Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population

Abstract

Interethnic variability in the drug-metabolizing capacity of CYP450 enzymes may lead to discrepancies in the relationship between genotypes and phenotypes worldwide. The present study was aimed to analyze for the first time whether there is a relationship between clinically relevant CYP450 genetic polymorphisms and their drug oxidation capacity (metabolic phenotype) in a population of healthy Nicaraguan volunteers. Two hundred and twelve participants were genotyped for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, and their actual metabolic phenotype (evaluated by the Metabolic Ratio, MR) was analyzed by using the CEIBA cocktail approach. The results showed the wide interindividual variability in all the studied enzymes and a significant difference (p < 0.004) in the activity of CYP1A2 between male and female subjects. The number of CYP2C19 (p < 0.0001) and CYP2D6 (p < 0.0001) active alleles were shown inversely correlated with their corresponding MR, although there were marked genotype-phenotype discrepancies. There was an actual enzyme capacity overlapping (MR) between genotypically Poor (gPMs) and Extensive Metabolizers (gEMs) of 3.14% subjects for CYP2D6 and 0.94% for CYP2C9. Similarly, there was an overlapping for metabolic phenotypes of 11.48% of genotypically ultrarapid metabolizers (gUMs) for CYP2C19 and 2.09% for CYP2D6 and gEMs. Therefore, the current approach for metabolic phenotype prediction based just on genotype does not predict properly for all individuals within this Nicaraguan Mestizo population, thus representing a potential barrier for the clinical implementation of personalized medicine in this region. However, it is necessary to improve the prediction of phenotype from genotype in order to improve the pharmacogenetic implementation in populations with specific ethnic backgrounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The relationship between the phenotype evaluated by the Test-Drug Metabolic Ratio and the phenotype “predicted” from genotype (Activity Score).
Fig. 2: Relationship among predicted phenotype by genotype (activity score) and metabolic ratios (log10) for every CYP450 analyzed in the Nicaraguan population studied.
Fig. 3: Probit plots and frequency distributions of MRs (log10) of all the volunteers phenotyped for CYP1A2 (n = 209), CYP2C9 (n = 209), CY2C19 (n = 209), CYP2D6 (n = 191), and CYP3A4 (n = 89).

Similar content being viewed by others

References

  1. Lauschke VM, Milani L, Ingelman-Sundberg M. Pharmacogenomic biomarkers for improved drug therapy—recent progress and future developments. AAPS J. 2018;20. https://doi.org/10.1208/s12248-017-0161-x.

  2. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharm Ther. 2007;116:496–526.

    CAS  Google Scholar 

  3. LLerena A, Naranjo MEG, Rodrigues-Soares F, Penas-LLedó EM, Fariñas H, Tarazona-Santos E. Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Metab Toxicol. 2014;10:1569–83.

    CAS  PubMed  Google Scholar 

  4. Céspedes-Garro C, Fricke-Galindo I, Naranjo MEG, Rodrigues-Soares F, Fariñas H, de Andrés F, et al. Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opin Drug Metab Toxicol. 2015;11:1893–905.

    PubMed  Google Scholar 

  5. Fricke-Galindo I, Céspedes-Garro C, Rodrigues-Soares F, Naranjo MEG, Delgado Á, de Andrés F, et al. Interethnic variation of CYP2C19 alleles, ‘predicted’ phenotypes and ‘measured’ metabolic phenotypes across world populations. Pharmacogenomics J. 2016;16:113–23.

    CAS  PubMed  Google Scholar 

  6. Filipski KK, Pacanowski MA, Ramamoorthy A, Feero WG, Freedman AN. Dosing recommendations for pharmacogenetic interactions related to drug metabolism. Pharmacogenet Genom. 2016;26:334–9.

    CAS  Google Scholar 

  7. Voora D. Pharmacogenetics and pharmacogenomics. 3rd edn. Elsevier Inc., 2017 https://doi.org/10.1016/B978-0-12-800681-8.00016-5.

  8. LLerena A, Dorado P, Peñas-Lledó EM. Pharmacogenetics of debrisoquine and its use as a marker for CYP2D6 hydroxylation capacity. Pharmacogenomics. 2009;10:17–28.

    CAS  PubMed  Google Scholar 

  9. De Andrés F, LLerena A. Simultaneous determination of cytochrome P450 oxidation capacity in humans: a review on the phenotyping cocktail approach. Curr Pharm Biotechnol. 2016;17:1–22.

    Google Scholar 

  10. Bedada W, de Andrés F, Engidawork E, Hussein J, LLerena A, Aklillu E. Effects of Khat (Catha edulis) use on catalytic activities of major drug-metabolizing cytochrome P450 enzymes and implication of pharmacogenetic variations. Sci Rep. 2018;8:12726.

    PubMed  PubMed Central  Google Scholar 

  11. Gaedigk A, Simon S, Pearce R, Bradford L, Kennedy M, Leeder J. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharm Ther. 2008;83:234–42.

    CAS  Google Scholar 

  12. LLerena A, Dorado P, Ramírez R, González I, Álvarez M, Peñas-LLedó EM, et al. CYP2D6 genotype and debrisoquine hydroxylation phenotype in Cubans and Nicaraguans. Pharmacogenomics J. 2012;12:176–83.

    CAS  PubMed  Google Scholar 

  13. Villagra D, Goethe J, Schwartz HI, Szarek B, Kocherla M, Gorowski K, et al. Novel drug metabolism indices for pharmacogenetic functional status based on combinatory genotyping of CYP2C9, CYP2C19 and CYP2D6 genes. Biomark Med. 2011;5:427–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Montané Jaime LK, Lalla A, Steimer W, Gaedigk A. Characterization of the CYP2D6 gene locus and metabolic activity in Indo- and Afro-Trinidadians: discovery of novel allelic variants. Pharmacogenomics. 2013;14:261–76.

    PubMed  Google Scholar 

  15. Dorado P, González I, Naranjo MEG, de Andrés F, Peñas-Lledó EM, Calzadilla LR, et al. Lessons from Cuba for global precision medicine: CYP2D6 genotype is not a robust predictor of CYP2D6 ultrarapid. Metab Omi A J Integr Biol. 2017;21:17–26.

    CAS  Google Scholar 

  16. de Andrés F, Sosa-Macías M, Ramos BPL, Naranjo M-EG, LLerena A. CYP450 genotype/phenotype concordance in Mexican Amerindian indigenous populations–where to from here for global precision Med? Omi A J Integr Biol. 2017;21:509–19.

    Google Scholar 

  17. De Andrés F, Terán S, Hernández F, Terán E, LLerena A. To genotype or phenotype for personalized medicine? CYP450 drug metabolizing enzyme genotype–phenotype concordance and discordance in the ecuadorian population. Omi A J Integr Biol. 2016;20:699–710.

    Google Scholar 

  18. Løvlie R, Daly AK, Matre GE, Molven A, Steen VM. Polymorphisms in CYP2D6 duplication-negative individuals with the ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism? Pharmacogenetics. 2001. https://doi.org/10.1097/00008571-200102000-00006.

  19. McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012;8:371–82.

    CAS  PubMed  Google Scholar 

  20. Céspedes-Garro C, Naranjo M-EEG, Ramírez R, Serrano V, Fariñas H, Barrantes R, et al. Pharmacogenetics in Central American healthy volunteers: interethnic variability. Drug Metab Pers Ther. 2015;30:19–31.

    PubMed  Google Scholar 

  21. Céspedes-Garro C, Rodrigues-Soares F, LLerena A, Duconge J, Montané-Jaime LK, Roblejo H, et al. Pharmacogenetic research activity in Central America and the Caribbean: a systematic review. Pharmacogenomics. 2016;17:1707–24.

    PubMed  PubMed Central  Google Scholar 

  22. Céspedes-Garro C, Jiménez-Arce G, Naranjo MG, Barrantes R, Llerena A. Ethnic background and CYP2D6 genetic polymorphisms in Costa Ricans. Rev Biol Trop. 2014;62:1659–71.

    PubMed  Google Scholar 

  23. LLerena A, Dorado P, Naranjo MEG, Peñas-Lledó E. CYP2D6: Genetics, Pharmacology and Clinical Relevance. In: CYP2D6 ethnic variability in Hispanics (Future Medicine, London UK). 2014. p 54–66. https://www.futuremedicine.com/doi/abs/10.2217/fmeb2013.13.139.

  24. de Andrés F, Sosa-Macías M, LLerena A. A rapid and simple LC–MS/MS method for the simultaneous evaluation of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 hydroxylation capacity. Bioanalysis. 2014;6:683–96.

    PubMed  Google Scholar 

  25. de Andrés F, Terán S, Bovera M, Fariñas H, Terán E, LLerena A. Multiplex phenotyping for systems medicine: a one-point optimized practical sampling strategy for simultaneous estimation of CYP1A2, CYP2C9, CYP2C19, and CYP2D6 activities using a cocktail approach. Omi A J Integr Biol. 2016;20:88–96.

    Google Scholar 

  26. Naranjo M-EG, Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E, Fariñas H, Rodeiro I, et al. Interethnic variability in CYP2D6, CYP2C9, and CYP2C19 genes and predicted drug metabolism phenotypes among 6060 Ibero- and Native Americans: RIBEF-CEIBA Consortium Report on Population. Pharmacogenomics Omi A J Integr Biol. 2018;22:575–88.

    CAS  Google Scholar 

  27. Rodrigues‐Soares F, Peñas‐Lledó EM, Tarazona‐Santos E, Sosa‐Macías M, Terán E, López‐López M, et al. Genomic ancestry, CYP2D6, CYP2C9, and CYP2C19 among Latin Americans. Clin Pharm Ther. 2019;0:cpt.1598.

    Google Scholar 

  28. Lazalde-Ramos BP, Martínez-Fierro M, de la L, Galaviz-Hernández C, Garza-Veloz I, Naranjo MEG, et al. CYP2D6 gene polymorphisms and predicted phenotypes in eight indigenous groups from northwestern Mexico. Pharmacogenomics. 2014;15:339–48.

    CAS  PubMed  Google Scholar 

  29. LLerena A, Alvarez M, Dorado P, Gonzalez I, Peñas-Lledó E, Perez B, et al. Interethnic differences in the relevance of CYP2C9 genotype and environmental factors for diclofenac metabolism in Hispanics from Cuba and Spain. Pharmacogenomics J. 2014;14:229–34.

    CAS  PubMed  Google Scholar 

  30. Dorado P, Cáceres M, Pozo-Guisado E, Wong M-L, Licinio J, Llerena A. Development of a PCR-based strategy for CYP2D6 genotyping including gene multiplication of worldwide potential use. Biotechniques. 2005;39:S571–4.

    PubMed  Google Scholar 

  31. Endrenyi L, Patel M. A new, sensitive graphical method for detecting deviations from the normal distribution of drug responses: the NTV plot. Br J Clin Pharm. 1991;32:159–66.

    CAS  Google Scholar 

  32. Zhou S-F, Yang L-P, Zhou Z-W, Liu Y-H, Chan E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 2009;11:481–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Thorn CF, Aklillu E, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for CYP1A2. Pharmacogenet Genomics. 2012;22:73–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramsjö M, Aklillu E, Bohman L, Ingelman-Sundberg M, Roh HK, Bertilsson L. CYP2C19 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharm. 2010;66:871–7.

    Google Scholar 

  35. Pedersen RS, Noehr-Jensen L, Brosen K. The inhibitory effect of oral contraceptives on CYP2C19 activity is not significant in carriers of the CYP2C19*17 allele. Clin Exp Pharm Physiol. 2013;40:683–8.

    CAS  Google Scholar 

  36. Shah RR, Smith RL. Addressing phenoconversion: the Achilles’ heel of personalized medicine. Br J Clin Pharm. 2015;79:222–40.

    Google Scholar 

  37. Mendoza-Cantú A, Castorena-Torres F, Bermudez M, Martínez-Hernández R, Ortega A, Salinas JE, et al. Genotype and allele frequencies of polymorphic cytochromes P450 CYP1A2 and CYP2E1 in Mexicans. Cell Biochem Funct. 2004;22:29–34.

    PubMed  Google Scholar 

  38. Roco Á, Quiñones L, Agúndez JaG, García-Martín E, Squicciarini V, Miranda C, et al. Frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the chilean population: Comparison with caucasian and asian populations. Front Genet. 2012;3:1–9.

    Google Scholar 

  39. Zhou S-F, Wang B, Yang L-P, Liu J-P. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev. 2010;42:268–354.

    CAS  PubMed  Google Scholar 

  40. Gunes A, Ozbey G, Vural EH, Uluoglu C, Scordo MG, Zengil H, et al. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics. 2008;9:769–78.

    Google Scholar 

  41. Barbosa E, Calzada F, Campos R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J Ethnopharmacol. 2007;109:552–4.

    CAS  PubMed  Google Scholar 

  42. Dorado P, Gallego A, Peñas-Lledó E, Terán E, Llerena A. Relationship between the CYP2C9 IVS8-109A>T polymorphism and high losartan hydroxylation in healthy Ecuadorian volunteers. Pharmacogenomics. 2014;15:1417–21.

    CAS  PubMed  Google Scholar 

  43. Ortega-Vázquez A, Dorado P, Fricke-Galindo I, Jung-Cook H, Monroy-Jaramillo N, Martínez-Juárez IE, et al. CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. Pharmacogenomics J. 2015;16:286–92.

    PubMed  Google Scholar 

  44. Englert NA, Luo G, Goldstein JA, Surapureddi S. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9. J Biol Chem. 2015;290:2264–78.

    CAS  PubMed  Google Scholar 

  45. Kiss ÁF, Tóth K, Juhász C, Temesvári M, Paulik J, Hirka G, et al. Is CYP2D6 phenotype predictable from CYP2D6 genotype? Microchem J. 2018;136:209–14.

    CAS  Google Scholar 

  46. Haslemo T, Eliasson E, Jukić MM, Ingelman-Sundberg M, Molden E. Significantly lower CYP2D6 metabolism measured as the O/N -desmethylvenlafaxine metabolic ratio in carriers of CYP2D6*41 versus CYP2D6*9 or CYP2D6*10 - a study on therapeutic drug monitoring data from 1,003 genotyped Scandinavian patients. Br J Clin Pharmacol. 2018. https://doi.org/10.1111/bcp.13788.

  47. Contreras AV, Monge-Cazares T, Alfaro-Ruiz L, Hernandez-Morales S, Miranda-Ortiz H, Carrillo-Sanchez K, et al. Resequencing, haplotype construction and identification of novel variants of CYP2D6 in Mexican Mestizos. Pharmacogenomics. 2011;12:745–56.

    CAS  PubMed  Google Scholar 

  48. Dorado P, Peñas-Lledó EM, Llerena A. CYP2D6 polymorphism: implications for antipsychotic drug response, schizophrenia and personality traits. Pharmacogenomics. 2007;8:1597–608.

    CAS  PubMed  Google Scholar 

  49. Kim I-W, Han N, Burckart GJ, Oh JM. Epigenetic changes in gene expression for drug-metabolizing enzymes and transporters. Pharmacother J Hum Pharm Drug Ther. 2014;34:140–50.

    CAS  Google Scholar 

  50. Oneda B, Crettol S, Sirot EJ, Bochud M, Ansermot N, Eap CB. The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genom. 2009. https://doi.org/10.1097/FPC.0b013e32833225e7.

  51. Yang G, Fu Z, Chen X, Yuan H, Yang H, Huang Y et al. Effects of the CYP oxidoreductase Ala503Val polymorphism on CYP3A activity in vivo: a randomized, open-label, crossover study in healthy Chinese men. Clin Ther. 2011. https://doi.org/10.1016/j.clinthera.2011.11.004.

  52. Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharm Ther. 2014;4:1–9.

    Google Scholar 

  53. Shah RR, Smith RL. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos. 2015;43:400–10.

    PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Junta Extremadura-AEXCID (18IA003) to SIFF and RIBEF (Iberoamerican Network of Pharmacogenetics and Pharmacogenomics) (www.redribef.com).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald Ramírez-Roa or Adrián LLerena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrés, F., Altamirano-Tinoco, C., Ramírez-Roa, R. et al. Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population. Pharmacogenomics J 21, 140–151 (2021). https://doi.org/10.1038/s41397-020-00190-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-020-00190-9

This article is cited by

Search

Quick links