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Despite the significant role of the gut microbiota in infant health and development, little is known about the ecological processes
determining gut microbial community assembly. According to ecology theory, the timing and order of arrival of microbial species
into an ecosystem affect microbial community assembly, a phenomenon termed priority effects. Bifidobacterium species are
recognized as highly abundant early colonizers of the infant’s gut, partly due to their ability to selectively utilize human milk
oligosaccharides (HMOs) from breast milk. However, the role of priority effects in Bifidobacterium community assembly remains
unclear. Here, we investigated the Bifidobacterium community assembly in the gut of 25 breastfed Danish infants longitudinally
sampled throughout the first 6 months of life. Our results showed that the breastfed infants were often initially, but temporarily,
dominated by suboptimal HMO-utilizing Bifidobacterium taxa, such as B. longum subsp. longum, before more efficient HMO-utilizers
such as B. longum subsp. infantis, replaced the first colonizer as the dominant Bifidobacterium taxon. Subsequently, we validated this
observation using gnotobiotic mice sequentially colonized with B. longum subsp. longum and B. longum subsp. infantis or vice
versa, with or without supplementation of HMOs in the drinking water. The results showed that in the absence of HMOs, order of
arrival determined dominance. Yet, when mice were supplemented with HMOs the strength of priority effects diminished, and B.
longum subsp. infantis dominated regardless of colonization order. Our data demonstrate that the arrival order of Bifidobacterium
taxa and the deterministic force of breast milk-derived HMOs, dictate Bifidobacterium community assembly in the infant’s gut.
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Inadequate development of the infant gut microbiota has been
linked with multiple adverse conditions such as asthma and
allergies [1, 2], autoimmune diseases [3, 4], inflammatory bowel
diseases [5], and poor neurological development and growth [6].
However, our understanding of the processes that govern
microbial community assembly in the gut during infancy remains
incomplete [7]. According to ecological theory, timing and order
of arrival of species into a specific ecosystem influence the
composition and function of that particular community [8]. This
phenomenon is known as “priority effects”, and its potential
significance in the gut microbiota assembly process during early
life has reached considerable attention in recent years [7, 9, 10].
Priority effects occur in the gut when initial colonizing species
either pre-empt or modify the ecological niche, resulting in either
inhibition or facilitation of later arriving species [7]. Several
conditions make strong priority effects more likely to occur [11].
Priority effects are favoured when the early-arriving species exhibit
a large effect on the environment (e.g. early-arriving species
deplete the niche of specific nutrients), when late-arriving species
have high environmental requirements (e.g. late-arriving species
have high demands for survival and growth in the niche), and
when early-arriving and late-arriving species exhibit a high niche
overlap (e.g. closely related taxa and/or taxa competing for the

same resources in the niche). Priority effects have been demon-
strated in gnotobiotic mouse models with selected Bacteroides
species [12] or mouse faecal communities [9], and in hospital-
associated preterm infants [13] with limited microbial exposure,
confined to mainly skin and hospital-associated microbes.
However, the previously studied species-interactions may not
necessarily reflect interactions in the gut of the healthy term
infant, which is often dominated by Bifidobacterium species [14].
The role of priority effects in Bifidobacterium species community
assembly has to our knowledge only been explored in vitro using
batch fermentations [15], and has not been validated in
continuous culture systems or animal models. Nor has infant gut
microbiota data with sufficient longitudinal sampling and
taxonomical resolution been applied to understand priority effects
in the context of the term infant´s gut. In theory, priority effects
should be affected by community assembly principles such as
selection [7]. Breastfeeding is one of the strongest deterministic
factors for infant gut microbiota species selection [16–18], in part
due to its high content of human milk oligosaccharides (HMOs),
which are selectively consumed in the infant gut by key members
of the Bifidobacterium genus [19]. Especially B. longum subsp.
infantis is an efficient HMO-consuming species associated with
health benefits for the infant [20–22]. However, the importance of
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priority effects in Bifidobacterium community assembly, as well as
the potential deterministic role of HMOs in this process both
remain elusive.
To study Bifidobacterium community assembly, we took

advantage of our previously established infant cohort [23],
Copenhagen Infant Gut (CIG) comprising 25 healthy breast- and
mixed fed infants longitudinally sampled from birth until 6 months
of age (9–11 samplings per infant). We previously analysed the gut
microbiota by 16 S rRNA gene amplicon sequencing and found, in
accordance with others [24, 25], that Bifidobacterium was by far
the most abundant genus (64.3% of all reads), representing mainly
B. longum (38.5%), B. breve (9.1%), and B. bifidum (8.0%) as the
three most abundant taxa in the dataset [23]. By use of species/
subspecies specific qPCR, we further quantified the absolute
abundance of B. breve, B. bifidum, B. longum subsp. longum, and B.
longum subsp. infantis [23]. All infants were breastfed for at least
four months, except CIG15, who shifted to formula milk around
one month of age. Three infants received a single course of oral
antibiotics (CIG05, CIG10 and CIG16), two infants were born pre-
term by C-section (CIG08 and CIG09), and three infants displayed
poor colonization (CIG07, CIG18 and CIG19) with these Bifidobac-
terium species (Supplementary Table 1) [23]. Given that antibiotics
[26], pre-term birth [27], and high degree of formula exposure [28]
can disrupt infant gut microbiota assembly, we did not consider
these further in our analyses. We focused on the remaining 16
infants that were all breastfed, term and vaginally born and
studied the longitudinal dynamics of Bifidobacterium species with
respect to priority effects within each infant. We noticed that the
aforementioned dominant Bifidobacterium species exhibited
different abundance patterns across individuals (Fig. 1 and
Supplementary Fig. 1). We found that B. longum subsp. infantis
ended up vastly dominating the gut microbiota over time in 11 of
the 16 infants (44% of the whole cohort), reaching a relative
abundance of 84.9 ± 12.8% (mean ± s.d.) after efficiently coloniz-
ing these infants somewhere between age 14 to 100 days
depending on the individual (Fig. 1). Apart from one infant that
was solely dominated by B. longum subsp. infantis throughout the
entire sampling period, almost all of the infants were initially
dominated by other Bifidobacterium species or combinations
thereof. Some infants were initially dominated by B. breve
(Fig. 1a–c), others were dominated by B. longum subsp. longum
(Fig. 1d, e), B. bifidum (Fig. 1f), or combinations of B. longum subsp.
longum, B. bifidum, B. breve, B. catenulatum group, and Bacteroides
species (Fig. 1g–j). Evidently, in the very first sample from these
infants (age range 1–31 days), B. longum subsp. infantis was either
not detected (below limit of detection; 2 × 102 cells/g faeces), as
for CIG03, CIG06 and CIG21, or present in counts below 104 cells/g
faeces as for CIG02, CIG04, CIG11, CIG22, CIG24 and CIG23. One
exception was CIG01, where B. longum subsp. infantis reached
above 107 cells/g in the first sample (day 30), yet it was 100 fold
lower in abundance compared to the dominating species B.
bifidum. Thus, these data show that other Bifidobacterium species
often colonize the breastfed infant’s gut before B. longum subsp.
infantis, enabling them to initially dominate the community.
However, this dominance is only transient as B. longum subsp.
infantis eventually takes over. We also found that while
CIG01 stopped being breastfed before the last sampling, B.
longum subsp. infantis suddenly no longer dominated the
community and other Bifidobacterium species reached higher
absolute abundances (Fig. 1f), suggesting that B. longum subsp.
infantis only dominates the community as long as the infant is
primarily breastfed. In the case of CIG12, B. longum subsp. infantis
consistently dominated throughout the entire sampling period
(Fig. 1k), suggesting that this subspecies was the first Bifidobacter-
ium colonizer in this particular infant. However, we cannot exclude
the possibility that other Bifidobacterium species actually domi-
nated before the first sample was collected (day 16), as seen with
B. breve in CIG06 (Fig. 1c). Finally, we never detected B. longum

subsp. infantis in two infants (CIG17 and CIG25), which were
instead colonized mainly by B. longum subsp. longum alone or in
combination with B. breve and B. bifidum (Supplementary Fig. 1a,
b).
We then sought to couple these observations with in vivo HMO-

utilization. We compared absolute abundance of B. longum subsp.
infantis with the residual faecal levels of the major HMO structures
(i.e. fucosyllactoses (2’FL and 3FL), sialyllactoses (3’SL and 6’SL),
and lacto-N-(neo)tetraoses (LNT and LNnT)) in the eleven infants
with dominant B. longum subsp. infantis colonization (Fig. 1a–k).
The obvious bloom of B. longum subsp. infantis occurring within
the first months of life in these infants coincided with a rapid
decline in the faecal residuals of fucosyllactoses and sialyllactoses,
whereas lacto-N-(neo)tetraoses were less prominently affected
(Fig. 1l–n). These associations withstood adjustment of infant age
and were, except for weaker associations with B. bifidum, not
observed for the other Bifidobacterium species (Supplementary
Table 2). This is largely consistent with the broad and efficient
HMO-utilization capability of B. longum subsp. infantis strains
enabling them to consume a range of fucosylated and sialylated
HMOs [29–31], a more variable and less efficient HMO-utilization
among B. bifidum strains [31, 32], and a limited capacity in B. breve
and B. longum subsp. longum strains often confined to LNT and
LNnT [33, 34]. However, in three infants (CIG13, CIG14 and CIG20),
we did not observe a bloom in B. longum subsp. infantis over time,
even though this subspecies was detected in low quantities
throughout the sampling period. Instead, these infants became
dominantly colonized with a combination of B. breve and B.
bifidum (Supplementary Fig. 2c–e), which are known to be capable
of cross-feeding HMOs efficiently [35, 36]. We speculate that this
combination hindered B. longum subsp. infantis from taking over
in these infants and/or that the B. longum subsp. infantis strains in
these infants lack key genes to metabolize HMOs [37]. Indeed, in
these three infants, faecal residuals of HMOs correlated negatively
with the abundance of B. breve/B. bifidum and not B. longum
subsp. infantis (Supplementary Table 2). Together, these data
suggest that the initial Bifidobacterium colonizers are able to
temporarily benefit from priority effects, but the strength of these
priority effects are over time modified by breastfeeding selecting
for efficient HMO-utilizers. Our data suggest that this is most
commonly B. longum subsp. infantis, but it might also be other
taxa or combinations thereof, as indicated in the three infants
eventually dominated by B. breve/B. bifidum.
To demonstrate priority effects and validate the observations in

our cohort with respect to key Bifidobacterium members, we
designed an animal experiment, using sequential inoculation of
the type strains of B. longum subsp. infantis DSM 20088 and B.
longum subsp. longum DSM 20219 into germ free (GF) mice with
or without supplying a 1.5% (w/v) mixture of HMOs (an equal
mixture of 2’FL, 3FL, LNT, LNnT, 3’SL and 6’SL) into the drinking
water as model of breastfeeding (Fig. 2a). We chose these strains
given our observations of shifts in dominance between exactly
these two subspecies within multiple infants (Fig. 1d, e, g, i), and
since it is common that infants are initially colonized with
maternal (vertically acquired) B. longum subsp. longum strains [38],
but later colonized preferentially with (horizontally acquired) B.
longum subsp. infantis strains [39]. Furthermore, a higher niche
overlap would be expected between closely related taxa, such as
strains of same species, facilitating priority effects. However, since
B. longum subsp. longum versus B. longum subsp. infantis strains
generally differ substantially in their HMO-degradation profiles
[30], we would expect to be able to modify the strength of priority
effects in the presence of HMOs. We first confirmed the
differences in HMO-utilization between the type strains of these
two subspecies by culturing them in vitro individually on 2’FL, 3FL,
LNT, LNnT, 3’SL and 6’SL (Supplementary Fig. 2). B. longum subsp.
longum DSM 20219 grew mainly on LNT and LNnT, whereas B.
longum subsp. infantis DSM 20088 grew well on all six HMOs,
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which is highly consistent with the general picture of HMO-
utilization reported on infant isolates of the two subspecies
[31, 34]. Nonetheless, since it has been reported that a fraction of
B. longum subsp. longum strains isolated from breastfed infants
are capable of efficiently utilizing fucosyllactoses [31, 40], we

cannot rule out that B. longum subsp. longum strains with HMO-
utilization capability superior to the type strain may exist in our
cohort. However, we did not find any significant associations
between abundance of B. longum subsp. longum and faecal
residuals of fucosyllactoses in the 11 B. longum subsp. infantis
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Fig. 2 The strength of priority effects in the mouse gut are modified by human milk oligosaccharide supplementation. a Experimental
design of the study. Germ free mice, consuming either normal drinking water or drinking water supplemented with HMOs, were sequentially
colonized with B. longum subsp. infantis DSM 20088 and B. longum subsp. longum DSM 20219 or vice versa at day 1 and day 7 and caecal
contents were sampled after euthanization at day 11. b, c Relative and absolute abundances of B. longum subsp. infantis DSM 20088 and
B. longum subsp. longum DSM 20219 in caecal contents of the mice at day 11, quantified by subspecies-specific qPCR. Relative abundances
were calculated by dividing the qPCR estimated counts of the given subspecies by the sum of the counts of the two and multiplying with
hundred. Data represent mean ± s.d. and statistical significance was evaluated by two tailed paired T-tests. Data from one mouse in group
1 was excluded due to very poor B. longum subsp. longum colonization (counts < LLOQ of 20 copies per reaction in the qPCR assay).

Fig. 1 B. longum subsp. infantis eventually dominates the breastfed infant’s gut due to efficient utilization of human milk
oligosaccharides. a–k Longitudinal relative abundance (bars) and absolute abundance (dots connected by dashed lines) of the major bacterial
taxa detected in faeces of eleven full term, vaginally delivered, antibiotics naïve, breastfed infants from the Copenhagen Infant Gut cohort, as
measured by 16 S rRNA gene amplicon sequencing (bars) and qPCR (dots), respectively. Only the abundant Bifidobacterium species, B. longum
subsp. longum, B. longum subsp. infantis, B. breve and B. bifidum were quantified by qPCR. Dashed line illustrate the limit of detection (LOD) of the
qPCR assay. *time points where solid foods have been consumed. #time points where breastfeeding was supplemented with formula milk.
$Inconsistency between qPCR and 16 S rRNA gene amplicon sequence data regarding the dominant Bifidobacterium species. l,m, n Longitudinal
absolute abundance of B. longum subsp. infantis and residual HMOs in faeces across all eleven infants displayed in panel (a–k) (the last sample
from CIG01 was excluded due to cessation of breastfeeding). Statistical significance of the associations between B. longum subsp. infantis and (l)
Fucosyllactoses, (m) Sialyllactoses and (n) Lacto-N-(neo)tetraoses were evaluated by linear mixed models, with β denoting the subject adjusted
association coefficient. Locally weighted scatterplot smoothing (LOWESS) curves were fitted to the data points.
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dominated infants (Fig. 1 and Supplementary Table 2). Together,
this suggest that the HMO-utilization profiles of the type strains
are well representing HMO-degradation capabilities of the strains
found in the CIG infants.
We then divided twenty-four GF mice into four groups and kept

them on drinking water with or without HMOs, starting 24 h
before oral gavage with approximately 5 × 108 CFU/ml of either B.
longum subsp. longum DSM 20219 or B. longum subsp. infantis
DSM 20088 on day 1. The mice were subsequently orally gavaged
with approximately 5 × 108 CFU/ml of the other strain on day 7
and euthanized on day 11 (Fig. 2a). Clear priority effects were
observed when the mice consumed normal drinking water, with
the order of arrival determining the relative and absolute
abundance of the two species in caecal contents on day 11
(Fig. 2b, c). In contrast, when the mice consumed the HMO-
supplemented drinking water, B. longum subsp. infantis domi-
nated regardless of the colonization order. Notably, the dom-
inance of B. longum subsp. infantis was most pronounced when it
colonized first (Fig. 2b, c). These data demonstrate priority effects
in vivo using closely related Bifidobacterium subspecies highly
prevalent in the infant gut microbiota and show that the
consumption of HMOs can strongly modify the strength of
priority effects in an experimental setting, explaining the
observations from our infant cohort.
Our results has important conceptual consequences for the way

we view infant gut microbiota assembly as it underlines the
importance of both order of colonization, and breastfeeding (HMOs)
as a selective force. Considering that efficient HMO-utilizers such as B.
longum subsp. infantis have been associated to lower prevalence of
atopic disease [20], less gut inflammation [41], improved immune
system development [22], and improved growth among malnour-
ished infants [21], our insights emphasise the role of breastfeeding to
modify the strength of priority effects in early life. Although B.
longum subsp. infantis was highly abundant in 11 out of 25 of the
studied Danish infants, this subspecies has been reported to be
present at a very low prevalence, even in breastfed infants, in many
Western populations, raising concerns about its possible extinction
[39, 42]. However, clinical trials with oral supplementation of B.
longum subsp. infantis EVC001 in breastfed neonates have demon-
strated abundant and persistent colonization of this strain [43, 44].
Thus, in light of our observations, promoting and supporting
breastfeeding remains a key priority, which may be complemented
with early probiotic administration to ensure prominent gut
colonization with key Bifidobacterium taxa during early infancy.

DATA AVAILABILITY
16 S rRNA gene amplicon sequencing data has been deposited in the Sequence Read
Archive (SRA) under BioProject PRJNA554596.
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