Ann Surg Oncol. 2009;16:2494–501.

    Article  PubMed  Google Scholar 

  37. Filipe EC, Chitty JL, Cox TR. Charting the unexplored extracellular matrix in cancer. Int J Exp Pathol. 2018;99:58–76.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA, Takai T. et al. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity. 2011;34:385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veeranki S, Choubey D. Systemic lupus erythematosus and increased risk to develop B cell malignancies: Role of the p200-family proteins. Immunol Lett. 2010;133:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ye S, Pang H, Gu YY, Hua J, Chen XG, Bao CD. et al. Protein interaction for an interferon-inducible systemic lupus associated gene, IFIT1. Rheumatology. 2003;42:1155–63.

    Article  CAS  PubMed  Google Scholar 

  41. Joseph S, George NI, Green-Knox B, Treadwell EL, Word B, Yim S, et al. Epigenome-wide association study of peripheral blood mononuclear cells in systemic lupus erythematosus: identifying DNA methylation signatures associated with interferon-related genes based on ethnicity and SLEDAI. J Autoimmun. 2019;96:147–57.

    Article  CAS  PubMed  Google Scholar 

  42. Han L, Zhang Y, Wang Q, Xin M, Yang K, Lei K. et al. Epstein-Barr virus infection and type I interferon signature in patients with systemic lupus erythematosus. Lupus. 2018;27:947–54.

    Article  CAS  Google Scholar 

  43. Zhao H, Gonzalezgugel E, Cheng L, Richbourgh B, Nie L, Liu C. The roles of interferon-inducible p200 family members IFI16 and p204 in innateimmune responses, cell differentiation and proliferation. Genes Dis. 2015;2:46–56.

    Article  PubMed  Google Scholar 

  44. Jordanovski D, Herwartz C, Pawlowski A, Taute S, Frommolt P, Steger G. The hypoxia-inducible transcription factor ZNF395 is controlled by I kappa B kinase-signaling and activates genes involved in the innate immune response and cancer. PLoS ONE. 2013;8:e74911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LF, CZS and CD designed the outline. WHH, TTQ, ZHZ  drafted the manuscript. WHH and CZS designed the figures and tables. WHH, ZYH, YL and LZC helped revise the manuscript. PZ, QFZ and TSZ offered professional suggestions to the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by grants from Xinjiang Joint Fund of National Natural Science Foundation of China (U1903117), the National Natural Science Foundation of China (81500118), and Medical Scientific Research Foundation of Guangdong Province, China (project no. A2019472).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Fu, Chaozeng Si or Cong Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This study was approved by the Helsinki declaration and its subsequent amendments.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Qian, T., Huang, Z. et al. Increased expression of IFI16 predicts adverse prognosis in multiple myeloma. Pharmacogenomics J 21, 520–532 (2021). https://doi.org/10.1038/s41397-021-00230-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00230-y

Search

Quick links