Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Influence of CYP2B6 activity score on the pharmacokinetics and safety of single dose efavirenz in healthy volunteers


Efavirenz is a non-nucleoside reverse transcriptase inhibitor used as first-line therapy for the treatment of HIV infection. Cytochrome P450 (CYP) CYP2B6 G516T (rs3745274) is a well-known predictor of efavirenz disposition. Dose adjustment based on G516T variant has been shown to be beneficial. However, this variant cannot explain the entire variability of efavirenz pharmacokinetics. In this study, we evaluated the influence of 11 single-nucleotide polymorphisms (SNPs) in CYP2B6, CYP2A6, CYP3A and ABCB1 (ATP-binding cassette sub-family B member 1) on the pharmacokinetics and safety of efavirenz after single oral dose administration to 47 healthy volunteers. We designed and validated a CYP2B6 activity score model based on two CYP2B6 SNPs (G516T and rs4803419) that predicted efavirenz disposition better than G516T alone.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1


  1. 1.

    Duarte H, Cruz JP, Aniceto N, Ribeiro AC, Fernandes A, Paixão P, et al. Population approach to efavirenz therapy. J Pharm Sci. 2017;106:3161–6.

    CAS  Article  Google Scholar 

  2. 2.

    Siberry GK, Abzug MJ, Nachman S, Brady MT, Dominguez KL, Handelsman E, et al. Guidelines for the Prevention and Treatment of Opportunistic Infections in HIV-Exposed and HIV-Infected Children: Recommendations from the National Institutes of Health, Centers for Disease Control and Prevention, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. Pediatr Infect Dis J. 2013;32:i.

    Article  Google Scholar 

  3. 3.

    FDA. Efavirenz 600mg. FDA.

  4. 4.

    Ogburn ET, Jones DR, Masters AR, Xu C, Guo Y, Desta Z. Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab Dispos. 2010;38:1218–29.

    CAS  Article  Google Scholar 

  5. 5.

    Ngaimisi E, Mugusi S, Minzi OM, Sasi P, Riedel K-D, Suda A, et al. Long-term efavirenz autoinduction and its effect on plasma exposure in HIV patients. Clin Pharm Ther. 2010;88:676–84.

    CAS  Article  Google Scholar 

  6. 6.

    Bienczak A, Cook A, Wiesner L, Olagunju A, Mulenga V, Kityo C, et al. The impact of genetic polymorphisms on the pharmacokinetics of efavirenz in African children: efavirenz pharmacogenomics in African children. Br J Clin Pharmacol. 2016;82:185–98.

    CAS  Article  Google Scholar 

  7. 7.

    Sinxadi PZ, Leger PD, McIlleron HM, Smith PJ, Dave JA, Levitt NS, et al. Pharmacogenetics of plasma efavirenz exposure in HIV-infected adults and children in South Africa. Br J Clin Pharmacol. 2015;80:146–56.

    CAS  Article  Google Scholar 

  8. 8.

    Desta Z, Gammal RS, Gong L, Whirl‐Carrillo M, Gaur AH, Sukasem C, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz‐Containing Antiretroviral Therapy. Clin Pharm Ther. 2019;106:726–33.

    Article  Google Scholar 

  9. 9.

    Dobrinas M, Crettol S, Oneda B, Lahyani R, Rotger M, Choong E, et al. Contribution of CYP2B6 alleles in explaining extreme (S)-methadone plasma levels: a CYP2B6 gene resequencing study. Pharmacogenet Genom. 2013;23:84–93.

    CAS  Article  Google Scholar 

  10. 10.

    Pitarque M, von Richter O, Oke B, Berkkan H, Oscarson M, Ingelman-Sundberg M. Identification of a single nucleotide polymorphism in the TATA box of the CYP2A6 gene: impairment of its promoter activity. Biochem Biophys Res Commun. 2001;284:455–60.

    CAS  Article  Google Scholar 

  11. 11.

    Csajka C. Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharm Ther. 2003;73:20–30.

    CAS  Article  Google Scholar 

  12. 12.

    Csajka C, Marzolini C, Fattinger K, Décosterd LA, Fellay J, Telenti A, et al. Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharm Ther. 2003;73:20–30.

    CAS  Article  Google Scholar 

  13. 13.

    Apostolova N, Blas-Garcia A, Galindo MJ, Esplugues JV. Efavirenz: what is known about the cellular mechanisms responsible for its adverse effects. Eur J Pharmacol. 2017;812:163–73.

    CAS  Article  Google Scholar 

  14. 14.

    Lam TN, Hui KH, Chan DPC, Lee SS. Genotype-guided dose adjustment for the use of efavirenz in HIV treatment. J Infect. 2015;71:607–9.

    Article  Google Scholar 

  15. 15.

    Caro-Vega Y, Belaunzarán-Zamudio PF, Crabtree-Ramírez BE, Shepherd BE, Grinsztejn B, Wolff M, et al. Durability of efavirenz compared with boosted protease inhibitor-based regimens in antiretroviral-naïve patients in the Caribbean and Central and South America. Open Forum Infect Dis. 2018;5:ofy004.

    Article  Google Scholar 

  16. 16.

    The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68.

    Article  Google Scholar 

  17. 17.

    Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C, et al. Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br J Clin Pharmacol. 2006;61:148–54.

    CAS  Article  Google Scholar 

  18. 18.

    Ofotokun I, Chuck SK, Hitti JE. Antiretroviral pharmacokinetic profile: a review of sex differences. Gend Med. 2007;4:106–19.

    Article  Google Scholar 

  19. 19.

    Gatanaga H, Hayashida T, Tsuchiya K, Yoshino M, Kuwahara T, Tsukada H, et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis. 2007;45:1230–7.

    CAS  Article  Google Scholar 

  20. 20.

    Sinxadi PZ, Leger PD, McIlleron HM, Smith PJ, Dave JA, Levitt NS, et al. Pharmacogenetics of plasma efavirenz exposure in HIV-infected adults and children in South Africa: Efavirenz pharmacokinetics in Cape Town. Br J Clin Pharmacol. 2015;80:146–56.

    CAS  Article  Google Scholar 

  21. 21.

    Haas DW, Smeaton LM, Shafer RW, Robbins GK, Morse GD, Labbé L, et al. Pharmacogenetics of long‐term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult AIDS Clinical Trials Group Study. J Infect Dis. 2005;192:1931–42.

    CAS  Article  Google Scholar 

  22. 22.

    Wyen C, Hendra H, Vogel M, Hoffmann C, Knechten H, Brockmeyer NH, et al. Impact of CYP2B6 983T > C polymorphism on non-nucleoside reverse transcriptase inhibitor plasma concentrations in HIV-infected patients. J Antimicrob Chemother. 2008;61:914–8.

    CAS  Article  Google Scholar 

  23. 23.

    Manosuthi W, Sukasem C, Lueangniyomkul A, Mankatitham W, Thongyen S, Nilkamhang S, et al. Impact of pharmacogenetic markers of CYP2B6, clinical factors, and drug-drug interaction on efavirenz concentrations in HIV/tuberculosis-coinfected patients. Antimicrob Agents Chemother. 2013;57:1019–24.

    CAS  Article  Google Scholar 

  24. 24.

    Ahmad T, Sabet S, Primerano DA, Richards-Waugh LL, Rankin GO. Tell-tale SNPs: the role of CYP2B6 in methadone fatalities. J Anal Toxicol. 2017;41:325–33.

    CAS  Article  Google Scholar 

  25. 25.

    ENCORE1 Study Group, Carey D, Puls R, Amin J, Losso M, Phanupak P, Foulkes S, et al. Efficacy and safety of efavirenz 400mg daily versus 600 mg daily: 96-week data from the randomised, double-blind, placebo-controlled, non-inferiority ENCORE1 study. Lancet Infect Dis. 2015;15:793–802.

  26. 26.

    di Iulio J, Fayet A, Arab-Alameddine M, Rotger M, Lubomirov R, Cavassini M, et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genom. 2009;19:300–9.

    Article  Google Scholar 

  27. 27.

    Swart M, Evans J, Skelton M, Castel S, Wiesner L, Smith PJ, et al. An expanded analysis of pharmacogenetics determinants of efavirenz response that includes 3’-UTR single nucleotide polymorphisms among Black South African HIV/AIDS patients. Front Genet. 2015;6:356.

    PubMed  Google Scholar 

  28. 28.

    Störmer E, von Moltke LL, Perloff MD, Greenblatt DJ. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res. 2002;19:1038–45.

    Article  Google Scholar 

  29. 29.

    Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007;73:1573–81.

    CAS  Article  Google Scholar 

  30. 30.

    Janneh O, Chandler B, Hartkoorn R, Kwan WS, Jenkinson C, Evans S, et al. Intracellular accumulation of efavirenz and nevirapine is independent of P-glycoprotein activity in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother. 2009;64:1002–7.

    CAS  Article  Google Scholar 

  31. 31.

    Elens L, Vandercam B, Yombi J-C, Lison D, Wallemacq P, Haufroid V. Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients. Pharmacogenomics. 2010;11:1223–34.

    CAS  Article  Google Scholar 

  32. 32.

    Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A, et al. Comprehensive pharmacokinetic, pharmacodynamic and pharmacogenetic evaluation of once-daily efavirenz 400 and 600 mg in treatment-naïve HIV-infected patients at 96 weeks: results of the ENCORE1 Study. Clin Pharmacokinet. 2016;55:861–73.

    CAS  Article  Google Scholar 

  33. 33.

    Sánchez Martín A, Cabrera Figueroa S, Cruz Guerrero R, Hurtado LP, Hurlé AD-G, Carracedo Álvarez A. Impact of pharmacogenetics on CNS side effects related to efavirenz. Pharmacogenomics. 2013;14:1167–78.

    Article  Google Scholar 

  34. 34.

    Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS Lond Engl. 2004;18:2391–400.

    CAS  Google Scholar 

  35. 35.

    Nirogi R, Bhyrapuneni G, Kandikere V, Mudigonda K, Komarneni P, Aleti R, et al. Simultaneous quantification of a non-nucleoside reverse transcriptase inhibitor efavirenz, a nucleoside reverse transcriptase inhibitor emtricitabine and a nucleotide reverse transcriptase inhibitor tenofovir in plasma by liquid chromatography positive ion electrospray tandem mass spectrometry. Biomed Chromatogr. 2009;23:371–81.

    CAS  Article  Google Scholar 

  36. 36.

    Karch FE, Lasagna L. Toward the operational identification of adverse drug reactions. Clin Pharm Ther. 1977;21:247–54.

    CAS  Article  Google Scholar 

  37. 37.

    Apellániz-Ruiz M, Inglada-Pérez L, Naranjo MEG, Sánchez L, Mancikova V, Currás-Freixes M, et al. High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. Pharmacogenomics J. 2015;15:288–92.

    Article  Google Scholar 

  38. 38.

    Cusato J, Tomasello C, Simiele M, Calcagno A, Bonora S, Marinaro L, et al. Efavirenz pharmacogenetics in a cohort of Italian patients. Int J Antimicrob Agents 2016;47:117–23.

    CAS  Article  Google Scholar 

  39. 39.

    Wang D, Sadee W. CYP3A4 intronic SNPrs35599367 (CYP3A4*22) alters RNA splicing. Pharmacogenet Genomics. 2016;26:40–3.

    CAS  Article  Google Scholar 

  40. 40.

    Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11:773–9.

    CAS  Article  Google Scholar 

  41. 41.

    Singh AB, Bousman CA, Ng CH, Byron K, Berk M. ABCB1 polymorphism predicts escitalopram dose needed for remission in major depression. Transl Psychiatry. 2012;2:e198.

    CAS  Article  Google Scholar 

  42. 42.

    Gonzalez-Haba E, García MI, Cortejoso L, López-Lillo C, Barrueco N, García-Alfonso P, et al. ABCB1 gene polymorphisms are associated with adverse reactions in fluoropyrimidine-treated colorectal cancer patients. Pharmacogenomics. 2010;11:1715–23.

    CAS  Article  Google Scholar 

Download references


PZ is co-financed by Consejería de Educación, Juventud y Deporte from Comunidad de Madrid and European Social Fund.

Author information




PZ performed the genotyping tests. PZ, MS-R and FA-S wrote the manuscript. FA-S, DO, MR, GM and SM-V supervised and coordinated the clinical trials.

Corresponding author

Correspondence to Francisco Abad-Santos.

Ethics declarations

Conflict of interest

FA-S and DO have been consultant or investigator in clinical trials sponsored by the following pharmaceutical companies: Abbott, Alter, Chemo, Cinfa, FAES, Farmalíder, Ferrer, GlaxoSmithKline, Galenicum, Gilead, Janssen-Cilag, Kern, Normon, Novartis, Servier, Silverpharma, Teva and Zambon. The other authors declare that they have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zubiaur, P., Saiz-Rodríguez, M., Ochoa, D. et al. Influence of CYP2B6 activity score on the pharmacokinetics and safety of single dose efavirenz in healthy volunteers. Pharmacogenomics J 20, 235–245 (2020).

Download citation

Further reading


Quick links