Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional CYP3A variants affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients

Abstract

The aim of this study was to identify novel genetic variants affecting tacrolimus trough blood concentrations. We analyzed the association between 58 single nucleotide polymorphisms (SNPs) across the CYP3A gene cluster and the log-transformed tacrolimus concentration/dose ratio (log (C0/D)) in 819 renal transplant recipients (Discovery cohort). Multivariate linear regression was used to test for associations between tacrolimus log (C0/D) and clinical factors. Luciferase reporter gene assays were used to evaluate the functions of select SNPs. Associations of putative functional SNPs with log (C0/D) were further tested in 631 renal transplant recipients (Replication cohort). Nine SNPs were significantly associated with tacrolimus log (C0/D) after adjustment for CYP3A5*3 and clinical factors. Dual luciferase reporter assays indicated that the rs4646450 G allele and rs3823812 T allele were significantly associated with increased normalized luciferase activity ratios (pā€‰<ā€‰0.01). Moreover, CYP3A7*2 was associated with higher TAC log(C0/D) in the group of CYP3A5 expressers. Age, serum creatinine and hematocrit were significantly associated with tacrolimus log (C0/D). CYP3A7*2, rs4646450, and rs3823812 are proposed as functional SNPs affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients. Clinical factors also significantly affect tacrolimus metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the CYP3A gene cluster locus.
Fig. 2: Box-and-whisker plots of nine SNPs significantly associated with TAC log (C0/D) after adjusting for CYP3A5*3.
Fig. 3: Luciferase Reporter gene activity assays.
Fig. 4: Allele-specific expression analysis of rs4646450 and rs3823812.
Fig. 5: Distribution of TAC C0/D in two cohorts by diplotypes of four functional SNPs.

Similar content being viewed by others

References

  1. Tron C, Lemaitre F, Verstuyft C, Petitcollin A, Verdier MC, Bellissant E. Pharmacogenetics of membrane transporters of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2019;58:593ā€“613.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Tang JT, Yan L, Wang LL, Bai YJ, Li YM, Zou YG, et al. A low fixed tacrolimus starting dose is effective and safe in Chinese renal transplantation recipients. Ann Transpl. 2018;23:300ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl J Med. 2007;357:2562ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Vanhove T, Annaert P, Kuypers DR. Clinical determinants of calcineurin inhibitor disposition: a mechanistic review. Drug Metab Rev. 2016;48:88ā€“112.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Kamdem LK, Streit F, Zanger UM, Brockmoller J, Oellerich M, Armstrong VW, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem. 2005;51:1374ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43:623ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Christians U, Jacobsen W, Benet LZ, Lampen A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet. 2002;41:813ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Prytula A, Cransberg K, Raes A. Drug-metabolizing enzymes CYP3A as a link between tacrolimus and vitamin D in renal transplant recipients: is it relevant in clinical practice? Pediatr Nephrol. 2019;34:1201ā€“10.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383ā€“91.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Li CJ, Li L, Lin L, Jiang HX, Zhong ZY, Li WM, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. Plos One. 2014;9:e86206.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Li L, Li CJ, Zheng L, Zhang YJ, Jiang HX, Si-Tu B, et al. Tacrolimus dosing in Chinese renal transplant recipients: a population-based pharmacogenetics study. Eur J Clin Pharm. 2011;67:787ā€“95.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Tang HL, Xie HG, Yao Y, Hu YF. Lower tacrolimus daily dose requirements and acute rejection rates in the CYP3A5 nonexpressers than expressers. Pharmacogenet Genomics. 2011;21:713ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Vannaprasaht S, Reungjui S, Supanya D, Sirivongs D, Pongskul C, Avihingsanon Y, et al. Personalized tacrolimus doses determined by CYP3A5 genotype for induction and maintenance phases of kidney transplantation. Clin Ther. 2013;35:1762ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. de Jonge H, de Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR. Impact of CYP3A5 genotype on tacrolimus versus midazolam clearance in renal transplant recipients: new insights in CYP3A5-mediated drug metabolism. Pharmacogenomics 2013;14:1467ā€“80.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Liu J, Ouyang Y, Chen D, Yao B, Lin D, Li Z, et al. Donor and recipient P450 gene polymorphisms influence individual pharmacological effects of tacrolimus in Chinese liver transplantation patients. Int Immunopharmacol. 2018;57:18ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Press RR, Ploeger BA, den Hartigh J, van der Straaten T, van Pelt J, Danhof M, et al. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients. Ther Drug Monit. 2009;31:187ā€“97.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Birdwell KA, Grady B, Choi L, Xu H, Bian A, Denny JC, et al. The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenet Genomics. 2012;22:32ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharm Ther. 2015;98:19ā€“24.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Tamashiro EY, Felipe CR, Genvigir FDV, Rodrigues AC, Campos AB, Hirata RDC, et al. Influence of CYP3A4 and CYP3A5 polymorphisms on tacrolimus and sirolimus exposure in stable kidney transplant recipients. Drug Metab Pers Ther. 2017;32:89ā€“95.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Liu MZ, He HY, Zhang YL, Hu YF, He FZ, Luo JQ, et al. IL-3 and CTLA4 gene polymorphisms may influence the tacrolimus dose requirement in Chinese kidney transplant recipients. Acta Pharm Sin. 2017;38:415ā€“23.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Miura M, Satoh S, Kagaya H, Saito M, Numakura K, Tsuchiya N, et al. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients. Pharmacogenomics 2011;12:977ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11:274ā€“86.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  23. Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem. 2011;57:1574ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Mannon RB, et al. Genome-wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients. Pharmacogenomics J. 2018;18:501ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Sohn M, Kim MG, Han N, Kim IW, Gim J, Min SI, et al. Whole exome sequencing for the identification of CYP3A7 variants associated with tacrolimus concentrations in kidney transplant patients. Sci Rep. 2018;8:18064.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Dorr C, et al. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics 2018;19:175ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Mohamed ME, Schladt DP, Guan W, Wu B, van Setten J, Keating BJ, et al. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups. Am J Transpl. 2019;19:2795ā€“804.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Oetting WS, Schladt DP, Guan W, Miller MB, Remmel RP, Dorr C, et al. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles. Am J Transpl. 2016;16:574ā€“82.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 2010;20:1020ā€“36.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68:978ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Gonzalez JR, Armengol L, Sole X, Guino E, Mercader JM, Estivill X, et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics 2007;23:644ā€“5.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  32. Li J, Chen S, Qin X, Fu Q, Bi H, Zhang Y, et al. Wuzhi tablet (Schisandra sphenanthera Extract) is a promising tacrolimus-sparing agent for renal transplant recipients who are CYP3A5 Expressers: a two-phase prospective study. Drug Metab Dispos. 2017;45:1114ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Rodriguez-Antona C, Jande M, Rane A, Ingelman-Sundberg M. Identification and phenotype characterization of two CYP3A haplotypes causing different enzymatic capacity in fetal livers. Clin Pharm Ther. 2005;77:259ā€“70.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Onizuka M, Kunii N, Toyosaki M, Machida S, Ohgiya D, Ogawa Y, et al. Cytochrome P450 genetic polymorphisms influence the serum concentration of calcineurin inhibitors in allogeneic hematopoietic SCT recipients. Bone Marrow Transpl. 2011;46:1113ā€“7.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Li JL, Liu S, Fu Q, Zhang Y, Wang XD, Liu XM, et al. Interactive effects of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients. Pharmacogenomics 2015;16:1355ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580ā€“5.

    ArticleĀ  Google ScholarĀ 

  37. McLachlan AJ, Pont LG. Drug metabolism in older people- a key consideration in achieving optimal outcomes with medicines. J Gerontol A Biol Sci Med Sci. 2012;67:175ā€“80.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Passey C, Birnbaum AK, Brundage RC, Oetting WS, Israni AK, Jacobson PA. Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharm. 2011;72:948ā€“57.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharm. 2019;170:113664.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Koop DR, Bleyle LA, Munar M, Cherala G, Al-Uzri A. Analysis of tacrolimus and creatinine from a single dried blood spot using liquid chromatography tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2013;926:54ā€“61.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Sikma MA, Hunault CC, Huitema ADR, De Lange DW, Van Maarseveen EM. Clinical pharmacokinetics and impact of hematocrit on monitoring and dosing of tacrolimus early after heart and lung transplantation. Clin Pharmacokinet. 2020;59:403ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Limsrichamrern S, Chanapul C, Mahawithitwong P, Sirivatanauksorn Y, Kositamongkol P, Asavakarn S, et al. Correlation of hematocrit and tacrolimus level in liver transplant recipients. Transpl Proc. 2016;48:1176ā€“8.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Zhang HJ, Li DY, Zhu HJ, Fang Y, Liu TS. Tacrolimus population pharmacokinetics according to CYP3A5 genotype and clinical factors in Chinese adult kidney transplant recipients. J Clin Pharm Ther. 2017;42:425ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We would like to give special thanks to all the renal transplant recipients involved in this study. This work was supported by the Natural Science Fund of Guangdong, China (2018A0303130186&2019A1515010100), the Guangdong Science and Technology Foundation (2019B030316032), the Guangxi Natural Science Foundation (2020GXNSFAA159161), and Southern Medical University Innovation Training Program for Undergraduate Students (201812121005&202012121010). Genotype-tissue expression (GTEx) Project was supported by common fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from GTEx Analysis Release V7, dbGaP Accession phs000424.v7.p2.

Author information

Authors and Affiliations

Authors

Contributions

DC, HL, and LQL conducted the experiments and drafted the paper. WGS, JX, TY, SY, PZ, YC, JC, WX, QL, QZ, DY, WQ, and LSL collected the samples and data. WS and DW revised the paper. CL and LL designed the study. All authors reviewed and approved the paper.

Corresponding authors

Correspondence to Chuanjiang Li or Liang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Lu, H., Sui, W. et al. Functional CYP3A variants affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients. Pharmacogenomics J 21, 376ā€“389 (2021). https://doi.org/10.1038/s41397-021-00216-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00216-w

Search

Quick links