Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic variation of cisplatin-induced ototoxicity in non-cranial-irradiated pediatric patients using a candidate gene approach: The International PanCareLIFE Study

Abstract

Ototoxicity is a common side effect of platinum treatment and manifests as irreversible, high-frequency sensorineural hearing loss. Genetic association studies have suggested a role for SNPs in genes related to the disposition of cisplatin or deafness. In this study, 429 pediatric patients that were treated with cisplatin were genotyped for 10 candidate SNPs. Logistic regression analyses revealed that younger age at treatment (≤5 years vs >15 years: OR: 9.1; 95% CI: 3.8–21.5; P = 5.6 × 10−7) and higher cumulative dose of cisplatin (>450 vs ≤300 mg/m2: OR: 2.4; 95% CI: 1.3–4.6; P = 0.007) confer a significant risk of ototoxicity. Of the SNPs investigated, none of them were significantly associated with an increase of ototoxicity. In the meta-analysis, ACYP2 rs1872328 (OR: 3.94; 95% CI: 1.04–14.03; P = 0.04) and SLC22A2 rs316019 (OR: 1.46; 95% CI: 1.07–2.00; P = 0.02) were associated with ototoxicity. In order to increase the understanding of the association between SNPs and ototoxicity, we propose a polygenic model, which takes into account multiple interacting genes of the cisplatin pathway that together confer an increased risk of ototoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brock PR, Bellman SC, Yeomans EC, Pinkerton CR, Pritchard J. Cisplatin ototoxicity in children: a practical grading system. Med Pediatr Oncol. 1991;19:295–300.

    Article  CAS  Google Scholar 

  2. Knight KR, Kraemer DF, Winter C, Neuwelt EA. Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J Clin Oncol. 2007;25:1190–5.

    Article  CAS  Google Scholar 

  3. Stohr W, Langer T, Kremers A, Bielack S, Lamprecht-Dinnesen A, Frey E, et al. Cisplatin-induced ototoxicity in osteosarcoma patients: a report from the late effects surveillance system. Cancer Invest. 2005;23:201–7.

    Article  CAS  Google Scholar 

  4. Bertolini P, Lassalle M, Mercier G, Raquin MA, Izzi G, Corradini N, et al. Platinum compound-related ototoxicity in children: long-term follow-up reveals continuous worsening of hearing loss. J Pediatr Hematol Oncol. 2004;26:649–55.

    Article  Google Scholar 

  5. Dean JB, Hayashi SS, Albert CM, King AA, Karzon R, Hayashi RJ. Hearing loss in pediatric oncology patients receiving carboplatin-containing regimens. J Pediatr Hematol Oncol. 2008;30:130–4.

    Article  CAS  Google Scholar 

  6. Grewal S, Merchant T, Reymond R, McInerney M, Hodge C, Shearer P. Auditory late effects of childhood cancer therapy: a report from the Children’s Oncology Group. Pediatrics. 2010;125:e938–50.

    Article  Google Scholar 

  7. Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23:8588–96.

    Article  Google Scholar 

  8. Clemens E, de Vries AC, Pluijm SF, Am Zehnhoff-Dinnesen A, Tissing WJ, Loonen JJ, et al. Determinants of ototoxicity in 451 platinum-treated Dutch survivors of childhood cancer: a DCOG late-effects study. Eur J Cancer. 2016;69:77–85.

    Article  CAS  Google Scholar 

  9. Li Y, Womer RB, Silber JH. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur J Cancer. 2004;40:2445–51.

    Article  CAS  Google Scholar 

  10. Chang KW, Chinosornvatana N. Practical grading system for evaluating cisplatin ototoxicity in children. J Clin Oncol. 2010;28:1788–95.

    Article  CAS  Google Scholar 

  11. Lewis MJ, DuBois SG, Fligor B, Li X, Goorin A, Grier HE. Ototoxicity in children treated for osteosarcoma. Pediatr Blood Cancer. 2009;52:387–91.

    Article  Google Scholar 

  12. Pan CC, Eisbruch A, Lee JS, Snorrason RM, Ten Haken RK, Kileny PR. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys. 2005;61:1393–402.

    Article  Google Scholar 

  13. Warrier R, Chauhan A, Davluri M, Tedesco SL, Nadell J, Craver R. Cisplatin and cranial irradiation-related hearing loss in children. Ochsner J. 2012;12:191–6.

    PubMed  PubMed Central  Google Scholar 

  14. Clemens E, van der Kooi ALF, Broer L, van Dulmen-den Broeder E, Visscher H, Kremer L, et al. The influence of genetic variation on late toxicities in childhood cancer survivors: a review. Crit Rev Oncol Hematol. 2018;126:154–67.

    Article  CAS  Google Scholar 

  15. Lanvers-Kaminsky C, Sprowl JA, Malath I, Deuster D, Eveslage M, Schlatter E, et al. Human OCT2 variant c.808G>T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics. 2015;16:323–32.

    Article  CAS  Google Scholar 

  16. Ross CJ, Katzov-Eckert H, Dube MP, Brooks B, Rassekh SR, Barhdadi A, et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet. 2009;41:1345–9.

    Article  CAS  Google Scholar 

  17. Pussegoda K, Ross CJ, Visscher H, Yazdanpanah M, Brooks B, Rassekh SR, et al. Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin Pharm Ther. 2013;94:243–51.

    Article  CAS  Google Scholar 

  18. Yang JJ, Lim JY, Huang J, Bass J, Wu J, Wang C, et al. The role of inherited TPMT and COMT genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin Pharm Ther. 2013;94:252–9.

    Article  CAS  Google Scholar 

  19. Hagleitner MM, Coenen MJ, Patino-Garcia A, de Bont ES, Gonzalez-Neira A, Vos HI, et al. Influence of genetic variants in TPMT and COMT associated with cisplatin induced hearing loss in patients with cancer: two new cohorts and a meta-analysis reveal significant heterogeneity between cohorts. PLoS One. 2014;9:e115869.

    Article  Google Scholar 

  20. Riedemann L, Lanvers C, Deuster D, Peters U, Boos J, Jurgens H, et al. Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Pharmacogenomics J. 2008;8:23–8.

    Article  CAS  Google Scholar 

  21. Choeyprasert W, Sawangpanich R, Lertsukprasert K, Udomsubpayakul U, Songdej D, Unurathapan U, et al. Cisplatin-induced ototoxicity in pediatric solid tumors: the role of glutathione S-transferases and megalin genetic polymorphisms. J Pediatr Hematol Oncol. 2013;35:e138–43.

    Article  CAS  Google Scholar 

  22. Vos HI, Guchelaar HJ, Gelderblom H, de Bont ES, Kremer LC, Naber AM, et al. Replication of a genetic variant in ACYP2 associated with cisplatin-induced hearing loss in patients with osteosarcoma. Pharmacogenet Genomics. 2016;26:243–7.

    Article  CAS  Google Scholar 

  23. Xu H, Robinson GW, Huang J, Lim JY, Zhang H, Bass JK, et al. Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat Genet. 2015;47:263–6.

    Article  CAS  Google Scholar 

  24. Brown AL, Lupo PJ, Okcu MF, Lau CC, Rednam S, Scheurer ME. SOD2 genetic variant associated with treatment-related ototoxicity in cisplatin-treated pediatric medulloblastoma. Cancer Med. 2015;4:1679–86.

    Article  CAS  Google Scholar 

  25. Rednam S, Scheurer ME, Adesina A, Lau CC, Okcu MF. Glutathione S-transferase P1 single nucleotide polymorphism predicts permanent ototoxicity in children with medulloblastoma. Pediatr Blood. Cancer 2013;60:593–8.

    Article  CAS  Google Scholar 

  26. Drogemoller BI, Monzon JG, Bhavsar AP, Borrie AE, Brooks B, Wright GEB, et al. Association between SLC16A5 genetic variation and cisplatin-induced ototoxic effects in adult patients with testicular cancer. JAMA Oncol. 2017:3:1558–62.

  27. Drogemoller BI, Brooks B, Critchley C, Monzon JG, Wright GEB, Liu G, et al. Further investigation of the role of ACYP2 and WFS1 pharmacogenomic variants in the development of cisplatin-induced ototoxicity in testicular cancer patients. Clin Cancer Res. 2018;24:1866–71.

    Article  CAS  Google Scholar 

  28. Spracklen TF, Whitehorn H, Vorster AA, Ramma L, Dalvie S, Ramesar RS. Genetic variation in Otos is associated with cisplatin-induced ototoxicity. Pharmacogenomics. 2014;15:1667–76.

    Article  CAS  Google Scholar 

  29. Spracklen TF, Vorster AA, Ramma L, Dalvie S, Ramesar RS. Promoter region variation in NFE2L2 influences susceptibility to ototoxicity in patients exposed to high cumulative doses of cisplatin. Pharmacogenomics J. 2017;17:515–20.

  30. Thiesen S, Yin P, Jorgensen AL, Zhang JE, Manzo V, McEvoy L, et al. TPMT, COMT and ACYP2 genetic variants in paediatric cancer patients with cisplatin-induced ototoxicity. Pharmacogenet Genomics. 2017;27:213–22.

    Article  CAS  Google Scholar 

  31. Clemens E, Meijer AJM, Broer L, Langer T, van der Kooi ALF, Uitterlinden AG, et al. Genetic determinants of ototoxicity during and after childhood cancer treatment: design of PanCareLIFE studies. JMIR Res Protoc. 2019;8:e11868.

  32. Schmidt CM, Bartholomaus E, Deuster D, Heinecke A, Dinnesen AG. The “Muenster classification” of high frequency hearing loss following cisplatin chemotherapy. Hno. 2007;55:299–306.

    Article  Google Scholar 

  33. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.

    Article  CAS  Google Scholar 

  34. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    Article  CAS  Google Scholar 

  35. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  Google Scholar 

  36. Althuis MD, Weed DL, Frankenfeld CL. Evidence-based mapping of design heterogeneity prior to meta-analysis: a systematic review and evidence synthesis. Syst Rev. 2014;3:80.

    Article  Google Scholar 

  37. Liberman PHP, Goffi-Gomez MVS, Schultz C, Jacob PL, de Paula CAA, Sartorato EL, et al. Contribution of the GSTP1 c.313A>G variant to hearing loss risk in patients exposed to platin chemotherapy during childhood. Clin Transl Oncol. 2019;21:630–5.

  38. Olgun Y, Aktas S, Altun Z, Kirkim G, Kizmazoglu DC, Ercetin AP, et al. Analysis of genetic and non genetic risk factors for cisplatin ototoxicity in pediatric patients. Int J Pediatr Otorhinolaryngol. 2016;90:64–9.

    Article  Google Scholar 

  39. Palmer C, Pe’er I. Statistical correction of the Winner’s Curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 2017;13:e1006916.

    Article  Google Scholar 

  40. Degl’Innocenti D, Marzocchini R, Rosati F, Cellini E, Raugei G, Ramponi G. Acylphosphatase expression during macrophage differentiation and activation of U-937 cell line. Biochimie. 1999;81:1031–5.

    Article  Google Scholar 

  41. Zolk O, Solbach TF, Konig J, Fromm MF. Functional characterization of the human organic cation transporter 2 variant p.270Ala>Ser. Drug Metab Dispos. 2009;37:1312–8.

    Article  CAS  Google Scholar 

  42. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176:1169–80.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the PanCareLIFE project that has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 602030. AdV received funding from the Pediatric Oncology Center Society for Research (KOCR), Rotterdam, the Netherlands. JFW received supplementary funding from the Danish Childhood Cancer Foundation and Soroptimist International Helsingør, Denmark. CEK was funded by the Swiss Cancer Research (grant no.: 4157-02-2017), the Swiss Cancer League (grant no.: 3412-02-2014), the Bernese Cancer League and the Lung League Bern.

On behalf of the PanCareLIFE consortium

P. Kaatsch22, D. Grabow22, J. Byrne23, H. Campbell23, K. O’Brien24, L. C. M. Kremer25, T. Langer26, E. van Dulmen-den Broeder27, M. H. van den Berg27, M. M. van den Heuvel-Eibrink28, A. Borgmann-Staudt29, A. am Zehnhoff-Dinnesen30, C. E. Kuehni31, R. Haupt32, T. Kepak33, C. Berger34, J. F. Winther35, J. Kruseova36, G. Calaminus37, K. Baust37, U. Dirksen38

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Eva Clemens.

Ethics declarations

Conflict of interest

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the paper. The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the PanCareLIFE consortium are listed at the end of the paper

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemens, E., Broer, L., Langer, T. et al. Genetic variation of cisplatin-induced ototoxicity in non-cranial-irradiated pediatric patients using a candidate gene approach: The International PanCareLIFE Study. Pharmacogenomics J 20, 294–305 (2020). https://doi.org/10.1038/s41397-019-0113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0113-1

This article is cited by

Search

Quick links