Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high-resolution HLA imputation system for the Taiwanese population: a study of the Taiwan Biobank

Abstract

An imputation algorithm for human leukocyte antigen (HLA) is helpful for exploring novel disease associations. However, population-specific HLA imputation references are essential for achieving high imputation accuracy. In this study, a subset of 1012 individuals from the Taiwan Biobank (TWB) who underwent both whole-genome SNP array and NGS-based HLA typing were used to establish Taiwanese HLA imputation references. The HIBAG package was used to generate the imputation references for eight HLA loci at a two- and three-field resolution. Internal validation was carried out to evaluate the call threshold and accuracy for each HLA gene. HLA class II genes found to be associated with rheumatoid arthritis (RA) were validated in this study by the imputed HLA alleles. Our Taiwanese population-specific references achieved average HLA imputation accuracies of 98.11% for two-field and 98.08% for three-field resolution. The frequency distribution of imputed HLA alleles among 23,972 TWB subjects were comparable with PCR-based HLA alleles in general Taiwanese reported in the allele frequency net database. We replicated four common HLA alleles (HLA-DRB1*03:01, DRB1*04:05, DQA1*03:03, and DQB1*04:01) significantly associated with RA. The population-specific references provide an informative tool to investigate the associations of HLA variants and human diseases in large-scale population-based studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Supplementary information is available at The Pharmacogenomics Journal’s website. The codes performed for this work followed the instructions of the HIBAG author’s GitHub repository, https://github.com/zhengxwen/HIBAG/blob/master/vignettes/HIBAG.Rmd. The Taiwanese population-specific classifiers would be available from the authors upon request.

References

  1. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5:889–99.

    Article  CAS  PubMed  Google Scholar 

  2. Moutsianas L, Jostins L, Beecham AH, Dilthey AT, Xifara DK, Ban M, et al. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet. 2015;47:1107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirino Y, Remmers EF. Genetic architectures of seropositive and seronegative rheumatic diseases. Nat Rev Rheumatol. 2015;11:401–14.

    Article  CAS  PubMed  Google Scholar 

  4. Ramsuran V, Naranbhai V, Horowitz A, Qi Y, Martin MP, Yuki Y, et al. Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells. Science. 2018;359:86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tian C, Hromatka BS, Kiefer AK, Eriksson N, Noble SM, Tung JY, et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat Commun. 2017;8:599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, Kristinsson KG, Gottfredsson M, Barrett JC, et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet. 2016;48:318–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tse KP, Su WH, Chang KP, Tsang NM, Yu CJ, Tang P, et al. Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. Am J Hum Genet. 2009;85:194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang DK, Sun J, Cao G, Liu Y, Lin D, Gao YZ, et al. Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet. 2013;45:72–5.

    Article  CAS  PubMed  Google Scholar 

  9. Lee MH, Huang YH, Chen HY, Khor SS, Chang YH, Lin YJ, et al. Human leukocyte antigen variants and risk of hepatocellular carcinoma modified by hepatitis C virus genotypes: a genome-wide association study. Hepatology 2018;67:651–61.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng CY, Su SC, Chen CH, Chen WL, Deng ST, Chung WH. HLA associations and clinical implications in T-cell mediated drug hypersensitivity reactions: an updated review. J Immunol Res. 2014;2014:565320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hosomichi K, Shiina T, Tajima A, Inoue I. The impact of next-generation sequencing technologies on HLA research. J Hum Genet. 2015;60:665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet. 2006;38:1166–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Leslie S, Donnelly P, McVean G. A statistical method for predicting classical HLA alleles from SNP data. Am J Hum Genet. 2008;82:48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dilthey A, Leslie S, Moutsianas L, Shen J, Cox C, Nelson MR, et al. Multi-population classical HLA type imputation. PLoS Comput Biol. 2013;9:e1002877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia X, Han B, Onengut-Gumuscu S, Chen WM, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One. 2013;8:e64683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al. HIBAG-HLA genotype imputation with attribute bagging. Pharmacogenomics J. 2014;14:192–200.

    Article  CAS  PubMed  Google Scholar 

  17. Karnes JH, Shaffer CM, Bastarache L, Gaudieri S, Glazer AM, Steiner HE, et al. Comparison of HLA allelic imputation programs. PLoS One. 2017;12:e0172444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Levin AM, Adrianto I, Datta I, Iannuzzi MC, Trudeau S, McKeigue P, et al. Performance of HLA allele prediction methods in African Americans for class II genes HLA-DRB1, -DQB1, and -DPB1. BMC Genet. 2014;15:72.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khor SS, Yang W, Kawashima M, Kamitsuji S, Zheng X, Nishida N, et al. High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references. Pharmacogenomics J. 2015;15:530–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzalez-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43:D784–8.

    Article  CAS  PubMed  Google Scholar 

  21. Chen PL, Fann CS, Chu CC, Chang CC, Chang SW, Hsieh HY, et al. Comprehensive genotyping in two homogeneous Graves’ disease samples reveals major and novel HLA association alleles. PLoS One. 2011;6:e16635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wen SH, Lai MJ, Yang KL. Human leukocyte antigen-A, -B, and -DRB1 haplotypes of cord blood units in the Tzu Chi Taiwan Cord Blood Bank. Hum Immunol. 2010;69:430–6.

    Article  CAS  Google Scholar 

  23. Fan CT, Lin JC, Lee CH. Taiwan Biobank: a project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics. 2008;9:235–46.

    Article  PubMed  Google Scholar 

  24. Chen CH, Yang JH, Chiang CWK, Hsiung CN, Wu PE, Chang LC, et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet. 2016;25:5321–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kidd JR, Friedlaender FR, Speed WC, Pakstis AJ, De La Vega FM, Kidd KK. Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples. Investig Genet. 2011;2:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001–6.

    Article  CAS  PubMed  Google Scholar 

  27. Arbitrio M, Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, et al. DMET™ (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget. 2016;7:54028–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ehrenberg PK, Geretz A, Baldwin KM, Apps R, Polonis VR, Robb ML, et al. High-throughput multiplex HLA genotyping by next-generation sequencing using multi-locus individual tagging. BMC Genom. 2014;15:864.

    Article  CAS  Google Scholar 

  29. Liu SCCT, Lee YJ, Chu CC, Lin M, Chen ZX, Liu HF, et al. Influence of HLA-DRB1 genes and the share epitope on genetic susceptibility to RA in Taiwanese. J Rheumatol. 2007;34:674–80.

    CAS  PubMed  Google Scholar 

  30. Yen JH, Chen CJ, Tsai WC, Ou TT, Lin CH, Lin SC, et al. HLA-DQA1 genotyping in patients with rheumatoid arthritis in Taiwan. Kaohsiung J Med Sci. 2001;17:183–9.

    CAS  PubMed  Google Scholar 

  31. Liu X, Guo J, Jia Y, Zhao Y, Liu X, Cheng F, et al. HLA-DRB1 shared epitope-dependent DR-DQ haplotypes are associated with both anti-CCP-positive and -negative rheumatoid arthritis in Chinese Han. PLoS One. 2013;8:e71373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jun KR, Choi SE, Cha CH, Oh HB, Heo YS, Ahn HY, et al. Meta-analysis of the association between HLA-DRB1 allele and rheumatoid arthritis susceptibility in Asian populations. J Korean Med Sci. 2007;22:973–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zanelli E, Breedveld FC, de Vries RRP. Hla class II association with rheumatoid arthritis. Hum Immunol. 2000;61:1254–61.

    Article  CAS  PubMed  Google Scholar 

  34. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317:944–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas R, Thio CL, Apps R, Qi Y, Gao X, Marti D, et al. A novel variant marking HLA-DP expression levels predicts recovery from hepatitis B virus infection. J Virol. 2012;86:6979–85.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Petersdorf EW, Malkki M, O’HUigin C, Carrington M, Gooley T, Haagenson MD, et al. High HLA-DP expression and graft-versus-host disease. N Engl J Med. 2015;373:599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ko TM, Tsai CY, Chen SY, Chen KS, Yu KH, Chu CS, et al. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study. BMJ. 2015;351:h4848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fernando SL, Broadfoot AJ. Prevention of severe cutaneous adverse drug reactions: the emerging value of pharmacogenetic screening. CMAJ. 2010;182:476–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF, Yang CC, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364:1126–33.

    Article  CAS  PubMed  Google Scholar 

  40. Shi Y, Li L, Hu Z, Li S, Wang S, Liu J, et al. A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12. Nat Genet. 2013;45:918–22.

    Article  CAS  PubMed  Google Scholar 

  41. Hildesheim A, Apple RJ, Chen CJ, Wang SS, Cheng YJ, Klitz W, et al. Association of HLA Class I and II Alleles and Extended Haplotypes with Nasopharyngeal Carcinoma in Taiwan. J Natl Cancer Inst. 2002;94:1780–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Ministry of Science and Technology, Taipei, Taiwan (MOST 105–2628-B010–003-MY4 and MOST 107–2314-B0101–004-MY2); Academia Sinica, Taipei, Taiwan; the Japan Agency for Medical Research and Development (AMED) under grant number JP18km0405205h0003 to S-SK and KT. No funding bodies had any role in the study design, data collection and analysis, publication decision, or paper preparation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Katsushi Tokunaga or Mei-Hsuan Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41397_2020_156_MOESM1_ESM.pdf

Supplementary Tables and Figures for A High-resolution HLA imputation system for the Taiwanese population: a study of the Taiwan Biobank

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YH., Khor, SS., Zheng, X. et al. A high-resolution HLA imputation system for the Taiwanese population: a study of the Taiwan Biobank. Pharmacogenomics J 20, 695–704 (2020). https://doi.org/10.1038/s41397-020-0156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-020-0156-3

This article is cited by

Search

Quick links