Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacogenomic phase transition from personalized medicine to patient-centric customized delivery

Abstract

Personalized medicine has been a booming area in clinical research for the past decade, in which the detailed information about the patient genotype and clinical conditions were collected and considered to optimize the therapy to prevent adverse reactions. However, the utility of commercially available personalized medicine has not yet been maximized due to the lack of a structured protocol for implementation. In this narrative review, we explain the role of pharmacogenetics in personalized medicine, next-generation personalized medicine, i.e., patient-centric personalized medicine, in which the patient’s comfort is considered along with pharmacogenomics to be a primary factor. We extensively discuss the classifications, strategies, tools, and drug delivery systems that can support the implementation of patient-centric personalized medicine from an industrial perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Personalized medicine coalition. The case for personalized medicine. 4th edition. 2014. Personalized medicine coalition. http://www.personalizedmedicinecoalition.org/userfiles/pmccorporate/file/pmc_the_case_for_personalized_medicine.pdf

  2. Azimi M, Schmaus K, Greger V, Neitzel D, Rochelle R, Dinh T. Carrier screening by next generation sequencing: health benefits and cost-effectiveness. Mol Genet Genomic Med. 2016;4:292–302.

    PubMed  PubMed Central  Google Scholar 

  3. Masic I, Miokovic M, Muhamedagic B. Evidence-based medicine–new approaches and challenges. Acta Inform Med. 2008;16:219.

    PubMed  PubMed Central  Google Scholar 

  4. Djulbegovic B, Guyatt GH. Progress in evidence-based medicine: a quarter century on. Lancet. 2017;390:415–23.

    PubMed  Google Scholar 

  5. Sabblah GT, Akweongo P, Darko D, Dodoo AN, Sulley AM. Adverse drug reaction reporting by doctors in a developing country: a case study from Ghana. Ghana Med J. 2014;48:189–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Janko M, Becker DM, Jacobson JA, Blake V, Sheehy S, Meyer J. Virtual mentor American medical association. J Ethics Vaccines Ethics. 2012;14:1.

    Google Scholar 

  7. Masters JC, Wiernik PH. Are we ready to include organ-impaired patients in oncology trials? A clinical pharmacology perspective on recent recommendations. J Clin Pharmacol. 2018;58:701–3.

    CAS  PubMed  Google Scholar 

  8. Horwitz RI, Hayes-Conroy A, Caricchio R, Singer BH. From evidence-based medicine to medicine based evidence. Am J Med. 2017;130:1246–50.

    PubMed  Google Scholar 

  9. Grimes DR, Bauch CT, Ioannidis JP. Modelling science trust worthiness under publish or perish pressure. R Soc Open Sci. 2018;5:171511.

    PubMed  PubMed Central  Google Scholar 

  10. Masic I, Miokovic M, Muhamedagic B. Evidence-based medicine–new approaches and challenges. Acta Inform Med. 2008;16:219.

    PubMed  PubMed Central  Google Scholar 

  11. Human genome project. NIH research timelines. https://report.nih.gov/NIHfactsheets/ViewFactSheet.aspx?csid=45.

  12. What is the HapMap project. Genetics home reference. US national library of medicine. https://ghr.nlm.nih.gov/primer/genomicresearch/hapmap.

  13. Jacob S. What have we learned from human genome project. https://science.howstuffworks.com/life/genetic/human-genome-project-results2.htm.

  14. Cutter GR, Liu Y. Personalized medicine: the return of the house call? Neurology: Clinical Pract. 2012;2:343–51.

    Google Scholar 

  15. Howell WM, Calder PC, Grimble RF. Gene polymorphisms, inflammatory diseases and cancer. Proc Nutr Soc Lond. 2002;61:447–56.

    CAS  Google Scholar 

  16. Chan C, Law B, So W, Chow K, Waye M. Novel strategies on personalized medicine for breast cancer treatment: an update. Int J Mol Sci. 2017;18:2423.

    PubMed Central  Google Scholar 

  17. Katoh M. The integration of genomics testing and functional proteomics in the era of personalized medicine. Expert Rev Proteom. 2017;14:1055–8.

    CAS  Google Scholar 

  18. World Health Organization. Medication without harm—global patient safety challenge on medication safety. Geneva: World Health Organization; 2017.

    Google Scholar 

  19. Nair SR. Personalized medicine: striding from genes to medicines. Perspect Clin Res. 2010;1:146.

    PubMed  PubMed Central  Google Scholar 

  20. Forbes HL, Polasek TM. Potential drug-drug interactions with direct oral anticoagulants in elderly hospitalized patients. Ther Adv Drug Saf. 2017;8:319–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel JN. Cancer pharmacogenomics, challenges in implementation, and patient-focused perspectives. Pharmgenomics Pers Med. 2016;9:65.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Park C, Meghani NM, Amin HH, Nguyen VH, Lee BJ. Patient-centred drug delivery and its potential applications for unmet medical needs. Therapeutic Deliv. 2017;8:775–90.

    CAS  Google Scholar 

  23. Angelis A, Tordrup D, Kanavos P. Socio-economic burden of rare diseases: a systematic review of cost of illness evidence. Health Policy. 2015;119:964–79.

    PubMed  Google Scholar 

  24. Wening K, Breitkreutz J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm. 2011;404:1–9.

    CAS  PubMed  Google Scholar 

  25. Dahl ML, Gunes A. Implications of inter-individual differences in clopidogrel metabolism, with focus on pharmacogenetics. Pharmaceuticals. 2010;3:782–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Loebstein R. Interindividual variability in sensitivity to warfarin-Nature or nurture? Clin Pharmacol Ther. 2001;70:159–64.

    CAS  PubMed  Google Scholar 

  27. Surendiran A, Pradhan SC, Adithan C. Role of pharmacogenomics in drug discovery and development. Indian J Pharm. 2008;40:137–43.

    CAS  Google Scholar 

  28. Blumberg J, Bailey R, Sesso H, Ulrich C. The evolving role of multivitamin/multimineral supplement use among adults in the age of personalized nutrition. Nutrients. 2018;10:248.

    PubMed Central  Google Scholar 

  29. Wedinger R, Mehra D (2004). US Patent No: US20060078897A1

  30. Lee VHL. Personalized medicine: transforming drug development and healthcare. Ther Deliv. 2010;1:615–9.

    PubMed  Google Scholar 

  31. Craig A. personalized medicine with CDx: the intercept of medicines and medical devices in the regulatory landscape. Eur Med J. 2017;1:47–53.

    Google Scholar 

  32. Koohestani A, Murikinati S. How drug-diagnostic co-development is shaping discovery research and pharmacotherapy. Drug Discovery and Technology. 2019. https://www.technologynetworks.com/drug-discovery/articles/how-the-drugdiagnostic-co-development-is-shaping-discovery-research-and-pharmacotherapy-317208.

  33. Zhou YJ, Wang G, Tang YW. Companion diagnostics: new opportunities for safe and effective anti-infectious disease therapies. Emerg Microbes Infect. 2018;7:1–2.

    CAS  Google Scholar 

  34. Olsen D, Jorgensen JT. Companion diagnostics for targeted cancer drugs–clinical and regulatory aspects. Front Oncol. 2014;16:105.

  35. Arron SL. Companion diagnostics for personalized medicine. Clinical Laboratory News. 2014 https://www.aacc.org/publications/cln/articles/2014/september/companion-diagnostics.

  36. Luo D, Smith JA, Meadows NA, Schuh A, Manescu KE, Bure K, et al. A quantitative assessment of factors affecting the technological development and adoption of Companion diagnostics. Front Genet. 2016;6:357.

    PubMed  PubMed Central  Google Scholar 

  37. Waldman SA, Terzic A. Companion diagnostics at the intersection of personalized medicine and healthcare delivery. Biomark Med. 2015;9:1–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Moore MW, Babu D, Cotter PD. Challenges in the co-development of Companion diagnostics. Personalized Med 2012;9:485–96.

    CAS  Google Scholar 

  39. Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D Printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res. 2018;35.

  40. Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499:376–94.

    PubMed  Google Scholar 

  41. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    CAS  PubMed  Google Scholar 

  42. Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54:107–17.

    CAS  PubMed  Google Scholar 

  43. Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, et al. Pharmaceutical applications of hot-melt extrusion: Part II. Drug Dev Ind Pharm. 2007;33:1043–57.

    CAS  PubMed  Google Scholar 

  44. Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharmaceutics 2012;1-9:1–9.

    Google Scholar 

  45. Trajkovski B, Petersen A, Strube P, Mehta M, Duda GN. Intra-operatively customized implant coating strategies for local and controlled drug delivery to bone. Adv Drug Deliv Rev. 2012;64:1142–51.

    CAS  PubMed  Google Scholar 

  46. Meng E, Hoang T. Micro-and nano-fabricated implantable drug-delivery systems. Therapeutic Deliv. 2012;3:1457–67.

    CAS  Google Scholar 

  47. Reynaerts D, Peirs J, Van BH. An implantable drug-delivery system based on shape memory alloy micro-actuation. Sens Actuators, A. 1997;61:455–62.

    CAS  Google Scholar 

  48. Zainal MA, Ali MM. Wireless shape memory polymer microactuator for implantable drug delivery application. In: Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE; 2016. p. 76-79.

  49. Jack W. Remote smartphone app-controlled device could replace insulin injections. 2017. https://www.diabetes.co.uk/news/2017/apr/remote-smartphone-app-controlled-device-could-replace-insulin-injections-98754594.html.

  50. Lopez FL, Ernest TB, Tuleu C, Gul MO. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin drug Deliv. 2015;12:1727–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015;17:1327–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Colombo P. Opinion paper: modular drug delivery systems for personalized oral dosage forms. Recent Pat Drug Deliv formulation. 2016;10:3.

    CAS  Google Scholar 

  53. Thakur RS, Agrawal R. Application of nanotechnology in pharmaceutical formulation design and development. Curr Drug Ther. 2015;10:20–34.

    CAS  Google Scholar 

  54. Mutha P. Pharmaceutical nanotechnology- applications of nanotechnology in pharmaceuticals. Res Rev: J Pharmaceutics Nanotechnol. 2016;4:1–7.

    Google Scholar 

  55. Cipolla D, Wu H, Gonda I, Eastman S, Redelmeier T, Chan HK. Modifying the release properties of liposomes toward personalized medicine. J Pharm Sci. 2014;103:1851–62.

    CAS  PubMed  Google Scholar 

  56. Zheng M, Liu S, Li J, Qu D, Zhao H, Guan X, et al. Oxaliplatin with Highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv Mater. 2014;26:3554–60.

    CAS  PubMed  Google Scholar 

  57. Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L, et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv Funct Mater. 2016;26:3818–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomed. 2018;13:4727.

    CAS  Google Scholar 

  59. Shopsowitz KE. Nanotechnology as a platform for personalized cancer therapy. UBC Med J. 2017;9:21–2.

    Google Scholar 

  60. Morigi V, Tocchio A, Bellavite PC, Sakamoto JH, Arnone M, Tasciotti E. Nanotechnology in medicine: from inception to market domination. J Drug Deliv. 2012;2012:1–7.

    Google Scholar 

  61. LR Cardon LR, Harris T. Precision medicine, genomics, and drug discovery. Hum Mol Genet. 2016;25:166–72.

    Google Scholar 

  62. Knowles L, Luth W, Bubela T. Paving the road to personalized medicine: recommendations on regulatory, intellectual property and reimbursement challenges. J Law Biosci. 2017;4:453–506.

    PubMed  PubMed Central  Google Scholar 

  63. Ruthanna D, Therese D, Jeffrey W, Steven S. Clinical trial technologies for precision medicine; the current state of the art. J Precision Med. 2017;12:48–62.

  64. Mathur S, Sutton J. Personalized medicine could transform healthcare. Biomed Rep. 2017;7:3–5.

    PubMed  PubMed Central  Google Scholar 

  65. Global precision medicine market to reach $141. 70 Billion by 2026, Reports BIS Research. https://www.prnewswire.com/news-releases/global-precision-medicine-market-to-reach-14170-billion-by-2026-reports-bis-research-664364683.html

  66. Ruth EN, Michael DG. Personalized medicine brings pharmacy science back to the future. 2012. https://www.pharmacytimes.com/publications/issue/2012/february2012/personalized-medicine-brings-pharmacy-science-back-to-the-future.

  67. Baranick B, Vadas A. Partnering on novel technologies for companion diagnostics. Executive Insights. 2015;24:1–5.

    Google Scholar 

  68. Ando Y, Ueoka H, Sugiyama T, Ichiki M, Shimokata K, Hasegawa Y. Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Therapeutic Drug Monit. 2002;24:111–6.

    CAS  Google Scholar 

  69. Chen K, Wang R, Wen SY, Li J, Wang SQ. Relationship of P450 2C9 genetic polymorphisms in Chinese and the pharmacokinetics of tolbutamide. J Clin Pharm Ther. 2005;30:241–9.

    CAS  PubMed  Google Scholar 

  70. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra-and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics. 2006;16:101–10.

    CAS  PubMed  Google Scholar 

  71. Li D, Lu W, Zhu JY, Gao J, Lou YQ, Zhang GL. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL‐10 polymorphisms in adult liver transplant patients. J Clin Pharm Ther. 2007;32:505–15.

    CAS  PubMed  Google Scholar 

  72. Rudin CM, Liu W, Desa A, Karrison T, Jiang X, Janisch L, et al. Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin Oncol. 2008;26:1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Walker K, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B. Genetic polymorphism in N-Acetyltransferase (NAT): Population distribution of NAT1 and NAT2 activity. J Toxicol Environ Health. 2009;12:440–72.

    CAS  Google Scholar 

  74. Lemos C, Giovannetti E, Zucali PA, Assaraf YG, Scheffer GL, Van Der Straaten T, et al. Impact of ABCG2 polymorphisms on the clinical outcome and toxicity of gefitinib in non-small-cell lung cancer patients. Pharmacogenomics. 2011;12:159–70.

    CAS  PubMed  Google Scholar 

  75. Byeon JY, Kim SH, Kim YH, Lee HJ, Lee Y, Lee YJ, et al. Effect of Cyp2d6 genetic polymorphism on the pharmacokinetics of multiple-dose metoclopramide. Clin Ther. 2015;37:58.

    Google Scholar 

  76. Uckun Z, Baskak B, Ozel Kizil ET, Ozdemir H, Devrimci Ozguven H, Suzen HS. The impact of CYP 2C19 polymorphisms on citalopram metabolism in patients with major depressive disorder. J Clin Pharm Ther. 2015;40:672–9.

    CAS  PubMed  Google Scholar 

  77. Leung HW, Chan AL. Association and prediction of severe 5-fluorouracil toxicity with dihydropyrimidine dehydrogenase gene polymorphisms: a meta-analysis. Biomed Rep. 2015;3:879–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhu WY, Zhao T, Xiong XY, Li J, Wang L, Zhou Y, et al. Association of CYP2C19 polymorphisms with the clinical efficacy of clopidogrel therapy in patients undergoing carotid artery stenting in Asia. Sci Rep. 2016;6:25478.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Swar BD, Bendkhale SR, Rupawala A, Sridharan K, Gogtay NJ, Thatte UM, et al. Evaluation of cytochrome P450 2C9 activity in normal, healthy, adult Western Indian population by both phenotyping and genotyping. Indian J Pharmacol. 2016;48:248.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dagenais R, Wilby KJ, Elewa H, Ensom MH. Impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in the Middle East and North Africa Region. Drugs Rd. 2017;17:341–61.

    CAS  Google Scholar 

  81. Yagura H, Watanabe D, Kushida H, Tomishima K, Togami H, Hirano A, et al. Impact of UGT1A1 gene polymorphisms on plasma dolutegravir trough concentrations and neuropsychiatric adverse events in Japanese individuals infected with HIV-1. BMC Infect Dis. 2017;17:622.

    PubMed  PubMed Central  Google Scholar 

  82. Park S, Hyun YJ, Kim YR, Lee JH, Ryu S, Kim JM, et al. Effects of CYP2C19 genetic polymorphisms on PK/PD responses of omeprazole in korean healthy volunteers. J Korean Med Sci. 2017;32:729–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu HF, Hristeva N, Chang J, Liang X, Li R, Frassetto L, et al. Rosuvastatin pharmacokinetics in Asian and white subjects wild type for both OATP1B1 and BCRP under control and inhibited conditions. J Pharm Sci. 2017;106:2751–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jung E, Ryu S, Park Z, Lee JG, Yi JY, Seo DW, et al. Influence of CYP2D6 polymorphism on the pharmacokinetic/pharmacodynamic characteristics of carvedilol in Healthy Korean volunteers. J Korean Med Sci. 2018;33.

  85. Liu H, Wang Z, Bao F, Wang C, Sun L, Zhang H, et al. Evaluation of prospective LA-B* 13: 01 screening to prevent dapsone hypersensitivity syndrome in patients with leprosy. JAMA Dermatol. 2019;155:666–72.

    Google Scholar 

  86. Ullah S, Ali N, Khan A, Ali S, Nazish HR, Uddin Z. Epilepsy control with carbamazepine monotherapy from a genetic perspective. BMC Pharmacol Toxicol. 2018;19:1–10.

    Google Scholar 

  87. Wang CC, Tejwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL, et al. Development of near zero-order release dosage forms using three-dimensional printing (3-DP™) technology. Drug Dev Ind Pharm. 2006;32:367–76.

    CAS  PubMed  Google Scholar 

  88. Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96:2446–56.

    CAS  PubMed  Google Scholar 

  89. Yu DG, Branford-White C, Ma ZH, Zhu LM, Li XY, Yang XL. Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm. 2009;370:160–6.

    CAS  PubMed  Google Scholar 

  90. Yu DG, Branford-White C, Yang YC, Zhu LM, Welbeck EW, Yang XL. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35:1530–6.

    CAS  PubMed  Google Scholar 

  91. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2013;494:643–50.

    Google Scholar 

  92. Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476:88–92.

    CAS  PubMed  Google Scholar 

  93. Jules J, Norman C, Thomas GW, Donald CM, Henry L, Surprenant et al. Rapid Disperse Dosage Form Containing Levetiracetam 2014.

  94. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7.

    CAS  PubMed  Google Scholar 

  95. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461:105–11.

    CAS  PubMed  Google Scholar 

  96. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Contro Rel. 2015;217:308–14.

    CAS  Google Scholar 

  97. Goyanes BuanzAB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    CAS  PubMed  Google Scholar 

  98. Goyanes A, Martinez PR, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494:657–63.

    CAS  PubMed  Google Scholar 

  99. Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol. 2015;30:360–7.

    CAS  Google Scholar 

  100. Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12:4077–84.

    CAS  PubMed  Google Scholar 

  101. Öblom H, Zhang J, Pimparade M, Speer I, Preis M, Repka M, et al. 3D-printed isoniazid tablets for the treatment and prevention of tuberculosis—personalized dosing and drug release. Am Assoc Pharm Sci Pharm Sci Tech. 2019;20:52.

    Google Scholar 

  102. Prapaitrakul W, Sprockel OL, Shivanand P. Release of chlorpheniramine maleate from fatty acid ester matrix disks prepared by meltextrusion. J Pharm Pharm. 1991;43:377–81.

    CAS  Google Scholar 

  103. Aitken-Nichol C, Zhang F, McGinity JW. Hot melt extrusion of acrylic films. Pharm Res. 1996;13:804–8.

    CAS  PubMed  Google Scholar 

  104. McGinity J, Zhang F. World Patent No. 9749384. PCT International Application. 1997

  105. Sprockel OL, Sen M, Shivanand P, Prapaitrakul W. A melt-extrusion process for manufacturing matrix drug delivery systems. Int J Pharm. 1997;155:191–9.

    CAS  Google Scholar 

  106. Bhardwaj R, Blanchard J. In vitro evaluation of poly (d, l-lactide-co-glycolide) polymer-based implants containing the α-melanocyte stimulating hormone analog, Melanotan-I. J Control Rel. 1997;45:49–55.

    CAS  Google Scholar 

  107. Bhardwaj R, Blanchard J. In vitro characterization and in vivo release profile of a poly (d, l-lactide-co-glycolide)-based implant delivery system for the α-MSH analog, melanotan-I. Int J Pharm. 1998;170:109–17.

    CAS  Google Scholar 

  108. Repka MA, Gerding TG, Repka SL, McGinity JW. Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm. 1999;25:625–33.

    CAS  PubMed  Google Scholar 

  109. Repka MA, McGinity JW. Influence of vitamin E TPGS on the properties of hydrophilic films produced by hot-melt extrusion. Int J Pharm. 2002;202:63–70.

    Google Scholar 

  110. Repka MA, McGinity JW. Physical-mechanical, moisture absorption and bioadhesive properties of hydroxypropylcellulose hot-melt extruded films. Biomaterials. 2000;21:1509–17.

    CAS  PubMed  Google Scholar 

  111. Rothen-Weinhold A, Oudry N, Schwach-Abdellaoui K, Frutiger-Hughes S, Hughes GJ, Jeannerat D, et al. Formation of peptide impurities in polyester matrices during implant manufacturing. Eur J Pharm Biopharm. 2000;49:253–7.

    CAS  PubMed  Google Scholar 

  112. Nakamichi K, Yasuura H, Fukui H, Oka M, Izumi S. Evaluation of a floating dosage form of nicardipine hydrochloride and hydroxypropylmethylcellulose acetate succinate prepared using a twin-screw extruder. Int J Pharm. 2001;218:103–12.

    CAS  PubMed  Google Scholar 

  113. Crowley MM, Zhang F, Koleng JJ, McGinity JW. Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials. 2002;23:4241–8.

    CAS  PubMed  Google Scholar 

  114. Van Laarhoven JV, Kruft MA, Vromans H. In vitro release properties of etonogestrel and ethinylestradiol from a contraceptive vaginal ring. Int J Pharm. 2002;232:163–73.

    PubMed  Google Scholar 

  115. Repka MA, Prodduturi S, Stodghill SP. Production and characterization of hot-melt extruded films containing clotrimazole. Drug Dev Ind Pharm. 2003;29:757–65.

    CAS  PubMed  Google Scholar 

  116. Prodduturi S, Manek RV, Kolling WM, Stodghill SP, Repka MA. Water vapor sorption of hot melt extruded hydroxypropyl cellulose films: Effect on physicomechanical properties, release characteristics, and stability. J Pharm Sci. 2004;93:3047–56.

    CAS  PubMed  Google Scholar 

  117. Prodduturi S, Manek RV, Kolling WM, Stodghill SP, Repka MA. Solid-state stability and characterization of hot-melt extruded poly (ethylene oxide) films. J Pharm Sci. 2005;94:2232–45.

    CAS  PubMed  Google Scholar 

  118. Zheng W, Cerea M, Sauer D, McGinity JW. Properties of theophylline tablets powder-coated with methacrylate ester copolymers. J Drug Deliv Sci Technol. 2004;14:319–25.

    Google Scholar 

  119. Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm. 2004;269:509–22.

    CAS  PubMed  Google Scholar 

  120. Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW. Influence of a lipophilic thermal lubricant on the processing conditions and drug release properties of chlorpheniramine maleate tablets prepared by hot-melt extrusion. J Drug Deliv Sci Technol. 2004;14:313–8.

    CAS  Google Scholar 

  121. Crowley MM, Fredersdorf A, Schroeder B, Ucera S, Prodduturi S, Repka MA. The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films. Eur J Pharm Sci 2004;22:409–18.

    CAS  PubMed  Google Scholar 

  122. Repka MA, Mididoddi PK, Stodghill SP. Influence of human nail etching for the assessment of topical onychomycosis therapies. Int J Pharm. 2004;282:95–106.

    CAS  PubMed  Google Scholar 

  123. Bruce LD, Shah NH, Malick AW, Infeld MH, McGinity JW. Properties of hot-melt extruded tablet formulations for the colonic delivery of 5-aminosalicylic acid. Eur J Pharm Biopharm. 2005;59:85–97.

    CAS  PubMed  Google Scholar 

  124. Mehuys E, Remon JP, Vervaet C. Production of enteric capsules by means of hot-melt extrusion. Eur J Pharm Sci. 2005;24:207–12.

    CAS  PubMed  Google Scholar 

  125. Young CR, Dietzsch C, Cerea M, Farrell T, Fegely KA, Rajabi-Siahboomi A, et al. Physicochemical characterization and mechanisms of release of theophylline from melt-extruded dosage forms based on a methacrylic acid copolymer. Int J Pharm. 2005;301:112–20.

    CAS  PubMed  Google Scholar 

  126. Fukuda M, Peppas NA, McGinity JW. Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J Control Rel. 2006;115:121–9.

    CAS  Google Scholar 

  127. Fukuda M, Peppas NA, McGinity JW. Properties of sustained release hot-melt extruded tablets containing chitosan and xanthan gum. Int J Pharm. 2006;310:90–100.

    CAS  PubMed  Google Scholar 

  128. Repka MA, Munjal M, ElSohly MA, Ross SA. Temperature stability and bioadhesive properties of Δ9-tetrahydrocannabinol incorporated hydroxypropylcellulose polymer matrix systems. Drug Dev Ind Pharm. 2006;32:21–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Munjal M, ElSohly MA, Repka MA. Polymeric systems for amorphous Δ9-tetrahydrocannabinol produced by a hot-melt method. Part II: effect of oxidation mechanisms and chemical interactions on stability. J Pharm Sci. 2006;95:2473–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mididoddi PK, Prodduturi S, Repka MA. Influence of tartaric acid on the bioadhesion and mechanical properties of hot-melt extruded hydroxypropyl cellulose films for the human nail. Drug Dev Ind Pharm. 2006;32:1059–66.

    CAS  PubMed  Google Scholar 

  131. Jaiswar DR, Pawar JN, Amin PD. Hot melt extrusion: continuous process of preparation of sustained released matrix tablet by using hydroxypropylcellulose. Am J Pharm Tech Res. 2015;6:295–312.

    Google Scholar 

  132. Alshetaili AS, Almutairy BK, Tiwari RV, Morott JT, Alshehri SM, Feng X, et al. Preparation and evaluation of hot-melt extruded patient-centric ketoprofen mini-tablets. Curr Drug Deliv. 2016;13:730–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Park JB, Lee BJ, Kang CY, Tiwari RV, Repka MA. Process analytical quality control of tailored drug release formulation prepared via hot-melt extrusion technology. J Drug Deliv Sci Technol. 2017;38:51–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Alsulays BB, Kulkarni V, Alshehri SM, Almutairy BK, Ashour EA, Morott JT, et al. Preparation and evaluation of enteric coated tablets of hot-melt extruded lansoprazole. Drug Dev Ind Pharm. 2017;43:789–96.

    CAS  PubMed  Google Scholar 

  135. Emara LH, Abdelfattah FM, Taha NF. Hot melt extrusion method for preparation of ibuprofen/sucroester WE15 solid dispersions: evaluation and stability assessment. J Appl Pharm Sci. 2017;7:156–67.

    CAS  Google Scholar 

  136. Ponnammal P, Kanaujia P, Yani Y, Ng WK, Reginald BH. Orally disintegrating tablets containing melt extruded amorphous solid dispersion of Tacrolimus for dissolution enhancement. Pharmaceutics. 2018;10:1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arun Radhakrishnan or Gowthamarajan Kuppusamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, A., Kuppusamy, G., Ponnusankar, S. et al. Pharmacogenomic phase transition from personalized medicine to patient-centric customized delivery. Pharmacogenomics J 20, 1–18 (2020). https://doi.org/10.1038/s41397-019-0135-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0135-8

This article is cited by

Search

Quick links