Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of association of ADORA2A and ADORA3 polymorphisms genotypes/haplotypes with efficacy and toxicity of methotrexate in patients with Rheumatoid arthritis

This article has been updated

Abstract

Adenosine receptors ADORA2A and ADORA3 are part of the adenosine-mediated antiinflammatory pathway and are overexpressed in patients with Rheumatoid arthritis (RA). Methotrexate (MTX) antiinflammatory effects are partially mediated via increased release of adenosine into extracellular space. Polymorphisms in ADORA2A and ADORA3 genes may have an impact on the efficacy and toxicity of MTX in RA patients. The study included 127 RA patients. Treatment efficacy was estimated using the changes in Disease activity score (DAS28) after 6 months of MTX monotherapy, according to EULAR response criteria. Patients with good and moderate response were classified as “responders”, and with a poor response as “nonresponders”. Adverse effects were collected during the follow-up period. Genotyping for polymorphisms within ADORA2A gene (rs2298383, rs2236624, rs5751876, rs17004921) and ADORA3 gene (rs2298191, rs1544223, rs3393) was performed using the KASPar assays. Among patients 112 (88.19%) were responders (18.8% good, 81.2% moderate). We observed no association between analyzed genotypes or alleles and MTX response by EULAR criteria but carriers of ADORA2A rs17004921 T allele (CT + TT) had a higher DAS28 decrease after 6 months of treatment than patients with CC genotype (p = 0.013). Adverse effects were reported in 31 patients (24.41%). Bone erosions were present in 82 (64.6%) patients. Haplotype block was observed among all 3 analyzed polymorphisms within ADORA3 gene and TAA haplotype was associated with bone erosions (29% vs 15.6%, p = 0.023) and hepatotoxicity (51.3% vs 21.6%, p = 0.013). According to our study, ADORA3 TAA haplotype may be associated with bone erosions and hepatotoxicity in RA patients treated with MTX.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linkage disequilibrium plots with D’ values (given in percentages) among analyzed polymorphisms in adenosine receptor genes for patients with RA.

Similar content being viewed by others

Change history

  • 30 May 2020

    A colour version of Figure 1 in the Online PDF was replaced with a black and white version as per the authors original intent.

References

  1. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81.

    Article  PubMed  Google Scholar 

  2. Turesson C, Fallon WMO, Crowson CS, Gabriel SE, Matteson EL. Extra-articular disease manifestations in rheumatoif arthritis: Incidence trends and risk factors over 46 years. Ann Rheum Dis. 2003;62:722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Combe B, Landewe R, Daien CI, Hua C, Aletaha D, Álvaro-Gracia JM, et al. 2016 update of the EULAR recommendations for the management of early arthritis. Ann Rheum Dis. 2017;76:948–59.

    Article  PubMed  Google Scholar 

  4. Monti S, Montecucco C, Bugatti S, Caporali R. Rheumatoid arthritis treatment: the earlier the better to prevent joint damage. RMD Open. 2015;1:1–5.

    Article  Google Scholar 

  5. Smolen JS, Landewé R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76:960–77.

    Article  PubMed  Google Scholar 

  6. Yazici Y, Sokka T, Kautiainen H, Swearingen C, Kulman I, Pincus T. Long term safety of methotrexate in routine clinical care: discontinuation is unusual and rarely the result of laboratory abnormalities. Ann Rheum Dis. 2005;64:207–11.

    Article  CAS  PubMed  Google Scholar 

  7. Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis Methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001;60:729–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Montesinos MC, Desai A, Delano D, Chen JF, Fink JS, Jacobson MA, et al. Adenosine A2Aor A3receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum. 2003;48:240–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci. 2014;15:2024–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Haskó G, Antonioli L, Cronstein BN. Adenosine metabolism, immunity and joint health. Biochem Pharm. 2018;151:307–13.

    Article  PubMed  CAS  Google Scholar 

  11. Fredholm BB, IJzerman AP, Jacobson KA, Linden JMC. Nomenclature and classification of adenosine receptors—an update. Pharm Rev. 2011;63:1–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haskó G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol. 2013;4:1–8.

    Article  CAS  Google Scholar 

  13. Varani K, Padovan M, Vincenzi F, Targa M, Trotta F, Govoni M, et al. A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther. 2011;13:R197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol. 2016;13:41–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ochaion A, Bar-Yehuda S, Cohen S, Barer F, Patoka R, Amital H, et al. The anti-inflammatory target A3 adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn’s disease. Cell Immunol. 2009;258:115–22.

    Article  CAS  PubMed  Google Scholar 

  16. Stamp LK, Hazlett J, Roberts RL, Frampton C, Highton J, Hessian PA. Adenosine receptor expression in rheumatoid synovium: a basis for methotrexate action. Arthritis Res Ther. 2012;14:R138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ochaion A, Bar-yehuda S, Cohn S, Valle LDel, Perez-liz G, Madi L, et al. Methotrexate enhances the anti-inflammatory effect of CF101 via up-regulation of the A 3 adenosine receptor expression. Arthritis Res Ther. 2006;8:1–12.

    Article  CAS  Google Scholar 

  18. Varani K, Massara A, Vincenzi F, Tosi A, Padovan M, Trotta F, et al. Normalization of A2A and A3 adenosine receptor up‐regulation in rheumatoid arthritis patients by treatment with anti–tumor necrosis factor α but not methotrexate. Arthritis Rheum. 2009;60:2880–91.

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Zou K, Sun J, Yang Y, Liu G. Are gene polymorphisms related to treatment outcomes of methotrexate in patients with rheumatoid arthritis? A systematic review and meta-analysis. Pharmacogenomics. 2017;18:175–95.

    Article  PubMed  CAS  Google Scholar 

  20. Lima A, Bernardes M, Azevedo R, Seabra V, Medeiros R. Moving toward personalized medicine in rheumatoid arthritis: SNPs in methotrexate intracellular pathways are associated with methotrexate therapeutic outcome. Pharmacogenomics. 2016;17:1649–74.

    Article  CAS  PubMed  Google Scholar 

  21. Arnett FC, Edworthy SM, Bloch DA, Mcshane DJ, Fries JF, Cooper NS, et al. The american rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.

    Article  CAS  PubMed  Google Scholar 

  22. Fransen J, Van Riel PLCM. The disease activity score and the EULAR response criteria. Clin Exp Rheumatol. 2005;23:S93.

    CAS  PubMed  Google Scholar 

  23. Milic V, Jekic B, Lukovic L, Bunjevacki V, Milasin J, Novakovic I, et al. Association of dihydrofolate reductase (DHFR)-317AA genotype with poor response to methotrexate in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2012;30:178.

    PubMed  Google Scholar 

  24. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. LGC Limited Genomics, KASP genotyping chemistry User guide and manual. UK: LGC Limited, Teddington; 2013.

    Google Scholar 

  26. Barrett JC, Fry B, Maller JDMJ DalyMJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2004;21:263–5.

    Article  PubMed  CAS  Google Scholar 

  27. Van Ede AE, Laan RF, Rood MJ, Huizinga TW, van de Laar MA, van Denderen CJ, et al. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2001;44:1515–24.

    Article  PubMed  Google Scholar 

  28. Morgan SL, Baggott JE, Vaughn WH, Austin JS, Veitch TA, Lee JY, et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis: a double-blind, placebo-controlled trial. Ann Intern Med. 1994;121:833–41.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma S, Das M, Kumar A, Marwaha V, Shankar S, Singh P, et al. Purine biosynthetic pathway genes and methotrexate response in rheumatoid arthritis patients among north Indians. Pharmacogenet Genomics. 2009;19:823–8.

    Article  CAS  PubMed  Google Scholar 

  30. Van Dijkhuizen E, Bulatović Ćalasan M, Pluijm S, de Rotte M, Vastert SJ, Kamphuis S, et al. Prediction of Methotrexate Intolerance in Juvenile Idiopathic Arthritis: a prospective, observational cohort study. Pediatr Rheumatol. 2015;13:5.

    Article  Google Scholar 

  31. ADORA2A adenosine A2a receptor[Homo sapiens] Gene ID: 135, updated on 3-Feb-2019, 2019.

  32. Kim SH, Kim YK, Park HW, Kim SH, Kim SH, Ye YM, et al. Adenosine deaminase and adenosine receptor polymorphisms in aspirin-intolerant asthma. Respir Med. 2009;103:356–63.

    Article  PubMed  Google Scholar 

  33. Kvien TK, Uhlig T, ØdegÅrd S, Heiberg MS. Epidemiological aspects of rheumatoid arthritis: the sex ratio. Ann N. Y Acad Sci. 2006;1069:212–22.

    Article  PubMed  Google Scholar 

  34. Anderson JJ, Wells G, Verhoeven AC, Felson DT. Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. Arthritis Rheum. 2000;43:22–9.

    Article  CAS  PubMed  Google Scholar 

  35. Forslind K, Hafström I, Ahlmen M, Svensson B. Sex: a major predictor of remission in early rheumatoid arthritis? Ann Rheum Dis. 2007;66:46–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hider SL, Thomson W, Mack LF, Armstrong DJ, Shadforth M, Bruce IN. Polymorphisms within the adenosine receptor 2a gene are associated with adverse events in RA patients treated with MTX. Rheumatology. 2008;47:1156–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsujimoto SI, Yanagimachi M, Tanoshima R, Urayama KY, Tanaka F, Aida N, et al. Influence of ADORA2A gene polymorphism on leukoencephalopathy risk in MTX-treated pediatric patients affected by hematological malignancies. Pediatr Blood Cancer. 2016;63:1983–9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhai YJ, Liu P, He HR, Zheng XW, Wang Y, Yang QT, et al. The association of ADORA2A and ADORA2B polymorphisms with the risk and severity of chronic heart failure: A case-control study of a northern Chinese population. Int J Mol Sci. 2015;16:2732–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim J, Kim Y, Choi J, Jung H, Lee K, Kang J, et al. Recapitulation of methotrexate hepatotoxicity with induced pluripotent stem cell-derived hepatocytes from patients with rheumatoid arthritis. Stem Cell Res Ther. 2018;9:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hohoff C, Mullings EL, Heatherley SV, Freitag CM, Neumann LC, Domschke K, et al. Adenosine A2A receptor gene: evidence for association of risk variants with panic disorder and anxious personality. J Psychiatr Res. 2010;44:930–7.

    Article  PubMed  Google Scholar 

  41. Childs E, Hohoff C, Deckert J, Xu K, Badner J, de WH. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008;33:2791–800.

    Article  CAS  PubMed  Google Scholar 

  42. Vital M, Bidegain E, Raggio V, Esperon P. Molecular characterization of genes modifying the age at onset in Huntington’s disease in Uruguayan patients. Int J Neurosci. 2016;126:510–3.

    CAS  PubMed  Google Scholar 

  43. Janik P, Berdyński M, Safranow K, Zekanowski C, Blum D. Association of ADORA1 rs2228079 and ADORA2A rs5751876 polymorphisms with Gilles de la Tourette syndrome in the Polish population. PloS One. 2015;10:e0136754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nardin M, Verdoia M, Pergolini P, Rolla R, Barbieri L, Marino P, et al. Impact of adenosine A2a receptor polymorphism rs5751876 on platelet reactivity in ticagrelor treated patients. Pharm Res. 2018;129:27–33.

    Article  CAS  Google Scholar 

  45. Mediero A, Kara FM, Wilder T, Cronstein BN. Adenosine A 2A receptor ligation inhibits osteoclast formation. Am J Pathol. 2012;180:775–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rath-Wolfson L, Bar-Yehuda S, Madi L, Ochaion A, Cohen S, Zabutti A, et al. IB-MECA, an A3 adenosine receptor agonist prevents bone resorption in rats with adjuvant induced arthritis. Clin Exp Rheumatol. 2006;24:400–6.

    CAS  PubMed  Google Scholar 

  47. Soukup T, Dosedel M, Nekvindova J, Antonin Kubena A, Tacheci I, Duintjer J, et al. The plausible association of MTHFR and ADORA2A polymorphisms with nodules in rheumatoid arthritis patients treated with methotrexate. Pharmacogenet Genomics. 2017;27:43–50.

    Article  CAS  PubMed  Google Scholar 

  48. Yaar R, Cataldo LM, Tzatsos A, Francis CE, Zhao Z, Ravid K. Regulation of the A3 adenosine receptor gene in vascular smooth muscle cells: role of a cAMP and GATA element. Mol Pharm. 2002;62:1167–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Slovenian Research Agency, grant no. P1-0170 and the Ministry of Education, Science and Technological Development of the Republic of Serbia [grant no. 175091].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milka Grk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grk, M., Milic, V., Dolzan, V. et al. Analysis of association of ADORA2A and ADORA3 polymorphisms genotypes/haplotypes with efficacy and toxicity of methotrexate in patients with Rheumatoid arthritis. Pharmacogenomics J 20, 784–791 (2020). https://doi.org/10.1038/s41397-020-0168-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-020-0168-z

Search

Quick links