CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis

Abstract

Tacrolimus is an immunosuppressive drug widely used in kidney transplantation. Cytochrome P450 3A5 (CYP3A5) protein is involved in tacrolimus metabolism. Single nucleotide polymorphism in the CYP3A5 gene (6986A>G) results in alteration in metabolic activity of CYP3A5 protein which eventually affects the tacrolimus concentration. Patients with CYP3A5 expresser genotypes (A/A *1/*1 and A/G *1/*3) metabolize tacrolimus more rapidly than CYP3A5 nonexpressers (G/G *3/*3). We performed meta-analysis to estimate the effect of CYP3A5 polymorphism on the trough concentration–dose ratio (Co/D) and risk of renal allograft rejection with similar post-transplant periods and Asian vs. European populations. Our results showed that the tacrolimus Co/D ratio is significantly lower in CYP3A5 expresser group as compared with nonexpresser in Asian as well as in European populations at any post-transplant period (p < 0.00001). No significant association was found with renal allograft rejection episodes between expressers and nonexpressers in European populations (OR: 1.12; p = 0.47). Interestingly, Asian population (with expresser genotypes) and patients after 3 years post-transplantation (with expresser genotypes) have a higher risk of rejection (OR: 1.62; p < 0.05), (OR: 1.68; p < 0.05), respectively. This could be due to high prevalence of expresser genotypes in Asian population. Few tacrolimus-based studies are identified with long-term graft survival. There is a need to have more studies looking for long-term graft survival in expresser as well as no-expresser groups especially in Asian populations who have high frequency of CYP3A5 functional genotype.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Hamawy MM. Molecular actions of calcineurin inhibitors. Drug News Perspect. 2003;16:277–82.

    CAS  Article  Google Scholar 

  2. 2.

    Egeland EJ, Robertsen I, Hermann M, Midtvedt K, Storset E, Gustavsen MT, et al. High tacrolimus clearance is a risk factor for acute rejection in the early phase after renal transplantation. Transplantation. 2017;101:e273–e9.

    CAS  Article  Google Scholar 

  3. 3.

    Huang CT, Shu KH, Ho HC, Wu MJ. Higher variability of tacrolimus trough level increases risk of acute rejection in kidney transplant recipients. Transplant Proc. 2016;48:1978–80.

    CAS  Article  Google Scholar 

  4. 4.

    Miura M, Niioka T, Kagaya H, Saito M, Hayakari M, Habuchi T, et al. Pharmacogenetic determinants for interindividual difference of tacrolimus pharmacokinetics 1 year after renal transplantation. J Clin Pharm Ther. 2011;36:208–16.

    CAS  Article  Google Scholar 

  5. 5.

    Stratta P, Quaglia M, Cena T, Antoniotti R, Fenoglio R, Menegotto A, et al. The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation. Eur J Clin Pharmacol. 2012;68:671–80.

    CAS  Article  Google Scholar 

  6. 6.

    Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383–91.

    CAS  Article  Google Scholar 

  7. 7.

    Tang HL, Xie HG, Yao Y, Hu YF. Lower tacrolimus daily dose requirements and acute rejection rates in the CYP3A5 nonexpressers than expressers review. Pharmacogenetics Genom. 2011;21:713–20.

    CAS  Article  Google Scholar 

  8. 8.

    Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on tacrolimus required dose for transplant pediatrics: a systematic review and meta-analysis. Pediatr Transplant. 2018;22:e13248.

  9. 9.

    Rojas L, Neumann I, Herrero MJ, Boso V, Reig J, Poveda JL, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015;15:38–48.

    CAS  Article  Google Scholar 

  10. 10.

    Terrazzino S, Quaglia M, Stratta P, Canonico PL, Genazzani AA. The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients: a systematic review and meta-analysis. Pharmacogenetics Genom. 2012;22:642–5.

    CAS  Article  Google Scholar 

  11. 11.

    Zong YP, Wang ZJ, Zhou WL, Zhou WM, Ma TL, Huang ZK, et al. Effects of CYP3A5 polymorphisms on tacrolimus pharmacokinetics in pediatric kidney transplantation: a systematic review and meta-analysis of observational studies. World J Pediatr. 2017;13:421–6.

    CAS  Article  Google Scholar 

  12. 12.

    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  Article  Google Scholar 

  13. 13.

    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    CAS  Article  Google Scholar 

  14. 14.

    Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48.

    Article  Google Scholar 

  15. 15.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2014. http://www.R-project.org/.

  16. 16.

    Flahault AD, Anglicheau, Loriot Marie-Anne, Thervet Eric, Pallet Nicolas. Clinical impact of the CYP3A5 6986A>G allelic variant on kidney transplantation outcomes. Pharmacogenomics. 2017;18:165–73.

    CAS  Article  Google Scholar 

  17. 17.

    Maldonado AQ, Asempa T, Hudson S, Rebellato LM. Prevalence of CYP3A5 genomic variances and their impact on tacrolimus dosing requirements among kidney transplant recipients in Eastern North Carolina. Pharmacotherapy. 2017;37:1081–8.

    CAS  Article  Google Scholar 

  18. 18.

    Nair SS, Sarasamma S, Gracious N, George J, Anish TS, Radhakrishnan R. Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood level. Exp Clin Transplant. 2015;13(Suppl 1):197–200.

    PubMed  Google Scholar 

  19. 19.

    Ro H, Min SI, Yang J, Moon KC, Kim YS, Kim SJ, et al. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation. Ther Drug Monit. 2012;34:680–5.

    CAS  Article  Google Scholar 

  20. 20.

    Singh R, Srivastava A, Kapoor R, R KS, R DM. Impact of CYP3A5 and CYP3A4 gene polymorphisms on dose requirement of calcineurin inhibitors, cyclosporine and tacrolimus, in renalallograft recipients of North India. Naunyn-Schmiedebergs Arch Pharmacol. 2009;380:169–77.

    CAS  Article  Google Scholar 

  21. 21.

    Chen JS, Li LS, Cheng DR, Ji SM, Sun QQ, Cheng Z, et al. Effect of CYP3A5 genotype on renal allograft recipients treated with tacrolimus. Transplant Proc. 2009;41:1557–61.

    CAS  Article  Google Scholar 

  22. 22.

    Kuypers DR, Naesens M, de Jonge H, Lerut E, Verbeke K, Vanrenterghem Y. Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients. Ther Drug Monit. 2010;32:394–404.

    CAS  Article  Google Scholar 

  23. 23.

    Quteineh L, Verstuyft C, Furlan V, Durrbach A, Letierce A, Ferlicot S, et al. Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients. Basic Clin Pharmacol Toxicol. 2008;103:546–52.

    CAS  Article  Google Scholar 

  24. 24.

    Stegall MD, Cornell LD, Park WD, Smith BH, Cosio FG. Renal allograft histology at 10 years after transplantation in the tacrolimus era: evidence of pervasive chronic injury. Am J Transplant. 2018;18:180–8.

    CAS  Article  Google Scholar 

  25. 25.

    Min SI, Kim SY, Ahn SH, Min SK, Kim SH, Kim YS, et al. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. Transplantation. 2010;90:1394–400.

    CAS  Article  Google Scholar 

  26. 26.

    Billing H, Hocker B, Fichtner A, van Damme-Lombaerts R, Friman S, Jaray J, et al. Single-nucleotide polymorphism of cyp3a5 impacts the exposure to tacrolimus in pediatric renal transplant recipients: a pharmacogenetic substudy of the TWIST Trial. Therapeutic Drug Monit. 2017;39:21–28.

    CAS  Article  Google Scholar 

  27. 27.

    Almeida-Paulo GN, Dapia Garcia I, Lubomirov R, Borobia AM, Alonso-Sanchez NL, Espinosa L, et al. Weight of ABCB1 and POR genes on oral tacrolimus exposure in CYP3A5 nonexpressor pediatric patients with stable kidney transplant. Pharmacogenomics J. 2018;18:180–6.

    CAS  Article  Google Scholar 

  28. 28.

    Aouam K, Kolsi A, Kerkeni E, Ben Fredj N, Chaabane A, Monastiri K, et al. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase. Pharmacogenomics. 2015;16:2045–54.

    CAS  Article  Google Scholar 

  29. 29.

    Niioka T, Kagaya H, Saito M, Inoue T, Numakura K, Habuchi T, et al. Capability of utilizing CYP3A5 polymorphisms to predict therapeutic dosage of tacrolimus at early stage post-renal transplantation. Int J Mol Sci. 2015;16:1840–54.

    CAS  Article  Google Scholar 

  30. 30.

    Han N, Ha S, Yun HY, Kim MG, Min SI, Ha J, et al. Population pharmacokinetic-pharmacogenetic model of tacrolimus in the early period after kidney transplantation. Basic Clin Pharm Toxicol. 2014;114:400–6.

    CAS  Article  Google Scholar 

  31. 31.

    Coto E, Tavira B, Suarez-Alvarez B, Lopez-Larrea C, Diaz-Corte C, Ortega F, et al. Pharmacogenetics of tacrolimus: ready for clinical translation? Kidney Int Suppl. 2011;1:58–62.

    CAS  Article  Google Scholar 

  32. 32.

    Zhang J, Zhang X, Liu L, Tong W. Value of CYP3A5 genotyping on determining initial dosages of tacrolimus for Chinese renal transplant recipients. Transplant Proc. 2010;42:3459–64.

    CAS  Article  Google Scholar 

  33. 33.

    Press RR, Ploeger BA, den Hartigh J, van der Straaten T, van Pelt J, Danhof M, et al. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients. Ther Drug Monit. 2009;31:187–97.

    CAS  Article  Google Scholar 

  34. 34.

    Satoh S, Saito M, Inoue T, Kagaya H, Miura M, Inoue K, et al. CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2009;65:473–81.

    CAS  Article  Google Scholar 

  35. 35.

    MacPhee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation-DL. Am J Transplant. 2004;4:914–9.

    CAS  Article  Google Scholar 

  36. 36.

    Thervet E, Anglicheau D, King B, Schlageter MH, Cassinat B, Beaune P, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation. 2003;76:1233–5.

    CAS  Article  Google Scholar 

  37. 37.

    Turolo S, Tirelli AS, Ferraresso M, Ghio L, Belingheri M, Groppali E, et al. Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacol Rep. 2010;62:1159–69.

    CAS  Article  Google Scholar 

  38. 38.

    Kurzawski M, Dąbrowska J, Dziewanowski K, Domański L, Perużyńska M, Droździk M. CYP3A5 and CYP3A4, but not ABCB1 polymorphisms affect tacrolimus dose-adjusted trough concentrations in kidney transplant recipients. Pharmacogenomics. 2014;15:179–88.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a core grant to SIUT.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aiysha Abid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, A.R., Raza, A., Firasat, S. et al. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenomics J 20, 553–562 (2020). https://doi.org/10.1038/s41397-019-0144-7

Download citation

Further reading

Search