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Abstract
Drug response variations amongst different individuals/populations are influenced by several factors including allele
frequency differences of single nucleotide polymorphisms (SNPs) that functionally affect drug-response genes. Here, we aim
to identify drugs that potentially exhibit population differences in response using SNP data mining and analytics. Ninety-one
pairwise-comparisons of >22,000,000 SNPs from the 1000 Genomes Project, across 14 different populations, were
performed to identify ‘population-differentiated’ SNPs (pdSNPs). Potentially-functional pdSNPs (pf-pdSNPs) were then
selected, mapped into genes, and integrated with drug–gene databases to identify ‘population-differentiated’ drugs enriched
with genes carrying pf-pdSNPs. 1191 clinically-approved drugs were found to be significantly enriched (Z > 2.58) with
genes carrying SNPs that were differentiated in one or more population-pair comparisons. Thirteen drugs were found to be
enriched with such differentiated genes across all 91 population-pairs. Notably, 82% of drugs, which were previously
reported in the literature to exhibit population differences in response were also found by this method to contain a significant
enrichment of population specific differentiated SNPs. Furthermore, drugs with genetic testing labels, or those suspected to
cause adverse reactions, contained a significantly larger number (P < 0.01) of population-pairs with enriched pf-pdSNPs
compared with those without these labels. This pioneering effort at harnessing big-data pharmacogenomics to identify
‘population differentiated’ drugs could help to facilitate data-driven decision-making for a more personalized medicine.

Introduction

Different individuals with the same disease respond differ-
ently to the same drug treatment, and some may experience
adverse drug reaction (ADR) [1]. According to the
2007–2009 US FDA Adverse Event Reporting System
(FAERS), there were 70,187 ADR cases. The Singapore
Health Science Authority (HSA), indicated that from 2007
to 2009 there were 8137 ADR cases in Singapore where
many of these drugs were imported from the United States.
ADR, the sixth major cause of death in the USA, is a
serious public health problem that can result in patient’s
discomfort, morbidity, and even mortality. ADR also incurs
a huge economic burden due to its related treatment and
hospitalization [2, 3]. Although individually tailored treat-
ment is highly desirable to avoid ADR [4, 5], it is not
always practical because of the high cost associated with
developing such personalized therapy, as well as unavail-
ability of complete information on the true existence of a
drug–gene interaction. As such, this has deterred many
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pharmaceutical companies from adopting this approach in
drug development [6].

Differences in drug response/ADR occurrence in differ-
ent ethnic/racial populations, also referred as ‘pharma-
coethnicity’, have been widely reported [7–9]. However,
currently, drugs or their dosages are often prescribed to
patients of different ethnicities without much consideration
to the differences in genetics between the different popu-
lations [9, 10]. Although the use of ethnicity/race as a step
toward a more personalized treatment has met with oppo-
sition and challenges [7], it is a useful proxy to facilitate
tailored drug treatment to specific groups of individuals
who share greater genetic similarity with each other than
with other population groups [11]. Differences in drug
response between the European and African/East Asians
populations are the most frequently reported, likely due to
drugs being primarily tested in the USA/Europe and mar-
keted in other regions [12, 13]. Several common drugs,
including abacavir [14], carbamazepine [15, 16], cyclos-
porine [17], 5-fluorouracil [18–21], tacrolimus [22, 23],
vincristine [24], and warfarin [25], have been reported to
show population differences in their responses [7].

Because environmental and genetic factors can influence
drug response or ADR occurence, elucidating the genetic
basis underlying these responses may help in enhancing
their prediction [6, 9, 26–31]. For instance, Renbarger et al.
showed that African Americans were not as susceptible to
vincristine related toxicities as that of Caucasians [24]. This
is consistent with the observation of major difference in the
CYP3A5*3 allele frequency between Caucasians and
African Americans. We hypothesize that genetic factors
play a significant role in determining population differences
in drug response. Furthermore, these differences are likely
caused by differences in allele frequencies of single
nucleotide polymorphisms (SNPs) that functionally affect
the expression or function of genes in the drug pathway.
With the advent of comprehensive genomic and drug–gene
knowledge databases, as well as ‘big data’ analytics, we can
capitalize on these genetic differences to develop tools to
decode important population differentiation patterns that are
linked to drug response. Although its application in other
fields are emerging, a big-data approach is less explored in
pharmacogenomics due to several challenges including its
requirement for a multidisciplinary approach and complex
data integration and interpretation [32, 33].

This study aims to employ big-data pharmacogenomics
to decode important population differentiation patterns in
human genes linked to drug response. New insights gleaned
from this study can facilitate the selection of candidate
potentially functional, population-differentiated SNPs
(pf-pdSNPs), and genes in drug response and guide future
decision making concerning drug treatment options for
specific ethnic populations.

Materials and methods

Overview of PGx analytics method

To facilitate the identification of drugs that are predicted to
exhibit significant population differences in response between
a pair of population examined, we employed a novel ‘PGx
analytics’ method as detailed in Fig. 1. The approach involves
evaluating each SNP based on two properties: (1) whether the
allele frequency of the SNP in one population is significantly
different from the frequency in another population and (2)
whether the SNP is predicted to be potentially functional
affecting either gene/protein expression or activity. SNPs that
fulfill either the first criteria alone pdSNP, or both criteria pf-
pdSNPs were mapped to their corresponding genes. Genes
containing these pf-pdSNPs were then mapped to drug
pathways using publicly available drug–gene databases.
Multiple random samplings-based statistical analyses were
subsequently performed to identify drugs that have an enri-
ched representation of genes carrying pf-pdSNPs. This
approach was then evaluated for concordance with literature
reported real-world occurrences of population difference in
drug response. In addition, the relationship between drugs
enriched with genes carrying pf-pdSNPs and PGx warning
labels or adverse reaction reports was investigated to provide
further evidence of the utility of this method.

Identification of potentially functional, population
differentiated SNPs

A big-data approach was employed to identify drugs enriched
with genes carrying pfSNPs that exhibit significant population
differentiation (Fig. 1). SNPs with significant population
differentiation were identified using data from the 1000
Genomes Project comprising a total of 1029 unrelated indi-
viduals representing 14 different populations, including 59
ASW (African ancestries from Southwest United States); 79
LWK (Luhya individuals in Kenya); 86 YRI (Yoruba indi-
viduals in Nigeria); 97 CHB (Han Chinese in Beijing); 100
CHS (Han individuals in Southern China); 89 JPT (Japanese
individuals in Tokyo); 60 CLM (Columbian in Medellin); 58
MXL (Mexicans in Los Angeles USA); 55 PUR (Puerto
Rican in Puerto Rico); 54 CEU (Northern and Western Eur-
opean ancestries in Utah USA); 93 FIN (Finish in Finland);
87 GBR (British in England and Scotland); 98 TSI (Toscani
in Italy); and 14 IBS (Iberian in Spain) [34].

To identify SNPs which are associated with significant
population variations, allele frequencies of SNPs data-mined
from the 1000 Genomes Project [34] were calculated using
VCF tools (version 0.1.9). Pairwise FST statistics [35, 36]
were computed in the ‘R’ environment for each SNP with
each of the 14 population-pair comparisons, resulting in 91
different population-pair FST scores for each SNP. pd using
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pairwise FST was determined on 71.56% (22,866,661) of the
total SNPs from the 1000 Genomes Project but was not
computed for the other 28.44% of SNPs as some SNPs were
only observed in a single population, while others had variant
call errors. The FST statistic is a measure of the proportion of
genetic variance found within a population relative to the
genetic variance found in both populations and is often
defined as: [37]

FST ¼ HT � HS

HT

For polymorphic biallelic markers where M is the mean
frequency of the more frequent allele across K subpopula-
tions, pk is the frequency of the allele in subpopulation k, nk
is the size of subpopulation k and N is the sum of sub-
population sizes:

HS ¼ 1� 1
N

XK

k¼1

nk½p2k þ 1� pkð Þ2�

and

HT ¼ 1� ½M2 þ 1�Mð Þ2�

In this study, as only pairwise comparisons were made, K
was set to 2. Between two populations, a SNP is regarded as
a population differentiated SNP or pdSNP if its FST score is
amongst the top 1% of all the FST scores in the respective
pairwise population comparison. This allowed us to extract
SNPs that are considered to be extremely population dif-
ferentiated between two populations by considering those
positioned at the top one percentile with respect to the FST

scores distribution.
SNPs were mapped to functional gene regions and

categorized based on their location according to the NCBI
dbSNP (build 137) [38]. In the coding region (i.e., exons),
amino acid-substituting SNPs are classified as nonsynon-
ymous (nsSNPs), whereas the silent or nonamino acid-
substituting SNPs are referred as synonymous (sSNPs). For
SNPs in noncoding regions, the following classifications
were applied: promoter for SNPs residing within 5.5 Kb
upstream of a gene transcription start site; intronic for SNPs
residing in introns; as well as 5′ UTR and 3′ UTR for SNPs
residing in the 5′ or 3′ terminal of mRNA untranslated
regions.

pdSNPs, which were predicted/evaluated to be poten-
tially functional were named potentially functional (pf)
population differentiated (pd) SNPs or pf-pdSNPs. The

pdGenes
N = 12,701 genes

pf-pdGenes
N= 7,124 genes

FDA Approved Drugs

• Real-world reported population 
differences in drug-response

• Drug PGx labels
• ADR reports (US FDA & SG HSA)

pdSNPs
N = 3,345,761 SNPs

pf-pdSNPs
N = 90,719 SNPs

Drug-gene association?

SNP extremely population 
differentiated?

SNP affect 
gene function?
• TF binding
• miRNA binding
• Splicing
• mRNA function
• Protein 3D
• …

If ≥1 pdSNPs If ≥1 pf-pdSNPs

FST Computation
N = 22,866,661 SNPs

91 population pairs

• Chembl
• CTD
• DrugBank
• PharmGKB

NO
N = 69 drugs

YES
N = 1,443 drugs

NO
N = 135 drugs
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N = 1,308 drugs

Enrichment 
Analysis

Drugs’ Population 
Differentiation Profile

Potentially Functional SNPs 

Literature Publication

Population Differentiated SNPs

Which population pairs predicted to show 
significant difference in drug response?

Drug-Gene 
databases

N = 1,512 drugs

1000 Genomes & dbSNP pfSNP database

Map to genes

Evaluation

Fig. 1 Big-data and deep analytics approach to identify drugs asso-
ciated with genes carrying SNPs that are differentiated between dif-
ferent populations. FST statistics were determined for all SNPs from
the 1000 Genome Project and dbSNP. SNPs with FST statistics in the
top 1% of all SNPs in each population pair comparison were regarded
as pdSNPs. pdSNPs were then queried against the pfSNP database
(http://pfs.nus.edu.sg/) to identify potentially functional pf-pdSNPs.
Genic pf-pdSNPs were then mapped to their corresponding genes and
genes containing at least one pf-pdSNPs were named pf-pdGene. Four

databases (CTD, Chembl, DrugBank, and PharmGKB) were employed
to identify genes associated with drugs/drug pathways. Multiple ran-
dom samplings-based statistical analyses was performed to identify
drugs that are enriched with pf-pdGenes (enrichment Z-score > 2.58).
The robustness of the algorithm was evaluated for its capability to
detect such enrichment in drugs previously reported with a real-world
population differences in response. We also determined if drugs with
pharmacogenetics (PGx) warning labels or adverse drug reaction
(ADR) reports are associated with population differentiation
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pfSNP (http://pfs.nus.edu.sg/) resource [39] developed by
our laboratory was employed to evaluate the potential
functionality of the pdSNPs (Supplementary Table 1).
pfSNPs are defined as SNPs, where a single nucleotide
change is predicted to either alter the expression, structure,
function, or activity of the associated gene/protein or their
isoform, or that reside within regions that are genetically
determined to be under natural selection forces. For coding
SNPs, we evaluated if they reside within important protein
domains/functional regions, potentially altering important
protein modification sites (e.g., phosphorylation sites) [40],
or are predicted to alter nonsense-mediated decay or exonic
splice enhancer/silencer sites [41, 42]. sSNPs within the
coding region were further evaluated for significant codon
usage bias as this may potentially influence translational
speed and structure/function of the protein [43, 44], while
nsSNPs were selected if they were predicted to be deleter-
ious [45–48].

For noncoding SNPs, those residing in the promoter/5′
UTR regions were evaluated to see if they alter transcription
factor binding sites, while those in 3′ UTR were selected if
they reside within 3′ UTR conserved regions [49], as they
may have functional consequences [50] or alter miRNA
binding sites [51–53]. Noncoding SNPs in introns were
selected if they alter splice sites [54] or intronic splice
regulatory elements [55]. The pd-SNPs and pf-pdSNPs
were then mapped on to genes in the following way.
A pdGene is a gene, which carries at least one pdSNP, while
a gene containing at least one pf-pdSNP is regarded as a pf-
pdGene. Supplementary Table 2 contains an explanation of
all the abbreviations used in the paper.

Enrichment analyses of pf-pdGenes in drug
pathways for identification of drugs with population
differentiated response

To identify drugs (pf-pdDrugs) enriched with genes carrying
pf-pdSNPs, we integrated four major literature-backed
drug–gene databases (PharmGKB [56], Chembl [57], Com-
parative Toxicogenomics Database (CTD) [58], and Drug
Bank [59]) to obtain drug–gene information from 10,902
unique drugs/compounds (Supplementary Fig. 1). The iden-
tification of genes in the pathway of the drugs is based on
scientific, peer-reviewed literature evidence curated by these
four databases. An example of a few genes documented to be
associated with the drug statin is shown in Supplementary
Table 3. Through the integration of the FDA approved drugs/
compounds with these four drug–gene databases, gene
information for 1512 FDA-approved drugs were obtained for
this study. These drugs were then evaluated for enrichment of
pf-pdGenes in their drug pathway as follows.

The population-pair specific enrichment Z-score of each
drug was obtained by performing 10,000 sampling

iterations involving random genes that are of a similar size
range to the genes in that drug pathway. For each drug
random sampling set, the proportion of pf-pdGenes found in
the random sample was recorded. These 10,000 iterations
would yield an empirical distribution specific to the
drug and population-pair in question. The population-pair
Z-scores of the drug will signify enrichment of the observed
proportion of pf-pdGenes in the drug pathway relative to the
empirical distribution generated in the random sampling,
which can be calculated with the following equation.

Z score ¼ ppf�pdGenes � Ppf�pdGenes

eSDpf�pdGenes
;

where:
ppf-pdGenes= observed proportion of pf-pdGenes in the

drug pathway for the specific population-pair
Ppf�pdGenes =mean proportion of pf-pdGenes in the

empirical distribution of the respective drug for the specific
population-pair

eSDpf-pdGenes= standard deviation of empirical distribu-
tion of the respective drug for the specific population-pair

A drug that is significantly enriched with pf-pdGenes for
a population-pair has a Z-score of >2.58 or is within the top
0.5 percentile of the respective empirical distribution. On
the other hand, a drug that is not enriched in pf-pdGenes for
that population-pair has a low enrichment Z-score for that
population-pair. The availability of SNP and gene infor-
mation from 14 different populations in our database
resulted in each drug having up to 91 population-pair Z-
scores. This enabled us to identify the specific pair of
populations with an enrichment of pf-pdGenes in a parti-
cular drug pathway.

Evaluating the performance of the algorithm

The performance of the algorithm was evaluated in terms of
whether it can appropriately detect population differentia-
tion patterns in drugs that have been previously reported [7]
to show population differences in response. This could
provide an initial gauge on the potential capability and real-
world relevance of our approach. Only drugs previously
reported to be associated with population differences in
response and with available population-pair enrichment
Z-score were included in this literature-based evaluation.
Supplementary Table 4 details the publications of the drugs
that were reported to be population differentiated. It
includes information about the actual population pairs
reported and the population pair from our database that was
most similar to the one reported. The accuracy of our
method was evaluated by comparing the concordance
between the drugs that pass the Z-score threshold from our
algorithm with the drugs found from the literature. The
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maximum and minimum FST scores specific to the reported
drug for each population pair were also determined.

Classification and ranking of population
differentiated drugs by drug classes/disease
conditions

The Anatomical Therapeutic Chemical (ATC) Classification
System by the World Health Organization (WHO)
(http://www.whocc.no/) or manual curation was employed to
categorize drugs found to be population differentiated by our
algorithm into their respective 414 drug classes, while the
CTD database was used to categorize these drugs based on
their associated 2783 disease conditions. Only drug classes
(n= 134) or disease groups (n= 1775) containing three or
more drug members were included in our analyses. We then
ranked the drug classes/diseases groups by multiplying the
mode of all population pair Z-scores (most common Z-score)
for each drug by the observed number of population pairs
exhibiting significant population differentiation for that drug.
This value for each drug in the drug class is, then summed
and normalized against the number of constituent drugs
within each drug class/disease group. After obtaining the top
30 drug classes/disease groups, information about each indi-
vidual drug’s number of enriched population pairs was
extracted and presented in graphical form.

Analyses of pharmacogenetic labels and ADR
reports

We further assessed whether drugs with existing pharma-
cogenetic (PGx) warning labels or ADR reports were
associated with the number of significantly enriched popu-
lation pairs. Drugs with PGx warning labels were obtained
from PharmGKB [56], which contains information issued
by the US Food and Drug Administration (FDA), European
Medicines Agency (EMA), Japan’s Pharmaceuticals and
Medical Devices Agency (PMDA), and Health Canada
(Santé Canada) (HCSC). The four categories of drugs labels
or PharmGKB ‘PGx Levels’ used in this study were
‘Genetic testing required’, ‘Genetic testing recommended’,
‘Actionable PGx’, and ‘Informative PGX’. The definitions
of these labels can be found at https://www.pharmgkb.org/
page/drugLabelLegend.

The ADR reports summary was obtained from publicly
available quarterly reports of the US FAERS database
(2007–2009) (https://www.fda.gov/Drugs/GuidanceComplia
nceRegulatoryInformation/Surveillance/AdverseDrugEffects/)
and from Pharmacovigilance Branch at the Singapore Health
Science Authority (HSA) (http://www.hsa.gov.sg/content/hsa/
en/Health_Products_Regulation/Safety_Information_and_
Product_Recalls/Report_Adverse_Events_related_to_health_
products.html) (2007–2009). Both databases are based on

voluntary reporting of suspected ADR, which can be directly
submitted by healthcare professionals and consumers or
through mandatory reporting from drug manufacturers.

Cumulative distribution function (CDF) plots of the
number of significant population-pairs against the fraction
of drugs with PGx labels/adverse drug reactions were
constructed in R. Bar plots of the average number of
population pairs showing significant genomic differentia-
tion across the different PGx labelled drug groups/ADR
groups were also constructed in R and statistical sig-
nificance assessed using the two-sided Student's t-test.
There was a total of 373 drugs with no ADR reports, 978
drugs with ADR reports, 966 drugs with ADR reports from
US, and 391 drugs with reports from Singapore. For the
PGx labels, there were 1206 drugs with no PGx labels, 124
drugs with ‘Genetic Testing Recommended’, and 22 drugs
with ‘Genetic Testing Required’. All groups had a similar
variance. The incidence rates and population pair profiles of
the top 20 drugs with the highest ADR rates in Singapore
and in the USA were also compared.

Results

Deep analytics identifies drugs enriched with genes
carrying SNPs that display significant population
differentiation

Over 3,000,000 SNPs were identified to be significantly
population-differentiated (pdSNPs, N= 3,345,761), while
~2.7% of these were also predicted to be potentially func-
tional (pf-pdSNPs, N= 90,719) (Fig. 1). Sixty-nine FDA-
approved drugs/compounds did not contain a single sig-
nificantly pdSNP (Supplementary Table 5). 1443 drugs were
associated with genes carrying at least one pdSNP, while
1308 of these drugs were associated with genes that carry at
least one pf-pdSNP (Supplementary Fig. 2, lower panel).

As drugs/compounds significantly enriched in pf-
pdGenes may have a stronger genetic basis to account for
population differences in response, enrichment analyses
were performed on the 1308 drugs associated with pf-
pdGenes (Fig. 1). Figure 2a shows the distribution of the
number of drugs (pf-pdDrugs) significantly enriched with
population-differentiated genes (Z > 2.58) across the various
number of population pairs. Although 1308 drugs were
associated with at least one pf-pdGene, 117 of these were
not significantly enriched with pf-pdGenes in any of the
population-pairs examined (Fig. 2a). The majority of the pf-
pdDrugs were observed to be enriched with pf-pdGenes in
~1–10 population pairs (Fig. 2a), while 13 pf-pdDrugs,
including common immunosuppressant and anticancer
drugs such as cyclosporine, fluorouracil, tamoxifen, and
decitabine, were enriched with pf-pdGenes (Z > 2.58) in all
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91 population-pairs examined (Fig. 2b). One hundred and
thirty-three drugs were enriched with pf-pdGenes (Z > 2.58)
in >45 out of all 91 population-pairs examined (>50% of the
pairwise comparisons), while 1191 drugs were enriched
with pf-pdGenes (Z > 2.58) in at least one of the population-
pairs studied. The Z-scores for all the pf-pdDrugs across all
91 population pairs are interactively presented at http://
rpubs.com/jinyu1104/462707.

Pharmacogenomics data analytics was capable of
identifying drugs that were previously reported to
have a population differentiated response

To evaluate the potential capability and real-world relevance
of our pharmacogenomics data analytics workflow, we
examined commonly prescribed drugs that were previously
reported to show differences in response between different
populations (see review [7] and Supplementary Table 4). The
11 drugs commonly implicated with real-world reported
population differences in response include cyclosporine,
fluorouracil, doxorubicin, nicotine, vincristine, estrogens,
codeine, gefitinib, diazepam, warfarin, and clomipramine.

Figure 3, shows the Z-scores for the enrichment of the pf-
pdGenes, as well as the maximum and minimum SNP FST

scores associated with these 11 well-known drugs/com-
pounds. With the exception of clomipramine and warfarin,
the Z-scores of all the other drugs were above the stringent
threshold of 2.58 in at least one of the reported specific
population pairs. In total, this approach was able to detect
~82% of the reported population differentiation cases, since
nine of 11 drugs reported are shown to be enriched by genes
exhibiting population differentiation (Z-score > 2.58).
Interestingly, the Z-scores for clomipramine in 14
population-pair combinations were statistically significant

(Z > 2.58) suggesting that this drug exhibits significant
differentiation in these population pairs. However, the dif-
ference was not statistically significant in the population
pair reported in the literature (JPT-CEU). In the case of
warfarin, both VKORC1 and CYP2C9 genes, which are
known to be pertinent to warfarin response, were also pf-
pdGenes in this study (Supplementary Fig. 3). However, as
there was a large number of other genes in this pathway, the
effects of these two pf-pdGenes were diluted, causing
warfarin to fail the enrichment analysis.

Drug/disease classes associated with population-
differentiated genes

Figure 4a, shows the top 30 drug classes (including anti-
diabetics, statins, anti-inflammatory, immunosuppression, and
antineoplastic drugs), with constituent drugs that are geneti-
cally differentiated in the most number of population-pairs.
Within each drug class, there are drugs with very high Z-
scores across many populations (e.g., cyclosporine), as well as
drugs with lower Z-scores across fewer populations (tacroli-
mus, mycophenolic acid). Likewise, Fig. 4b, shows the top 30
disease/condition groups containing drugs indicated for its
treatment, which are highly differentiated in the most number
of population-pairs. Again, within each treatment class, there
are drugs with very high Z-scores across many populations, as
well as drugs with lower Z-scores across fewer populations.

Drugs with existing PGx warning labels or ADR
reports are associated with the number of
significantly enriched population pairs

To further assess the practical relevance of our approach,
drugs with existing PGx warning labels issued by either

A
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No. of 
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No. of Population-Pairs Showing 
Significant Population Differentiation

B

Fig. 2 Drugs associated with population-differentiated genes. a Dis-
tribution of the number of drugs that are enriched (Z > 2.58) by pf-
pdGenes exhibiting population differentiation patterns across the
respective number of population pairs. b Drugs enriched by genes (Z >
2.58) that are population differentiated in all 91 population-pairs
examined, sorted by the average Z-score. Each data point corresponds

to a specific population pair, with each drug having Z-scores across 91
population-pairs. The dotted horizontal line signifies Z= 2.58, the
threshold Z-score for the significant enrichment of pf-pdGenes in the
respective population-pair. Red line indicates the average Z-score
across the drugs, while the shaded area indicates the minimum and
maximum value (the range) of the Z-scores of the respective drug
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the US FDA (also commonly referred to as black box
warning), European EMA, Japanese PMDA, or Canadian
HCSC, were examined to determine if they are likely to be
enriched by genes exhibiting population differences. From
the 1512 FDA-approved drugs examined, 150 drugs had
PGx labels (mainly with information associated with
germline variants) issued by at least one of the authorities.
Twenty-three of these drugs had the strongest warning of
‘genetic testing required’, while the other 128 drugs had a
milder warning of ‘genetic testing recommended’,
‘actionable PGx’, or ‘informative PGx’ labels. As shown
from the CDF plot in Fig. 5a (top), 50% of drugs with no
PGx label (green line) had ten or less significantly differ-
entiated population pairs. However, 50% of drugs with
labels indicating testing recommended, actionable or
informative (blue line) had 20 or less significantly differ-
entiated population pairs, and this number was even higher
for drugs with the ‘genetic testing required’ label (red line,
30 or less). This suggests that the number of differentiated
population pairs is positively associated with the severity
of the PGx label. Furthermore, the average number of
population pairs with genomic differentiation in the three
groups were found to be significantly different from each
other (P < 0.01, Student's t-test) (Fig. 5a, bottom) with the

‘genetic testing required’ group having the highest average
number.`

We further explored if drugs with reported suspected
ADR were also associated with genes carrying significant
population-differentiated variants. Of the 1512 FDA-
approved drugs/compounds examined, ~70% (1058) had
at least one ADR report in the database. As shown in
Fig. 5b (left), for the same fraction of drugs with no
reported ADR (green line),there were fewer population-
pairs having significant genomic differentiation compared
with those with suspected ADR reports (red line or blue
line). Drugs with ADR reports from Singapore’s HSA (red
bar) had a significantly higher average number of
population-pairs with population genomic differentiation
than those reported by the US-FAERS (blue bar) (P < 0.01,
Student's t-test) (Fig. 5b, right).

The ADR drug profiles in Singapore are different from
those in the USA (Fig. 5c). For example, the frequency of
ADR cases due to atenolol was ~5% in Singapore (red ball),
but only ~1% in the USA (blue ball). On the other hand,
frequency of ADR cases due to aspirin was 3.5% (blue dot)
in the USA, but only 1.7% in Singapore (red dot).
Approximately 78% (28/36) of these commonly reported
ADR drugs were linked to significant genomic

Fig. 3 Evaluating relevance of pharmacogenomics workflow. Cap-
turing real world reported drug response population differentiation
cases: left-vertical axis shows the Z-scores of the respective drug in the
specific population pair that is most similar to the population pair
reported in the literature. Diamonds represent the specific drug Z-score
in the specific population pair. Dark red diamond indicates Z-score >
2.58 while light red diamond indicates Z-score < 2.58. The red shaded

area shows the difference between the highest and lowest Z-scores for
that drug. Right-vertical axis shows the highest and lowest FST scores
of the top pf-pdSNPs in the specific drug pathway and they are
represented by black and grey dots, respectively. Numbers correspond
to the specific population pairs used for analyses and reported in
literature
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differentiation (Z > 2.58) in ten or more population pairs
(Fig. 5c, without halo). Twelve of the top 20 ADR drugs
(Supplementary Table 6) were also in the top 30 drug
classes with the most number of population pair differences
while five of the top 20 ADR drugs (Supplementary
Table 7) were in the top 30 disease/condition categories.

Discussion

The availability of comprehensive genomic and drug–gene
knowledge databases, coupled with the power of ‘big data’
and deep analytics, can facilitate the development of novel
pharmacogenomics workflows to identify drugs that are
significantly associated with genes carrying population
differentiated variants. Here, we present a novel approach at
identifying such drugs. By examining the genomes from 14
world populations, pfSNPs in drug pathways that display
significant population differences in their allele frequencies
were identified. To our knowledge, this is the first attempt at
developing a large database of genomic SNPs, which are
not only potentially functional but also display significant
population differentiation (pf-pdSNPs). Furthermore, a

unique database of drugs with genes that are differentiated
between specific population pairs was also developed.
These data may facilitate the design of genetic assays and
novel SNPs chip to screen individuals carrying variant(s)
that may influence the gene function, and hence alter
the drug response. Such information may also provide
insights into the molecular mechanism of the specific drug
pathway responsible for modulating population differences
in response.

To examine the translational application of our approach,
1512 FDA-approved drugs/compounds (of 10,902 drugs
with available gene information) were further analyzed.
Approximately 230 of these drugs were either lacking any
pf-pdSNPs, or not enriched with pf-pdGenes. This suggests
that these drugs are not associated with genes that are sig-
nificantly population differentiated, and are likely to be
similarly effective for any population. Other drugs are
observed to be associated with genes carrying SNPs that are
significantly differentiated in at least one population pair,
with 13 drugs, including immunosuppressants and a few
anticancer drugs (cisplatin, fluorouracil, tamoxifen, and
decitabine), being associated with significantly population-
differentiated genes in all 91-population pairs tested.
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As such, development of custom pf-pdSNP genotyping
panel and/or PGx resources may guide clinicians in their
choice of drugs to treat patients from specific ethnic
populations. In cases where the drug is enriched with
population-differentiated associated genes, one could con-
sider substituting the drug with an alternative drug from a
similar class that is less population differentiated especially
between the population of the patient and the population
where the drug was trialled. For example, cyclosporine
was predicted in this study to be significantly enriched
with pf-pdSNPs in all 91 population-pairs comparison
(Fig. 2b), and was also previously reported in the literature

to show significant differences in response between
different population pairs (e.g., Europeans versus Africans)
(Fig. 3). Hence, instead of prescribing cyclosporine, one
can perhaps refer to Fig. 4 to identify alternative drugs (e.g.,
tacrolimus) in the same drug class that are less population
differentiated to prescribe. The suggestion of prescribing
tacrolimus instead of cyclosporine is consistent with pre-
vious literature reporting that cyclosporine is associated
with greater nephrotoxicity than tacrolimus [60]. In
addition, the role of population-differentiated variations of
genes in the pathway of the drug could also be further
elucidated, and this would help facilitate better
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(ADRs). a Relevance of data analytics approach for drugs with
existing PGx label as shown by the cumulative distribution function
(CDF) of the number of significant population-pair against the fraction
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(red line) and drugs with PGx label indicating ‘testing recommended’
(including ‘actionable’ and ‘informative’ PGx) (blue line) are com-
pared with drugs with no existing PGx label (green line). The average
of the number of population pairs showing significant population
genetic differentiation across the three group of drugs is shown by the
bar chart below (**P < 0.01). Error bars represent the standard error of
the mean. b CDF of the number of significant population-pair

differences in drugs with reported ADR (black line, underneath blue
line), as well as those with ADR reported by the US FDA FAERS
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compared against drugs with no ADR report (green line). The average
of the number of population pairs showing significant population
genetic differentiation across drugs belonging to the four groups is
shown by the bar chart (**P < 0.01). Error bars represent the standard
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nificantly population-differentiated in ≥10 population pairs
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understanding of how these genes modulate drug efficacy or
toxicity.

Another important finding from this study is that a sig-
nificantly greater proportion of drugs with mandatory
genetic testing requirements were associated with genes that
are differentiated in more population-pairs than those with
milder or no PGx recommendations. Furthermore, drugs
suspected of causing ADR in Singapore had significantly
higher number of population pairs with population-
differentiated genes than those reported to cause ADR in
the USA or drugs not reported to cause ADR. This is con-
sistent with our hypothesis that Singapore, which imports
drugs from the US, has different ethnic groups with different
genetic backgrounds and drug responses that may result in a
higher risk of ADR. Notably, the ADR incidence profiles of
drugs and drug classes causing Stevens Johnson syndrome
(SJS) and toxic epidermal necrolysis (TEN), two severe and
potentially life threatening ADRs, were found to be different
in Singapore (HSA) compared with USA (FAERS) (Sup-
plementary Fig. 4). The top drugs suspected to cause SJS/
TEN were significantly enriched with pf-pdGenes in many
population pairs.

Taken together, our results suggest that drugs with ADR
are associated with population-differentiated genes, and that
the number of population pairs that are significantly enri-
ched in a drug is a good indicator of its potential to cause
adverse reactions. There are however several caveats to
using the ADR reports, especially those from Singapore’s
HSA adverse events monitoring program. These reports are
likely to be biased as they are based on limited or incom-
plete data, as well as a variable degree of both under-
reporting and pattern of reported drug usage. In addition,
ADR reporting frequency varies in different countries,
which may account for some of the differences observed.
Nevertheless, our finding that there is an association
between ADR incidence/severity of PGx warning labels and
the number of enriched population pairs provides further
evidence for the usefulness of the population pair data as
well as for our overall approach.

The real-world relevance of our deep analytics approach
was evident from its ability to detect significant genomic
population differentiation in >80% of the 11 drugs pre-
viously reported to show population differences in response.
While this is a good level of accuracy, there are still some
areas that could be improved upon. Currently, the algo-
rithm’s strength lies in its ability to generate a drug’s
enrichment Z-score by utilizing information from multiple
genes or variants. However, in the case of warfarin, although
the genes (VKORC1, CYP2C9) involved in warfarin
response were, indeed classified as pf-pdGenes, significant
enrichment of pf-pdGenes was not detected. The reason is
because enrichment was calculated by considering these two
genes as well as all the other genes in the warfarin pathway.

This pool of other drug-response genes could possibly dilute
the effect of the two reported genes associated with warfarin.
Future improvements to our algorithm could include a fea-
ture that puts additional weights on well-validated single
genes or variants associated with population difference in
specific drugs. Alternatively, machine learning or artificial
intelligence methods could be used to improve the predictive
ability of the algorithm. In addition, factors such as drug
interactions, patient’s age, gender, lifestyle, and environ-
mental variables could be incorporated into the model.

The pipeline can also be adapted to include newly
developed drugs if the drug–genes relationship is known, or
if this relationship can be inferred from other parameters
such as structural similarity to existing drugs. As knowledge
about key polymorphisms driving drug response increases, it
is likely that the accuracy of the algorithm would also
increase. All these features would then be coupled with a
user-friendly interface to facilitate the querying of drugs,
drug class, population-pair, disease category, genes, or SNPs
and will eventually provide a useful resource for evaluating
genomic population-difference status, as well as to provide
candidate molecules and genes to include in a novel PGx
screening assay.

In conclusion, our approach represents a significant
advancement towards the utilization of big-data genomics in
precision medicine. The population-pair specific information
generated from this study can help facilitate decision-making
by relevant authorities across the globe. These include
decisions about whether a specific drug that has been tested
to be effective in one population should be given to another
population without testing, whether the drug should also be
trialled in the other population, or whether a genetic test
targeting the pf-pdSNPs should be conducted before the
drug is given. Furthermore, alternative drugs that do not
exhibit population differentiation can be proposed, and
medication from the WHO Essential Medicines List can also
be selected based on the drug’s population genetics profile.
By leveraging on this technology, it is hoped that many of
these scenarios can be realized in the near future.
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Code is available upon request.

Acknowledgements We would like to thank Dr Cynthia Sung and the
HSA Vigilance Branch for the provision of the data from the HSA’s
adverse event database as well as the useful discussions. We also thank
Dr Greg Kellogg-Tucker and Dr Thomas Thurnherr for the con-
structive feedbacks on the R scripts, Samantha Koh for the assistance
in upgrading the drug class terms, Dr Samira H Alamudi for reviewing
the paper, in addition to JY, Samuel Wong, Marcus Chua, Koh Yong
Zher, Gabrielle Ho, and Anna Kung, for the assistance in data ana-
lyses. We also thank Dr Eddy Saputra Leman for his help in editing
this paper. This work was supported by Biomedical Research Council-
Science and Engineering Research Council (BMRC-SERC) [112 148

Towards precision medicine: interrogating the human genome to identify drug pathways associated with. . . 525



0008]; AcRF Tier 1 FRC [T1-2015 Apr-05]; and block funding from
National Cancer Center, Singapore and Duke—NUS Graduate Medi-
cal School to CGLL. We acknowledge the National University of
Singapore for scholarship support for MB. The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the paper.

Authors contributions CGLL and MB conceptualized and designed
the project. MB, BNSO, JY, JBW, and TWT helped with the com-
putational aspect of the project. JBW contributed to the identification
of pf SNPs. CGL supervised, while MB performed the experiments.
MB and CGL wrote and edited the paper. MB, BNSO, JY, and CL
addressed reviewers’ comments and reedited the revised paper. SSC
contributed intellectually to the project and helped edit the paper.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Ramamoorthy A, Pacanowski M, Bull J, Zhang L. Racial/ethnic
differences in drug disposition and response: review of recently
approved drugs. Clin Pharmacol Ther. 2015;97:263–73.

2. Becquemont L. Pharmacogenomics of adverse drug reactions:
practical applications and perspectives. Pharmacogenomics.
2009;10:961–9.

3. Bond CA, Raehl CL. Clinical pharmacy services, pharmacy
staffing, and adverse drug reactions in United States hospitals.
Pharmacotherapy. 2006;26:735–47.

4. Carr DF, Alfirevic A, Pirmohamed M. Pharmacogenomics: cur-
rent state-of-the-art. Genes. 2014;5:430–43.

5. Pirmohamed M. Personalized pharmacogenomics: predicting
efficacy and adverse drug reactions. Annu Rev Genomics Hum
Genet. 2014;15:349–70.

6. Swen JJ, Huizinga TW, Gelderblom H, de Vries EG, Assendelft
WJ, Kirchheiner J, et al. Translating pharmacogenomics: chal-
lenges on the road to the clinic. PLoS Med. 2007;4:e209.

7. Bachtiar M, Lee CL. Genetics of population differences in drug
response. Curr Genet Med Rep. 2013;1:162–70.

8. Kalow W. Ethnic differences in drug metabolism. Clin Pharma-
cokinet. 1982;7:373–400.

9. O’Donnell PH, Dolan ME. Cancer pharmacoethnicity: ethnic
differences in susceptibility to the effects of chemotherapy. Clin
Cancer Res. 2009;15:4806–14.

10. Patel JN. Cancer pharmacogenomics: implications on ethnic diver-
sity and drug response. Pharmacogenet Genomics. 2015;25:223–30.

11. Kalow W. Pharmacogenetics and pharmacogenomics: origin,
status, and the hope for personalized medicine. Pharmacoge-
nomics J. 2006;6:162–5.

12. Thiers FA, Sinskey AJ, Berndt ER. Trends in the globalization of
clinical trials. Nat Rev Drug Discov. 2008;7:13–14.

13. George M, Selvarajan S, Dkhar SSK, Chandrasekaran SA. Glo-
balization of clinical trials—where are we heading? Curr Clin
Pharmacol. 2013;8:115–23.

14. Martin MA, Hoffman JM, Freimuth RR, Klein TE, Dong BJ,
Pirmohamed M, et al. Clinical pharmacogenetics implementation
consortium guidelines for hla-b genotype and abacavir dosing:
2014 update. Clin Pharmacol Ther. 2014;95:499–500.

15. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasper-
aviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-
induced hypersensitivity reactions in Europeans. N Engl J Med.
2011;364:1134–43.

16. Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M,
Shirakata Y, et al. Genome-wide association study identifies
HLA-A*3101 allele as a genetic risk factor for carbamazepine-
induced cutaneous adverse drug reactions in Japanese population.
Hum Mol Genet. 2011;20:1034–41.

17. Min DI, Lee M, Ku YM, Flanigan M. Gender-dependent racial
difference in disposition of cyclosporine among healthy African
American and white volunteers. Clin Pharmacol Ther. 2000;
68:478–86.

18. McCollum AD, Catalano PJ, Haller DG, Mayer RJ, Macdonald JS,
Benson AB 3rd, et al. Outcomes and toxicity in african-american
and caucasian patients in a randomized adjuvant chemotherapy trial
for colon cancer. J Natl Cancer Inst. 2002;94:1160–7.

19. Han HS, Reis IM, Zhao W, Kuroi K, Toi M, Suzuki E, et al.
Racial differences in acute toxicities of neoadjuvant or adjuvant
chemotherapy in patients with early-stage breast cancer. Eur J
Cancer. 2011;47:2537–45.

20. Sanoff HK, Sargent DJ, Green EM, McLeod HL, Goldberg RM.
Racial differences in advanced colorectal cancer outcomes and
pharmacogenetics: a subgroup analysis of a large randomized
clinical trial. J Clin Oncol. 2009;27:4109–15.

21. Sekine I, Nokihara H, Yamamoto N, Kunitoh H, Ohe Y, Saijo N,
et al. Common arm analysis: one approach to develop the basis for
global standardization in clinical trials of non-small cell lung
cancer. Lung Cancer. 2006;53:157–64.

22. Yasuda SU, Zhang L, Huang SM. The role of ethnicity in varia-
bility in response to drugs: focus on clinical pharmacology stu-
dies. Clin Pharmacol Ther. 2008;84:417–23.

23. Becquemont L, Alfirevic A, Amstutz U, Brauch H, Jacqz-Aigrain E,
Laurent-Puig P, et al. Practical recommendations for
pharmacogenomics-based prescription: 2010 ESF-UB Conference
on Pharmacogenetics and Pharmacogenomics. Pharmacogenomics.
2011;12:113–24.

24. Renbarger JL, McCammack KC, Rouse CE, Hall SD. Effect
of race on vincristine-associated neurotoxicity in pediatric
acute lymphoblastic leukemia patients. Pediatr Blood Cancer.
2008;50:769–71.

25. Dang MT, Hambleton J, Kayser SR. The influence of ethnicity on
warfarin dosage requirement. Ann Pharmacother. 2005;39:1008–12.

26. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature.
2015;526:343–50.

27. Maggo SD, Savage RL, Kennedy MA. Impact of New Genomic
Technologies on Understanding Adverse Drug Reactions. Clin
Pharmacokinet. 2016;55:419–36.

28. Karnes JH, Van Driest S, Bowton EA, Weeke PE, Mosley JD,
Peterson JF, et al. Using systems approaches to address challenges
for clinical implementation of pharmacogenomics. Wiley Inter-
discip Rev Syst Biol Med. 2014;6:125–35.

526 M. Bachtiar et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


29. Li J, Lou H, Yang X, Lu D, Li S, Jin L, et al. Genetic architectures
of ADME genes in five Eurasian admixed populations and impli-
cations for drug safety and efficacy. J Med Genet. 2014;51:614–22.

30. Daly AK. Pharmacogenomics of adverse drug reactions. Genome
Med. 2013;5:5.

31. Madian AG, Wheeler HE, Jones RB, Dolan ME. Relating human
genetic variation to variation in drug responses. Trends Genet.
2012;28:487–95.

32. Li R, Kim D, Ritchie MD. Methods to analyze big data in phar-
macogenomics research. Pharmacogenomics. 2017;18:807–20.

33. Alyass A, Turcotte M, Meyre D. From big data analysis to per-
sonalized medicine for all: challenges and opportunities. BMC
Med Genomics. 2015;8:33.

34. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM,
Handsaker RE, et al. An integrated map of genetic variation from
1,092 human genomes. Nature. 2012;491:56–65.

35. Holsinger KE, Weir BS. Genetics in geographically structured
populations: defining, estimating and interpreting F(ST). Nat Rev
Genet. 2009;10:639–50.

36. Weir BS, Cockerham CC. Estimating F-Statistics for the analysis
of population structure. Evolution. 1984;38:1358–70.

37. Nei M. Analysis of gene diversity in subdivided populations. Proc
Natl Acad Sci USA. 1973;70:3321–3.

38. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski
EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic
Acids Res. 2001;29:308–11.

39. Wang J, Ronaghi M, Chong SS, Lee CG. pfSNP: An integrated
potentially functional SNP resource that facilitates hypotheses gen-
eration through knowledge syntheses. Hum Mutat. 2011;32:19–24.

40. Zdobnov EM, Apweiler R. InterProScan-an integration platform
for the signature-recognition methods in InterPro. Bioinformatics.
2001;17:847–8.

41. Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB.
Systematic identification and analysis of exonic splicing silencers.
Cell. 2004;119:831–45.

42. Zhang XH, Chasin LA. Computational definition of sequence
motifs governing constitutive exon splicing. Genes Dev. 2004;
18:1241–50.

43. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM,
Ambudkar SV, et al. A “silent” polymorphism in the MDR1 gene
changes substrate specificity. Science. 2007;315:525–8.

44. Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C.
Exposing synonymous mutations. Trends Genet. 2014;30:308–21.

45. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N,
et al. PANTHER: a browsable database of gene products orga-
nized by biological function, using curated protein family and
subfamily classification. Nucleic Acids Res. 2003;31:334–41.

46. Karchin R, Diekhans M, Kelly L, Thomas DJ, Pieper U, Eswar N,
et al. LS-SNP: large-scale annotation of coding non-synonymous

SNPs based on multiple information sources. Bioinformatics.
2005;21:2814–20.

47. Yue P, Melamud E, Moult J. SNPs3D: candidate gene and SNP
selection for association studies. BMC Bioinform. 2006;7:166.

48. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs:
server and survey. Nucleic Acids Res. 2002;30:3894–3900.

49. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K,
et al. Systematic discovery of regulatory motifs in human pro-
moters and 3’ UTRs by comparison of several mammals. Nature.
2005;434:338–45.

50. Mayr C. Regulation by 3′-untranslated regions. Annu Rev Genet.
2017;51:171–94.

51. Hiard S, Charlier C, Coppieters W, Georges M, Baurain D.
Patrocles: a database of polymorphic miRNA-mediated gene
regulation in vertebrates. Nucleic Acids Res. 2010;38(Database
issue):D640–651.

52. Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, et al.
PolymiRTS Database: linking polymorphisms in microRNA tar-
get sites with complex traits. Nucleic Acids Res. 2007;35(Data-
base issue):D51–54.

53. Saunders MA, Liang H, Li WH. Human polymorphism at
microRNAs and microRNA target sites. Proc Natl Acad Sci USA.
2007;104:3300–5.

54. Sahashi K, Masuda A, Matsuura T, Shinmi J, Zhang Z, Takeshima
Y, et al. In vitro and in silico analysis reveals an efficient algo-
rithm to predict the splicing consequences of mutations at the 5’
splice sites. Nucleic Acids Res. 2007;35:5995–6003.

55. Yeo GW, Van Nostrand EL, Liang TY. Discovery and analysis of
evolutionarily conserved intronic splicing regulatory elements.
PLoS Genet. 2007;3:e85.

56. Klein TE, Altman RB. PharmGKB: the pharmacogenetics
and pharmacogenomics knowledge base. pharmacogenomics
J. 2004;4:1.

57. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A,
et al. ChEMBL: a large-scale bioactivity database for drug dis-
covery. Nucleic acids Res. 2012;40(Database issue):D1100–1107.

58. Davis AP, Wiegers TC, Johnson RJ, Lay JM, Lennon-Hopkins K,
Saraceni-Richards C, et al. Text mining effectively scores and
ranks the literature for improving chemical-gene-disease curation
at the comparative toxicogenomics database. PloS ONE. 2013;8:
e58201.

59. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M,
Stothard P, et al. DrugBank: a comprehensive resource for in
silico drug discovery and exploration. Nucleic Acids Res. 2006;34
(Database issue):D668–672.

60. Jacobson PA, Schladt D, Israni A, Oetting WS, Lin YC, Leduc R,
et al. Genetic and clinical determinants of early, acute calcineurin
inhibitor-related nephrotoxicity: results from a kidney transplant
consortium. Transplantation. 2012;93:624–31.

Towards precision medicine: interrogating the human genome to identify drug pathways associated with. . . 527


	Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms
	Abstract
	Introduction
	Materials and methods
	Overview of PGx analytics method
	Identification of potentially functional, population differentiated SNPs
	Enrichment analyses of pf-pdGenes in drug pathways for identification of drugs with population differentiated response
	Evaluating the performance of the algorithm
	Classification and ranking of population differentiated drugs by drug classes/disease conditions
	Analyses of pharmacogenetic labels and ADR reports

	Results
	Deep analytics identifies drugs enriched with genes carrying SNPs that display significant population differentiation
	Pharmacogenomics data analytics was capable of identifying drugs that were previously reported to have a population differentiated response
	Drug/disease classes associated with population-differentiated genes
	Drugs with existing PGx warning labels or ADR reports are associated with the number of significantly enriched population pairs

	Discussion
	Supplementary information

	ACKNOWLEDGMENTS
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




