Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci

Abstract

N6-methyladenosine (m6A) plays critical roles in many fundamental biological processes and a variety of diseases. The aim of this study was to investigate the effect of m6A-SNPs on lipid levels. We examined the association of m6A-SNPs with lipid levels in a genome-wide association studies (GWAS) of 188,578 individuals. Furthermore, we performed expression quantitative trait loci and differential expression analyses to add additional information for the identified m6A-SNPs. We found 1,655 m6A-SNPs in the GWAS dataset. Among them, 395 (23.9%) were nominally (P < 0.05) associated with lipid levels, and 22 reached the genome-wide significance level (P < 5.0 × 10−8). Using the fgwas method we found that SNPs, which influence high-density lipoprotein cholesterol (log2 enrichment of 3.35, 95% CI: (0.92, 4.48)) and TG (log enrichment of 3.22, 95% CI: (1.18, 4.44)), were enriched in m6A methylation. The high confidence (determined by miCLIP experiment) m6A-SNP rs6859 at the 3′-untranslated region of PVRL2 was associated with high-density lipoprotein cholesterol (P = 1.21 × 10−15), low-density lipoprotein cholesterol (P = 1.77 × 10−106), total cholesterol (P = 4.82 × 10−82), and triglycerides (P = 8.10 × 10−5) levels, coronary artery disease (P = 0.01), as well as PVRL2 mRNA expression in artery tibial (P = 2.38 × 10−6) and whole blood (P = 5.59 × 10−19). Moreover, PVRL2 was differentially expressed in adipose tissue of familial combined hyperlipidemia (P = 9.27 × 10−4). The present study found plenty of lipid-associated m6A-SNPs and demonstrated that m6A-SNPs may play important roles in lipid metabolisms. Further studies were needed to elucidate the mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370:1829–39.

    Article  Google Scholar 

  2. Wierzbicki AS, Oben J. Nonalcoholic fatty liver disease and lipids. Curr Opin Lipidol. 2012;23:345–52.

    Article  CAS  Google Scholar 

  3. Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, et al. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res. 2016;54:64–102.

    Article  CAS  Google Scholar 

  4. Herder C, Kowall B, Tabak AG, Rathmann W. The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia. 2014;57:16–29.

    Article  CAS  Google Scholar 

  5. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  CAS  Google Scholar 

  6. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  CAS  Google Scholar 

  7. Surakka I, Horikoshi M, Magi R, Sarin AP, Mahajan A, Lagou V, et al. The impact of low-frequency and rare variants on lipid levels. Nat Genet. 2015;47:589–97.

    Article  CAS  Google Scholar 

  8. Asselbergs FW, Guo Y, van Iperen EP, Sivapalaratnam S, Tragante V, Lanktree MB, et al. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am J Hum Genet. 2012;91:823–38.

    Article  CAS  Google Scholar 

  9. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet. 2011;43:990–5.

    Article  CAS  Google Scholar 

  10. Wu Y, Waite LL, Jackson AU, Sheu WH, Buyske S, Absher D, et al. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained. PLoS Genet. 2013;9:e1003379.

    Article  CAS  Google Scholar 

  11. Lu X, Peloso GM, Liu DJ, Wu Y, Zhang H, Zhou W, et al. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease. Nat Genet. 2017;49:1722–30.

    Article  CAS  Google Scholar 

  12. Lu X, Li J, Li H, Chen Y, Wang L, He M, et al. Coding-sequence variants are associated with blood lipid levels in 14,473 Chinese. Hum Mol Genet. 2016;25:4107–16.

    Article  CAS  Google Scholar 

  13. Sidore C, Busonero F, Maschio A, Porcu E, Naitza S, Zoledziewska M, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet. 2015;47:1272–81.

    Article  CAS  Google Scholar 

  14. Mao F, Xiao L, Li X, Liang J, Teng H, Cai W, et al. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res. 2016;44:D154–163.

    Article  CAS  Google Scholar 

  15. Wu X, Hurst LD. Determinants of the usage of splice-associated cis-motifs predict the distribution of human pathogenic SNPs. Mol Biol Evol. 2016;33:518–29.

    Article  CAS  Google Scholar 

  16. Ramaswami G, Deng P, Zhang R, Anna Carbone M, Mackay TF, Li JB. Genetic mapping uncovers cis-regulatory landscape of RNA editing. Nat Commun. 2015;6:8194.

    Article  Google Scholar 

  17. Visvanathan A, Somasundaram K. mRNA Traffic Control Reviewed: N6-Methyladenosine (m(6) A) Takes the Driver's Seat. Bioessays 2017;1:1700093.

    Article  Google Scholar 

  18. Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, et al. m6AVar: a database of functional variants involved in m6A modification. Nucleic Acids Res. 2018;46:D139–45.

    Article  CAS  Google Scholar 

  19. Jiang S, Xie Y, He Z, Zhang Y, Zhao Y, Chen L, et al. m6ASNP: a tool for annotating genetic variants by m6A function. Gigascience 2018;7:giy035.

  20. Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014;15:313–26.

    Article  CAS  Google Scholar 

  21. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  Google Scholar 

  22. Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, et al. N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;24:870–8.

    Article  CAS  Google Scholar 

  23. Yadav PK, Rajasekharan R. The m(6)A methyltransferase Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology in haploid yeast cells. J Biol Chem. 2017;292:13727–44.

    Article  CAS  Google Scholar 

  24. Yadav PK, Rajvanshi PK, Rajasekharan R. The role of yeast m(6)A methyltransferase in peroxisomal fatty acid oxidation. Curr Genet. 2018;64:417–22.

    Article  CAS  Google Scholar 

  25. Lu N, Li X, Yu J, Li Y, Wang C, Zhang L, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6) A RNA methylation in piglets. Lipids. 2018;53:53–63.

    Article  CAS  Google Scholar 

  26. Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, et al. m6AVar: a database of functional variants involved in m6A modification. Nucleic Acids Res. 2018;46:D139–45.

    Article  Google Scholar 

  27. Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet. 2014;94:559–73.

    Article  CAS  Google Scholar 

  28. Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of plasma lipids in > 300,000 individuals. Nat Genet. 2017;49:1758–66.

    Article  CAS  Google Scholar 

  29. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.

    Article  CAS  Google Scholar 

  30. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–4.

    Article  CAS  Google Scholar 

  31. Mosig S, Rennert K, Buttner P, Krause S, Lutjohann D, Soufi M, et al. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism. BMC Med Genom. 2008;1:60.

    Article  Google Scholar 

  32. Horswell SD, Fryer LG, Hutchison CE, Zindrou D, Speedy HE, Town MM, et al. CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res. 2013;54:3491–505.

    Article  CAS  Google Scholar 

  33. Morello F, de Bruin TW, Rotter JI, Pratt RE, van der Kallen CJ, Hladik GA, et al. Differential gene expression of blood-derived cell lines in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 2004;24:2149–54.

    Article  CAS  Google Scholar 

  34. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.

    Article  Google Scholar 

  35. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45:1238–43.

    Article  CAS  Google Scholar 

  36. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 2018;19:491–4.

    Article  CAS  Google Scholar 

  37. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    Article  CAS  Google Scholar 

  38. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet. 2013;45:124–30.

    Article  CAS  Google Scholar 

  39. Sveinbjornsson G, Albrechtsen A, Zink F, Gudjonsson SA, Oddson A, Masson G, et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat Genet. 2016;48:314–7.

    Article  CAS  Google Scholar 

  40. Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genom. 2008;1:44.

    Article  Google Scholar 

  41. Naj AC, Beecham GW, Martin ER, Gallins PJ, Powell EH, Konidari I, et al. Dementia revealed: novel chromosome 6 locus for late-onset Alzheimer disease provides genetic evidence for folate-pathway abnormalities. PLoS Genet. 2010;6:e1001130.

    Article  Google Scholar 

  42. Logue MW, Schu M, Vardarajan BN, Buros J, Green RC, Go RC, et al. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol. 2011;68:1569–79.

    Article  Google Scholar 

  43. Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, et al. A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev. 2015;29:2037–53.

    Article  CAS  Google Scholar 

  44. Sauliere J, Murigneux V, Wang Z, Marquenet E, Barbosa I, Le Tonqueze O, et al. CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat Struct Mol Biol. 2012;19:1124–31.

    Article  CAS  Google Scholar 

  45. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010;141:129–41.

    Article  CAS  Google Scholar 

  46. Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet. 2014;15:335–46.

    Article  CAS  Google Scholar 

  47. Mo XB, Zhang H, Xu T, Lei SF, Zhang YH. Identification of important genes associated with total cholesterol using bioinformatics analysis. Pharmacogenomics 2015;17. https://doi.org/10.2217/PGS.2215.2164.

Download references

Acknowledgements

The study was supported by Natural Science Foundation of China (81773508), the Key Research Project (Social Development Plan) of Jiangsu Province (BE2016667), the Startup Fund from Soochow University (Q413900313, Q413900412), Project funded by China Postdoctoral Science Foundation (2013M530269 and 2014M551649, 2014T70547), and a Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, X., Lei, S., Zhang, Y. et al. Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci. Pharmacogenomics J 19, 347–357 (2019). https://doi.org/10.1038/s41397-018-0055-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-018-0055-z

This article is cited by

Search

Quick links