Cost-effectiveness analysis of multigene expression profiling assays to guide adjuvant therapy decisions in women with invasive early-stage breast cancer

Abstract

Gene expression profiling (GEP) testing using 12-gene recurrence score (RS) assay (EndoPredict®), 58-gene RS assay (Prosigna®), and 21-gene RS assay (Oncotype DX®) is available to aid in chemotherapy decision-making when traditional clinicopathological predictors are insufficient to accurately determine recurrence risk in women with axillary lymph node-negative, hormone receptor-positive, and human epidermal growth factor-receptor 2-negative early-stage breast cancer. We examined the cost-effectiveness of incorporating these assays into standard practice. A decision model was built to project lifetime clinical and economic consequences of different adjuvant treatment-guiding strategies. The model was parameterized using follow-up data from a secondary analysis of the Anastrozole or Tamoxifen Alone or Combined randomized trial, cost data (2017 Canadian dollars) from the London Regional Cancer Program (Canada) and secondary Canadian sources. The 12-gene, 58-gene, and 21-gene RS assays were associated with cost-effectiveness ratios of $36,274, $48,525, and $74,911/quality-adjusted life year (QALY) gained and resulted in total gains of 379, 284.3, and 189.5 QALYs/year and total budgets of $12.9, $14.2, and $16.6 million/year, respectively. The total expected-value of perfect information about GEP assays’ utility was $10.4 million/year. GEP testing using any of these assays is likely clinically and economically attractive. The 12-gene and 58-gene RS assays may improve the cost-effectiveness of GEP testing and offer higher value for money, although prospective evidence is still needed. Comparative field evaluations of GEP assays in real-world practice are associated with a large societal benefit and warranted to determine the optimal and most cost-effective assay for routine use.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian cancer statistics 2017. Toronto, ON: Canadian Cancer Society; 2017.

    Google Scholar 

  2. 2.

    Ghafoor A, Jemal A, Ward E, Cokkinides V, Smith R, Thun M. Trends in breast cancer by race and ethnicity. CA Cancer J Clin. 2003;53:342–55.

    PubMed  Google Scholar 

  3. 3.

    Members of the Breast Cancer Disease Site Group. Surgical management of early-stage invasive breast cancer. In: Brackstone M, Tey R, reviewers. Program in evidence-based care evidence-based series no.: 1-1 Version 3. Education and Information 2015. Toronto, ON: Cancer Care Ontario; 2011. Endorsed 19 Nov 2010.

  4. 4.

    Eisen A, Fletcher GG, Gandhi S, Mates M, Freedman OC, Dent SF, et al. Optimal systematic therapy for early female breast cancer. In: Program in evidence-based care evidence-based series no.: 1–21. Toronto, ON: Cancer Care Ontario; 2014.

  5. 5.

    Early Breast Cancer Trialists' Collaborative Group, Peto R, Davies C, Godwin J, Gray R, Pan HC, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379:432–44.

    Google Scholar 

  6. 6.

    Gyorffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B, Pusztai L. Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res. 2015;17:11.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    CAS  PubMed  Google Scholar 

  9. 9.

    Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, et al. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol. 2010;28:1677–83.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11:55–65.

    CAS  PubMed  Google Scholar 

  11. 11.

    Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol. 2010;28:1829–34.

    PubMed  Google Scholar 

  12. 12.

    Ioannidis JP. Is molecular profiling ready for use in clinical decision making? Oncologist. 2007;12:301–11.

    PubMed  Google Scholar 

  13. 13.

    Sestak I, Dowsett M, Zabaglo L, Lopez-Knowles E, Ferree S, Cowens JW, et al. Factors predicting late recurrence for estrogen receptor-positive breast cancer. J Natl Cancer Inst. 2013;105:1504–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kos Z, Nielsen TO. Developing a new generation of breast cancer clinical gene expression tests. Breast Cancer Res. 2014;16:103.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Michiels S, Ternes N, Rotolo F. Statistical controversies in clinical research: prognostic gene signatures are not (yet) useful in clinical practice. Ann Oncol. 2016;27:2160–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hannouf MB, Xie B, Brackstone M, Zaric GS. Cost-effectiveness of a 21-gene recurrence score assay versus Canadian clinical practice in women with early-stage estrogen- or progesterone-receptor-positive, axillary lymph-node negative breast cancer. BMC Cancer. 2012;12:447.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tsoi DT, Inoue M, Kelly CM, Verma S, Pritchard KI. Cost-effectiveness analysis of recurrence score-guided treatment using a 21-gene assay in early breast cancer. Oncologist. 2010;15:457–65.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chang MC, Souter LH, Kamel-Reid S, Rutherford M, Bedard P, Trudeau M, et al. Clinical utility of multigene profiling assays in early-stage breast cancer. In: Program in evidence-based care recommendation report no.: MOAC-4. Toronto, ON: Cancer Care Ontario. Available on the CCO website: www.cancercare.on.ca/toolbox/qualityguidelines/clin-program/pathlabebs/pebc_moleconc/. Accessed 10 July 2017.

    Google Scholar 

  19. 19.

    Buus R, Sestak I, Kronenwett R, Denkert C, Dubsky P, Krappmann K, et al. Comparison of EndoPredict and EPclin with oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy. J Natl Cancer Inst. 2016;108.https://doi.org/10.1093/jnci/djw149.

    PubMed Central  Google Scholar 

  20. 20.

    Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31:2783–90.

    PubMed  Google Scholar 

  21. 21.

    Sestak I, Buus R, Cuzick J, Dubsky P, Kronenwett R, Denkert C, et al. Comparison of the performance of 6 prognostic signatures for estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4:545–53.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Inadomi JM. Decision analysis and economic modelling: a primer. Eur J Gastroenterol Hepatol. 2004;16:535–42.

    PubMed  Google Scholar 

  23. 23.

    Younis T, Rayson D, Thompson K. Primary G-CSF prophylaxis for adjuvant TC or FEC-D chemotherapy outside of clinical trial settings: a systematic review and meta-analysis. Support Care Cancer. 2012;20:2523–30.

    PubMed  Google Scholar 

  24. 24.

    Petrelli F, Borgonovo K, Cabiddu M, Lonati V, Barni S. Mortality, leukemic risk, and cardiovascular toxicity of adjuvant anthracycline and taxane chemotherapy in breast cancer: a meta-analysis. Breast Cancer Res Treat. 2012;135:335–46.

    CAS  PubMed  Google Scholar 

  25. 25.

    Guidelines for the economic evaluation of health technologies. 4th ed. Ottawa, Canada: CADTH; 2017.

  26. 26.

    Sonnenberg FA, Beck JR. Markov models in medical decision making: a practical guide. Med Decis Making. 1993;13:322–38.

    CAS  PubMed  Google Scholar 

  27. 27.

    Levine MN, Julian JA, Bedard PL, Eisen A, Trudeau ME, Higgins B, et al. Prospective evaluation of the 21-gene recurrence score assay for breast cancer decision-making in Ontario. J Clin Oncol. 2016;34:1065–71.

    CAS  PubMed  Google Scholar 

  28. 28.

    Cancer Care Ontario. Cancer Care Ontario GCSF recommendations 2016. https://www.cancercare.on.ca/common/pages/UserFile.aspx?fileId=352101. Accessed 24 July 2017.

  29. 29.

    Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115:155–62.

    CAS  PubMed  Google Scholar 

  30. 30.

    Kirwan CC, McDowell G, McCollum CN, Byrne GJ. Incidence of venous thromboembolism during chemotherapy for breast cancer: impact on cancer outcome. Anticancer Res. 2011;31:2383–8.

    PubMed  Google Scholar 

  31. 31.

    Wolff AC, Blackford AL, Visvanathan K, Rugo HS, Moy B, Goldstein LJ, et al. Risk of marrow neoplasms after adjuvant breast cancer therapy: the national comprehensive cancer network experience. J Clin Oncol. 2015;33:340–8.

    PubMed  Google Scholar 

  32. 32.

    Statistics Canada/Health Statistics Division. Life Tables, Canada and the Provinces, 2000–2002. Ottawa, Ontario, Canada: Minister of Industry; 2006. Publication 84-537-XIE.

  33. 33.

    Cuzick J, Sestak I, Baum M, Buzdar A, Howell A, Dowsett M, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol. 2010;11:1135–41.

    CAS  PubMed  Google Scholar 

  34. 34.

    Ministry of Health and Long‐Term Care. Out‐of‐Country Program. Kingston, ON, Canada: Ministry of Health and Long‐Term Care; 2016.

  35. 35.

    Prosigna [Package Insert]. Seattle, WA: NanoString Technologies, Inc. Available at http://www.lifelabsgenetics.com/breast-cancer-prosigna-assay/paymentinformation. Accessed 18 June 2017.

  36. 36.

    British Colombia Cancer Agency. Laboratory services, oncotype Dx testing and Prosigna testing. BC, Canada. Available at http://www.bccancer.bc.ca/health-professionals/clinical-resources/laboratory-services. Accessed 13 Nov 2017.

  37. 37.

    Alberta Health Services. Laboratory services, breast cancer molecular testing. AB, Canada: Oncologist. Available at https://www.albertahealthservices.ca/assets/wf/lab/wf-lab-breast-cancer-molecular-testing-oncologist.pdf. Accessed 13 Nov 2017.

  38. 38.

    Bank of Canada. Home>Rates and Statistics>Related Information>Inflation Calculator [Web resource]. Ottawa, ON: Bank of Canada. Available at www.bankofcanada.ca/en/rates/inflationcalc.html. Accessed 20 June 2013.

  39. 39.

    Statistics Canada, National Center for Health Statistics, Centers for Disease Control and Prevention: Joint Canada/United States Survey of Health, 2002–03; 2004.

  40. 40.

    McKenna C, Claxton K. Addressing adoption and research design decisions simultaneously: the role of value of sample information analysis. Med Decis Making. 2011;31:853–65.

    PubMed  Google Scholar 

  41. 41.

    Laupacis A, Feeny D, Detsky AS, Tugwell PX. Tentative guidelines for using clinical and economic evaluations revisited. CMAJ. 1993;148:927–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Laupacis A. Economic evaluations in the Canadian common drug review. Pharmacoeconomics. 2006;24:1157–62.

    PubMed  Google Scholar 

  43. 43.

    Sparano JA. TAILORx: trial assigning individualized options for treatment (Rx). Clin Breast Cancer. 2006;7:347–50.

    PubMed  Google Scholar 

  44. 44.

    Hayes DF. Targeting adjuvant chemotherapy: a good idea that needs to be proven! J Clin Oncol. 2012;30:1264–7.

    CAS  PubMed  Google Scholar 

  45. 45.

    Bartlett J, Canney P, Campbell A, Cameron D, Donovan J, Dunn J, et al. Selecting breast cancer patients for chemotherapy: the opening of the UK OPTIMA trial. Clin Oncol. 2013;25:109–16.

    CAS  Google Scholar 

  46. 46.

    Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med. 2015;373:2005–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Butts C, Kamel-Reid S, Batist G, Chia S, Blanke C, Moore M, et al. Benefits, issues, and recommendations for personalized medicine in oncology in Canada. Curr Oncol. 2013;20:e475–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res. 2011;17:6012–20.

    CAS  PubMed  Google Scholar 

  49. 49.

    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Tang G, Cuzick J, Costantino JP, Dowsett M, Forbes JF, Crager M, et al. Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor-positive breast cancer: recurrence score alone and integrated with pathologic and clinical factors. J Clin Oncol. 2011;29:4365–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, et al. Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer. 2017;75:284–98.

    CAS  PubMed  Google Scholar 

  52. 52.

    National Institute for Health and Care Excellence. Overview—tumour profiling tests to guide adjuvant chemotherapy decisions in people with breast cancer (update of DG10). Issue date: November 2017.

  53. 53.

    van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Google Scholar 

  54. 54.

    Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29.

    CAS  PubMed  Google Scholar 

  55. 55.

    Briggs AH, Ades AE, Price MJ. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework. Med Decis Making. 2003;23:341–50.

    PubMed  Google Scholar 

  56. 56.

    Blum JL, Flynn PJ, Yothers G, Asmar L, Geyer CE, Jacobs SA, et al. Interim joint analysis of the ABC (anthracyclines in early breast cancer) phase III trials (USOR 06-090, NSABP B-46I/USOR 07132, NSABP B-49 [NRG Oncology]) comparing docetaxel+cyclophosphamide (TC) v anthracycline/taxane-based chemotherapy regimens (TaxAC) in women with high-risk, HER2-negative breast cancer. J Clin Oncol. 2016;34.

    Google Scholar 

  57. 57.

    Jones S, Holmes FA, O'Shaughnessy J, Blum JL, Vukelja SJ, McIntyre KJ, et al. Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with doxorubicin and cyclophosphamide: 7-year follow-up of US Oncology Research Trial 9735. J Clin Oncol. 2009;27:1177–83.

    CAS  PubMed  Google Scholar 

  58. 58.

    Ontario Ministry of Health and Long-Term Care. Ontario Health Insurance (OHIP) schedule of benefits and fees; 2007. http://www.health.gov.on.ca/english/providers/program/ohip/sob/sobmn.html. Accessed 13 Aug 2017.

  59. 59.

    Mittmann N, Verma S, Koo M, Alloul K, Trudeau M. Cost effectiveness of tac versus fac in adjuvant treatment of node-positive breast cancer. Curr Oncol. 2010;17:7–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Lathia N, Isogai PK, De Angelis C, Smith TJ, Cheung M, Mittmann N, et al. Cost-effectiveness of filgrastim and pegfilgrastim as primary prophylaxis against febrile neutropenia in lymphoma patients. J Natl Cancer Inst. 2013;105:1078–85.

    PubMed  Google Scholar 

  61. 61.

    Skedgel C, Rayson D, Younis T. The cost-utility of sequential adjuvant trastuzumab in women with Her2/Neu-positive breast cancer: an analysis based on updated results from the HERA Trial. Value Health. 2009;12:641–8.

    PubMed  Google Scholar 

  62. 62.

    Guanella R, Ducruet T, Johri M, Miron MJ, Roussin A, Desmarais S, et al. Economic burden and cost determinants of deep vein thrombosis during 2 years following diagnosis: a prospective evaluation. J Thromb Haemost. 2011;9:2397–405.

    CAS  PubMed  Google Scholar 

  63. 63.

    Wehler E, Zhao Z, Pinar Bilir S, Munakata J, Barber B. Economic burden of toxicities associated with treating metastatic melanoma in eight countries. Eur J Health Econ. 2017;18:49–58.

    PubMed  Google Scholar 

  64. 64.

    Levy AR, Zou D, Risebrough N, Buckstein R, Kim T, Brereton N. Cost-effectiveness in Canada of azacitidine for the treatment of higher-risk myelodysplastic syndromes. Curr Oncol. 2014;21:e29–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Peasgood T, Ward SE, Brazier J. Health-state utility values in breast cancer. Expert Rev Pharm Outcomes Res. 2010;10:553–66.

    Google Scholar 

  66. 66.

    Lucioni C, Finelli C, Mazzi S, Oliva EN. Costs and quality of life in patients with myelodysplastic syndromes. Am J Blood Res. 2013;3:246–59.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Enden T, Wik HS, Kvam AK, Haig Y, Klow NE, Sandset PM. Health-related quality of life after catheter-directed thrombolysis for deep vein thrombosis: secondary outcomes of the randomised, non-blinded, parallel-group CaVenT study. BMJ Open. 2013;3:e002984.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The ATAC trial investigators provided some summary statistical estimates for this research. The results and conclusions are those of the authors, and no official endorsement by ATAC trial investigators is intended or should be inferred.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muriel Brackstone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hannouf, M.B., Zaric, G.S., Blanchette, P. et al. Cost-effectiveness analysis of multigene expression profiling assays to guide adjuvant therapy decisions in women with invasive early-stage breast cancer. Pharmacogenomics J 20, 27–46 (2020). https://doi.org/10.1038/s41397-019-0089-x

Download citation

Further reading