
The Pharmacogenomics Journal (2020) 20:705–716
https://doi.org/10.1038/s41397-020-0161-6

ARTICLE

Identification of gene modules associated with survival of diffuse
large B-cell lymphoma treated with CHOP-based chemotherapy

YongChao Gao1,2,3,4
● Bao Sun1,2,3,4

● JingLei Hu1,2,3,4
● Huan Ren1,2,3,4

● HongHao Zhou1,2,3,4
● Ling Chen5

●

Rong Liu1,2,3,4
● Wei Zhang 1,2,3,4

Received: 2 June 2019 / Revised: 24 January 2020 / Accepted: 29 January 2020 / Published online: 11 February 2020
© The Author(s), under exclusive licence to Springer Nature Limited 2020

Abstract
Diffuse Large B-cell Lymphoma (DLBCL), a heterogeneous disease, is influenced by complex network of gene interactions.
Most previous studies focused on individual genes, but ignored the importance of intergenic correlations. In current study,
we aimed to explore the association between gene networks and overall survival (OS) of DLBCL patients treated with
CHOP-based chemotherapy (cyclophosphamide combination with doxorubicin, vincristine and prednisone). Weighted gene
co-expression network analysis was conducted to obtain insights into the molecular characteristics of DLBCL. Ten co-
expression gene networks (modules) were identified in training dataset (n= 470), and their associations with patients’ OS
after chemotherapy were tested. The results were validated in four independent datasets (n= 802). Gene ontology (GO)
biological function enrichment analysis was conducted with Metascape. Three modules (purple, brown and red), which were
enriched in T-cell immune, cell–cell adhesion and extracellular matrix (ECM), respectively, were found to be related to
longer OS. Higher expression of several hub genes within these three co-expression modules, for example, LCP2 (HR=
0.77, p= 5.40 × 10−2), CD2 (HR= 0.87, p= 6.31 × 10−2), CD3D (HR= 0.83, p= 6.94 × 10−3), FYB (HR= 0.82,
p= 1.40 × 10−2), GZMK (HR= 0.92, p= 1.19 × 10−1), FN1 (HR= 0.88, p= 7.06 × 10−2), SPARC (HR= 0.82, p=
2.06 × 10−2), were found to be associated with favourable survival. Moreover, the associations of the modules and hub genes
with OS in different molecular subtypes and different chemotherapy groups were also revealed. In general, our research
revealed the key gene modules and several hub genes were upregulated correlated with good survival of DLBCL patients,
which might provide potential therapeutic targets for future clinical research.

Introduction

Diffuse Large B-cell Lymphoma (DLBCL) was recognized as
a neoplasm, which has a larger nuclear size than the benign

histiocytes in the same tissue, with large B-cells arranged in a
diffuse pattern [1]. As the most common type of adult non-
Hodgkin lymphoma, DLBCL accounts for about 30–40% of
lymphoid neoplasms patients around the world [2]. Approxi-
mately 25,380 new cases were diagnosed in the United State
in 2016, and the incidence was as high as 6.3% [3]. Gastro-
intestinal tract is the most usual site of the DLBCL, although it
may occur in any tissue organ. Thus far, the standard regimen
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for these patients is cyclophosphamide combination with
doxorubicin, vincristine and prednisone (CHOP) without or
with rituximab (R-CHOP). Approximately 60–70% of the
patients were sensitive to these treatments, but a proportion of
the patients were still refractory to this initial therapy regimen
[4]. Thus, it is increasingly imperative to find effective prog-
nostic and therapeutic biomarkers for DLBCL.

The accumulation of DLBCL datasets in the Gene
Expression Omnibus (GEO) of NCBI, which generated
from different researches and platforms, provides an
opportunity to reanalysis these genome wide gene mRNA
expression data. Integrated information from various studies
could highly lessen the heterogeneity of DLBCL and the
variability of the different microarray techniques.

Weighted gene co-expression network analysis (WGCNA),
a powerful method of multigene analysis, was widely applied
to detect the association between networks/genes and clinical
traits. In WGCNA, gene modules were constructed with
mRNA profiles by using unsupervised hierarchical clustering,
which was different from anteriorly defined genes sets
method. The genes, with a consistent expression profile and
concordant biological role, were assigned to the same module
[5]. WGCNA also has been used to detect co-expression gene
modules and biomarkers, which usually be applied to cancer
diagnosis [6–9], prognosis [10] and treatment [11, 12].
Similarly, it has been successfully applied in other diseases to
identify the genetic determinants, such as osteoporosis
[13, 14], obesity [14] and neurodegenerative disease [15]. As
for DLBCL, WGCNA has been used in a single dataset
contained 93 samples, identifying a class of Cation-
transporting ATPase activity related genes for cancer recog-
nition [16], including five hub genes: BCRP, VAOE2, CTDS1,
PHX2B, 1aMX1A and AT10D. However, the researcher did
not confirm these findings in independent dataset.

In our study, WGCNA was applied to analyse a dataset
comprising 470 patients to detect gene modules and hub
genes that facilitate DLBCL prognosis and treatment.
Subsequently, the results we found were verified in four
independent datasets (n= 412, 68, 155, 167, respectively).
The association relationships of the modules and hub genes
with overall survival (OS) were tested in different molecular
subtypes and within DLBCL patients treated with CHOP or
R-CHOP chemotherapy. GO enrichment analysis was
conducted in the modules to explore the biological pro-
cesses that they might be involved.

Materials and methods

Data acquisition

The raw gene expression data were downloaded from the
GEO data repository (http://www.ncbi.nlm.nih.gov/geo/)

according to the accession numbers GSE34171, GSE10846,
GSE31312, GSE4475, GSE32918 and GSE56315. The
information of each dataset involved in our study were shown
in Table S1. After filtering the samples without survival
information, the basic characteristics of these datasets includ-
ing age, gender, molecular subtype and survival time were
summarized in Table 1. The training dataset GSE31312 con-
sists of gene expression of 470 patients, was used to construct
the co-expression gene module. GSE34171, GSE10846,
GSE4475 and GSE32918 were taken as independent valida-
tion datasets. Meanwhile, the dataset GSE56315 was applied
to drug sensitivity test. These datasets were labelled with their
corresponding GEO accession numbers.

The raw gene expression data of the six datasets that we
used were pre-processed with the RMA algorithm by utilizing
the ‘affy’ R package (http://www.bioconductor.org/packages/
release/bioc/html/affy.html). Before processing WGCNA, we
filtered out the probes that cannot be annotated as known gene
symbols, and the probe-level expressions of these datasets
were converted to gene-base expression profiles by using the
collapseRows R function [17].

Construction of the co-expression gene modules

WGCNA analysis was conducted with the training dataset
(GSE31312) by using the R package of ‘wgcna’ [18].
Firstly, we selected the top 15,000 varying genes from the
470 patients in the training dataset after their standard
deviations were sorted in an ascending order. Then, we
chose the top 10,000 genes based on intramodular con-
nectivity (k.in), which were closely related to the gene
modules to construct the co-expression gene modules.

To conduct the gene co-expression networks of the
selected genes, an unsupervised co-expression relationship
was initially built on the basis of the adjacency matrix of
connection strengths by using Pearson’s correlation coeffi-
cients for gene pairs. This matrix was increased to β= 4 as
based on the scale-free topology criterion (Fig. S1) to lessen
the weaker connections between gens and strengthen the
strong connections. The network connectivity (k.total) of a
specific gene was defined as the sum of its weighted adja-
cency with all the other ones in the integrated network.
Meanwhile, the intramodular connectivity (k.in) was
defined as the standard of the network connectivity of a
specific gene and the module it belongs. The topological
overlap matrix (TOM) was further used to calculate the
expression similarity of each pair of genes. Modules were
defined as gene clusters with a high topologic overlap by
using the hybrid dynamic tree-cutting method with a
minimum gene number of 30 in each module and a dynamic
cut height.

The module eigengenes (MEs) that represent the expres-
sion level of each module were calculated (supplementary
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file: Dataset 1). Then, the relationship between gene modules
and OS was assessed. Meanwhile, module membership
assignment (kME) was defined as Pearson’s correlation
coefficient between gene expression values and MEs, which
were defined as the first principal component. Finally, gene
significance (GS) of gene in the co-expression module, which
represented the biological significance of the gene for clinical
traits, was calculated as minus log 10 of the p values by
survival analysis [18].

The detailed information of the WGCNA algorithm
could be found in the publication of Zhang Bin et al. [19].

DLBCL molecular subtypes

The DLBCL patients that involved in our study were seg-
mented into two molecular subtypes: germinal center B-cell-
like subtype (GCB) and activated B-cell-like subtype (ABC).
This classification has been proved to be of great significance
in understanding the pathogenesis of this disease [20].

Hub genes definition

Hub genes were defined as a such of a class of genes that
were strongly associated with clinical traits and displayed a

high network connectivity. The hub genes were identified
through GS together k.in. In our study, hub genes
were selected by the following norm: (1) top 15 genes
with the largest k.in in the module they belonging
and (2) GS is larger than 2 (the p value of the association
test < 0.01) [6].

Survival analysis

Associations between modules/hub genes and survival
were conducted by ‘survival’ R package. The hazard ratio
(HR) and its corresponding 95% confidence interval (CI)
were calculated via a Cox regression model. OS was
used as the survival endpoints. Survival curves were
plotted by utilizing the Kaplan–Meier estimates. For
module associations, each ME was divided into high and
low expression group by its median value. For single-gene
association analysis, the samples were segmented into
high and low expression according to the median value of
that gene.

These datasets (including GSE31312, GSE10846,
GSE34171), from the same platform (Affymetrix U133Plus
2.0 chips, GPL570), were used to performed the survival
analysis in different molecular subtypes and treatment

Table 1 Basic characteristics of
datasets.

Characteristic Training dataset
(GSE31312)

Validating
dataset 1
(GSE10846)

Validating
dataset 2
(GSE34171)

Validating
dataset 3
(GSE32918)

Validating
dataset 4
(GSE4475)

Sample size 470 412 68 167 87

Age, years
mean (sd)

61.83 (14.91) 61.14 (15.45) _ 69.06 (12.90) 59.13 (16.29)

Gender

Female 199 172 0 62 39

Male 271 222 0 105 48

Unknown 0 18 68 0 0

Stage

1 124 66 0 0 13

2 96 122 0 0 22

3 101 96 0 0 31

4 128 121 0 18

Unknown 21 7 68 167 3

Microarray
subtype

GCB 227 182 _ 81 41

ABC 199 167 _ 52 29

Unclassified
subtype

44 63 _ 34 17

Overall survival

Time, years
mean(sd)

2.11 (3.22) 3.18 (3.12) 3.63 (2.19) 3.47 (2.50) 3.21 (3.77)

Death 170 163 17 88 43

Chemotherapy

CHOP 0 180 0 0 87

R-CHOP 470 232 68 167 0

GCB Germinal Centre B-Cell-like Subtype, ABC activated B-Cell-like subtype, CHOP cyclophosphamide,
doxorubicin, vincristine and prednisone, R-CHOP rituximab, cyclophosphamide, doxorubicin, vincristine
and prednisone.
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subgroups. The ComBat algorithm was utilized to adjust the
data for potential batch effects [21].

Functional annotation of gene clusters

Gene ontology (GO) biological function enrichment ana-
lysis of the co-expression gene modules was conducted by
using Metascape (https://omictools.com/metascape-tool).
All of the functional annotation clustering option were used
for each analysis, and the enrichment score was calculated
of the GO biological function. Top ten enriched biological

processes of each module in GO analysis were presented in
the figure.

Results

Construction of the co-expression gene modules

10,000 genes were derived from 470 DLBCL patients from
training dataset to investigate the functional organisation of
the DLBCL transcriptome, and construct the co-expression

Fig. 1 Identification of co-expression modules with WGCNA. a
Heatmap representation the Topological Overlap Matrix (TOM)
among all 10,000 genes in the analysis. Degree of overlap is
represented by the colour shade; lighter colour represents lower
overlap and darker colour represents higher overlap. b Hierarchical
cluster analysis dendrogram was applied to identify co-expression
clusters with the gene profiler from the dataset with 470 patients.
Branches are presented as the co-expression modules with highly
interconnected genes with different colours to indicate module

assignment. Ten modules ranging from 53 to 7154 genes in size
were identified (c) PCC matrix between MEs. The PCC values range
from −1 (blue) to +1 (red) depending on the strength of the rela-
tionship. GO enrichment analysis for the top 10 ranked genes
comprising the purple (d), brown (e) and red (f) modules presented
multiple processes. The raw p values reported by Metascape for GO
biological processes were transformed to “−log (p value)” for plotting
(supplementary file: Dataset 2–4).
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gene modules by WGCNA. A total of ten gene modules
were obtained (Fig. 1a, b) with gene number from 53 to
7154 (Table 2). Survival analysis were conducted to iden-
tify the relationship between these modules and OS as a
whole, as well as with different molecular subtypes and
different treatment groups. The MEs, generated through
principal component analysis, show a general measure of
the overexpression information in each module. The module
membership between each of the 10,000 genes and the
modules of these genes belonging (kMEs) was also calcu-
lated. The complete information of the module membership
and the network metrics (MEs and kMEs) of each gene was
shown in supplementary file: Dataset 1. The correlativity
between the ten modules was shown (Fig. 1c).

Gene modules associated with overall survival

The HRs and p values of the MEs were calculated through
Cox regression to investigate the relationship between
expression of these co-expression gene modules and OS
(Table 2). We found that the black, brown, pink, green-
yellow, purple and red modules were significantly asso-
ciated with OS in the training dataset. According to the
results of survival analysis in the independent verification
datasets, module purple, brown and red were selected for
Kaplan–Meier estimates of OS (Figs. 2, S2, S4 and S6).
Nevertheless, only the association between the purple
module and OS was confirmed across all the validating
datasets. The increased expression of genes in the purple
module revealed well OS (HR= 0.70, 95% CI= 0.52-0.95,
p= 2.37 × 10−2 in the training dataset, Fig. 2a, d, HR=
0.64, 95% CI= 0.47–0.87, p= 4.81 × 10−3 in the validating
dataset 1, Fig. S2a, e, HR= 0.17, 95% CI= 0.05–0.62, p=
6.63 × 10−3 in the validating datasets 2, Fig. S2b, f, HR=
0.60, 95% CI= 0.40–0.90, p= 1.37 × 10−2 in validating
dataset 3, Fig. S2c, g, HR= 0.59, 95% CI= 0.32–1.08,
p= 8.91 × 10−2 in validating dataset 4, Fig. S2d, h). From
the results of the other two modules, similar tendencies
were shown in multiple databases (Table 2, Figs. S4 and
S6), while no significant associations were found in the
validating dataset 3. The genes included in the purple
module were mapped to T-cell related pathways (Fig. 1d,
supplementary file: Dataset 2). GO results showed that
cell–cell adhesion pathways were enriched in the brown
module (Fig. 1e, supplementary file: Dataset 3), while
module red was enriched in extracellular matrix (ECM)
related pathways (Fig. 1f, supplementary file: Dataset 4).

Hub genes are associated with OS

Survival analysis were performed for a total of 10,000 genes
to test the validity of WGCNA in the finding of novel hub
genes that can be used as potential therapeutic markers. TheTa
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HRs and the corresponding p values of these genes were
presented in supplementary file: Dataset 1.

The increased expression of the purple co-expression
module containing 81 genes shown a favourable OS out-
come (Table 2). In the single-gene survival analysis against
OS, 5 hub genes (Table S2) including CD2, CD3D, FYB,
GZMK and LCP2 were demonstrated to have striking cor-
relation with good survival outcomes in the purple module.
LCP2 was found to be closely related to OS, not only in the
training dataset (HR= 0.56, 95% CI= 0.40–0.78, p=
5.63 × 10−4) but also in the validating datasets (HR= 0.68,
95% CI= 0.53–0.87, p= 2.52 × 10−3 in the validating
dataset 1, HR= 0.41, 95% CI= 0.21–0.77, p= 5.67 × 10−3

in the validating dataset 2, HR= 0.61, 95% CI= 0.41–0.90,
p= 1.32 × 10−2 in the validating dataset 3, HR= 0.58, 95%
CI= 0.38–0.89, p= 1.20 × 10−2 in the validating dataset 4,
Table S2). The hub gene CD3D, which is closely related to
the immune biological processes, has also be identified to be
significantly associated with OS (HR= 0.69, 95% CI=
0.58–0.83, p= 7.30 × 10−5 in the training dataset), and the
similar trend was found in the validating datasets. Similarity,
CD2 (HR= 0.74, 95% CI= 0.59–0.92, p= 7.30 × 10−3),
FYB (HR= 0.74, 95% CI= 0.62–0.90, p= 2.40 × 10−3) and
GZMK (HR= 0.85, 95% CI= 0.75–0.96, p= 9.44 × 10−3)

were all detected to have strong correlation with OS in
training dataset (Table S2), and the similar OS-related trends
were also found in the validating datasets. Module brown,
including 588 genes, showed a well OS with the increased
gene expression (Table 2). In this module, 11 hub genes
(ANXA7, CAP1, ERAP1, HIPK3, IQGAP1, ITM2B, PTPRC,
RAB10, RAC1, SNX6, TRAM1, Table S2) were found have
significant association with better OS through the single-
genes survival analysis in the training dataset, and OS-
related analysis were conducted in all databases (Table S2).
Meanwhile, 211 genes were identified in the red module,
which was accompanied with a good OS outcome with the
up-regulation of module expression (Table 2). 4 hub genes
(CALD1, FN1, SPARC and SULF1) in it were positively
correlated with favourable OS in the training data base, and
the same tendencies were found in the validation databases
(Table S2).

Gene modules and hub genes are significantly
associated with OS within molecular subtype

The DLBCL patients can be divided into two different
molecular subtypes, namely ABC and GCB subtype
(Table 1). Based on this, the exploration of the associations

Fig. 2 Association between purple, brown and red modules and overall survival. Kaplan–Meier survival plots for OS were shown (DLBCL
patients were divided into two groups based on the median expression of module MEs). Increased expression (red) of the purple module (a, d),
brown module (b, e) and red module (c, f) are all associated with good OS in training dataset.
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of gene modules and hub genes with OS in different
molecular subtypes was performed by utilizing the merged
dataset (including GSE31312, GSE10846 and GSE34171).
The increased expression of the purple module was sig-
nificantly associated with good OS outcomes in the GCB
subtype (HR= 0.53, 95% CI= 0.36–0.78, p= 9.17 × 10−4,
Table 3, Fig. S3b, f), and the similar trend was shown
within the ABC subtype (HR= 0.81, 95% CI= 0.61–1.10,
p= 0.18, Fig. S3a, e). Meanwhile, the results revealed that
the associations between the upregulated expression of hub
gene CD3D and FYB and OS were all reached to statistic
difference, in both the ABC and GCB subtype (Table S3,
Fig. 3b, c). The other hub genes also have similar trends in
both molecular subtypes. In module brown, the significant
associations between increased gene and favourable OS
outcomes were found in both the ABC subtype (HR= 0.64,
95% CI= 0.47–0.86, p= 4.0 × 10−3, Table 3, Fig. S5a, e)
and the GCB subtype (HR= 0.56, 95% CI= 0.38–0.83,
p= 4.0 × 10−3, Table 3, Fig. S5b, f). The analysis of hub
genes showed that the elevated expression of nine genes,
except for HIPK3 and RAC1, were significantly associated
with good OS, in the ABC subtype and GCB subtype
(Table S3, Fig. 4b, c). The noteworthy association between
increased module expression and longer OS has been
identified in red module, in the GCB subtype (Table 3,

Fig. S7b, f), but not in the ABC subtype (Table 3, Fig. S7a,
e). The similar tendencies were found in two different
molecular subtypes by hub genes analysis (Table S3,
Fig. 5b, c).

Associations of gene modules and hub genes with
OS in different DLBCL chemotherapy regimens

Based on the treatment information of the patients involved
in our study, two groups were defined, CHOP-like che-
motherapy group and R-CHOP like chemotherapy group
(Table 1). The relationships of gene modules and hub genes
with OS in different chemotherapy regimens were con-
ducted, and the noteworthy positive association was iden-
tified between increased purple module gene expression and
good OS in the R-CHOP like chemotherapy group (HR=
0.63, 95% CI= 0.49–0.82, p= 4.71 × 10−4, Table 3,
Fig. S3d, h), and the similar tendency was also be found in
the CHOP-like chemotherapy group (HR= 0.81, 95%
CI= 0.51–1.11, p= 0.15, Table 3, Fig. S3c, g). Similarly,
the analysis between hub genes and OS showed that
DLBCL patients with higher hub genes expression have a
good OS, regardless of the chemotherapy regimens
(Table S3). Nevertheless, the relationships between hub
genes and OS were all have statistical significance only in

Table 3 Relationship between modules and OS within DLBCL molecular subtypes and different treatment groups.

Modules Molecular subtype Chemotherapy

ABC subtype (N= 366) GCB subtype (N= 410) CHOP like (N= 180) R-CHOP like (N= 771)

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Purple 0.81 (0.61–1.10) 1.8 × 10−1 0.53 (0.36–0.78) 9.17 × 10−4 0.81 (0.51–1.11) 1.5 × 10−1 0.63 (0.49–0.82) 4.71 × 10−4

Brown 0.64 (0.47–0.86) 4.0 × 10−3 0.56 (0.38–0.83) 4.0 × 10−3 0.67 (0.45–0.98) 4.0 × 10−2 0.58 (0.45–0.76) 5.0 × 10−5

Red 0.79 (0.59–1.06) 1.0 × 10−1 0.67 (0.46–0.97) 3.0 × 10−2 0.62 (0.42–0.92) 2.0 × 10−2 0.63 (0.49–0.81) 3.0 × 10−4

Hazard ratios (HRs), 95% confidence intervals (CI), and p values were calculated using Cox proportional hazard regression analysis, the MEs were
dichotomized around their median expressions.

Fig. 3 Forest plots for hub genes of module purple. The HRs (and 95% CI) of the univariate survival analyses in the training dataset (a), within
different molecular subtypes (b, c) and different treatment groups (d, e) in the global combined cohort. The ME of hub gene was dichotomized
around its median expression.
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the R-CHOP like chemotherapy group. The results of the
other two gene modules showed that DLBCL patients have
a well OS with the elevated module expression, in both two
chemotherapy groups (Table 3, Figs. S5 and S7). Mean-
while, analysis revealed that DLBCL patients, who have an
upregulated hub genes expression under the R-CHOP like
chemotherapy treatment, had a longer OS, and the results
were statistically significant differences (Table S3, Figs. 4e
and 5e). And the results in the CHOP like chemotherapy
group showed analogous associations between most hub
genes and OS (Table S3, Figs. 4d and 5d).

Correlation between modules expression with drug
resistance probability

The patients of GSE56315 were applied to the analysis of
drug sensitivity. Interestingly, with an increasing expression

of purple or red or brown gene module, patients were less
likely to develop resistance to cyclophosphamide (Fig. 6a–c),
doxorubicin (Fig. 6d–f), and vincristine (Fig. 6g–i). The
enhanced immune function with the increasing expression of
the modules may be a main contributor for these results.

Discussion

In this study, a total of 10 co-expression gene networks
were constructed with 10,000 genes from 470 samples by
WGCNA, which was applied to detect the relationship
between DLBCL transcriptome and OS after chemotherapy
treatment. We then confirmed our findings in four inde-
pendently validating datasets. WGCNA has many obvious
advantages over other methods, because the analysis focus
on the relationship between co-expression gene modules

Fig. 4 Forest plots for hub genes of module brown. The HRs (and
95% CI) of the univariate survival analyses in the training dataset (a),
within different molecular subtypes (b, c) and different treatment

groups (d, e) in the global combined cohort. The ME of hub gene was
dichotomized around its median expression.

Fig. 5 Forest plots for hub genes of module red. The HRs (and 95% CI) of the univariate survival analyses in the training dataset (a), within
different molecular subtypes (b, c) and different treatment groups (d, e) in the global combined cohort. The ME of hub gene was dichotomized
around its median expression.
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and clinical outcomes, and the results have much higher
dependability and biological significance [22], moreover,
the consistency among all of samples could be maintained
by this method [6]. The genes that are related in function
were assigned into the same module. Thus, the analysis was
allowed to identified biologically-relevant modules and hub
genes, which may eventually serve as biomarkers for
diagnosis or treatment.

Among the three modules we selected, module purple
was taken as the main discussing object based on the results
in all datasets. The elevated expression of purple module
comprising 81 genes mostly related to the T-cell immune
respond was correlated with positive OS outcome. Based on
size and precision of the effect rather than just the p value
[23], we came to the conclusion that with an increased
expression of purple module, the survival time was

Fig. 6 Association between modules and probability resistance of different chemotherapeutic drugs. Scatter plots for probability
chemotherapy resistance of cyclophosphamide (a–c), doxorubicin (d–f), vincristine (g–i) in the module purple, brown and red were shown.
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significantly lengthened. The results of HR and its corre-
sponding 95% CI of the purple module in the validation
datasets demonstrated that the relationship between module
purple and OS of DLBCL patients was clinically significant.
Similar associations between gene expression and OS were
found in two other modules, although the opposite was
detected in the validation dataset 3 with no statistically
significant difference.

Recently, a profound understanding of the interaction
between the tumour microenvironment and neoplastic cells,
and the immune escape of cancer, has induced the identi-
fication of novel targets in oncotherapy. Based on the idea
of improving host immune system to combat cancer, more
and more studies focusing on the enhancement of
T-lymphocyte function were conducted in various cancers,
including DLBCL [24]. The most popular salvage regimens
that targeted inhibition of CTLA-4 and PD-1/L1 pathways
have been or are being conducted in DLBCL, such as Ipi-
limumab [25], Nivolumab [26] and Pembrolizumab [27].
Enhancing T-cell response may be an effective way to
improve the response to immunotherapy, which is char-
acterised by low efficiency.

Through GO analysis, we found most of the hub genes in
purple module are involved in T-cell immune processes. Hub
gene LCP2, encoding a 533-amino-acid protein contains a
single carboxy-terminal SH2 domain, has been demonstrated
to be involved in T-cell activation and increasing the activity
of the promoter for the IL-2 gene by its transient over-
expression [28]. In children with acute lymphoblastic leu-
kaemia (ALL), LCP2 has been found to be overexpressed,
which may be involved in the pathogenesis and prognosis
[29]. The analysis of the public datasets found that the
overexpression of LCP2 may be correlated with metastasis
and progression in colon cancer [30] and glioblastoma [31].
However, a study of DLBCL has shown that there was a
negative coefficient β between the expression of LCP2 and
survival (β < 0, that is, the risk ratio < 1, which indicates that
the gene is a protective factor) [32]. These differences may be
caused by tumour heterogeneity. Likewise, it shown that the
hub gene CD3D, an important gene involved in T-cell
immune related processes, played an important role in pre-
dicting chemotherapy response in the previous report [33].
Most importantly, as one of the major histocompatibility
complex class I molecules, the overexpression of CD3D
indicated an enhanced immune response in DLBCL [34].
Studies in other tumours have also found that a longer OS was
associated with an upregulated expression of CD3D [35, 36].
The protein encoded by human CD2 gene was found on all
peripheral blood T cells, and played an important role in
immune recognition [37]. Study in HER2-positive breast
cancer has found a long OS with the increased CD2 expres-
sion [38]. The product of GZMK is a member of a group of
related serine proteases derives from the cytoplasmic granules

of cytotoxic lymphocytes. The important role of GZMK in
immune activation and maintenance of immunity has been
shown in multiple studies [39, 40]. As the adaptor of FYN
protein and LCP2 signals cascades in T cells, the protein
encoded by FYB is involved in the regulation of interleukin-2
(IL-2) expression [41]. Several researches have demonstrated
the positive association between FYB and T-cell activation
[42, 43]. Favourable prognoses have also been found with the
elevated expression of GZMK and FYB in lung cancer [44].
DLBCL studies indicated that higher expression of both FN1
and SPARC correlated with longer survival [45, 46]. How-
ever, there are some discrepancies between different cancer
studies on these genes, and further investigations are needed
to validate the role of these genes in DLBCL.

In our study, the positive correlation between purple
module genes expression and OS was found in the GCB
subtype (p= 9.17 × 10−4) and the R-CHOP like che-
motherapy group (p= 4.71 × 10−4), but the associations in
the ACB subtype and the CHOP like chemotherapy group
had no statistical difference. These distinct differences may
be induced by the diverse mechanisms of the different
molecular subtypes [20]. But these associations have no
differences between brown module expression and OS in
different molecular subtypes as well as chemotherapy
cohorts. Meanwhile, less drug resistance probability of three
chemotherapeutic drugs (cyclophosphamide, doxorubicin,
vincristine) was found with the increased expression of hub
genes. Studies have found that effector T cells can abrogate
stromal-mediated chemoresistance, which is vital for cancer
cell resistance [47], by altering glutathione and cystine
metabolism in fibroblasts [48], and the activation of T-cell
immune response could reverse chemoresistance [49] in
ovarian cancer. Similarly, melanoma related research has
reported that chemosensitivity would be increased by acti-
vated CD4+ T cells [50]. Activated immunity with the
upregulated expression of co-expression module genes in
our study may be the main inducement factor of decreased
DLBCL chemoresistance, which remains to be further
explored.

As a retrospective study, there is no denying that there are
limitations. Firstly, a major deficiency of our study was that
the lack of further experimental verification for hub genes
such as CD3D. Secondly, although the tendencies of the
relationship between the modules and OS in multiple vali-
dating datasets were similar to that in the training dataset,
some p values showed only marginal significance. Thirdly,
although these hub genes were found to positively correlated
with patients’ survival, there were still some discrepancies
with other tumour related researches that have not been elu-
cidated. Therefore, the significance of gene modules and hub
genes should be further verified in clinical practice.

In conclusion, WGCNA was applied to construct gene
co-expression network, identifying and validating network
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hub genes associated with the survival of DLBCL patients.
Three modules and multiple hub genes were identified to
play key roles in patients’ survival, most of which were
new-found to be implicated in DLBCL, and further mole-
cular experiments were required to elucidate detail
mechanisms. All in all, our work may provide clues into
means of therapeutically regulating the host immunity for
promoting immune recognition and immunotherapy
of DLBCL.
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