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Nature challenges microbes with change at different frequencies and demands an effective response for survival. Here, we used
controlled laboratory experiments to investigate the effectiveness of different response strategies, such as post-translational
modification, transcriptional regulation, and specialized versus adaptable metabolisms. For this, we inoculated replicated
chemostats with an enrichment culture obtained from sulfidic stream microbiomes 16 weeks prior. The chemostats were submitted
to alternatingly oxic and anoxic conditions at three frequencies, with periods of 1, 4 and 16 days. The microbial response was
recorded with 16S rRNA gene amplicon sequencing, shotgun metagenomics, transcriptomics and proteomics. Metagenomics
resolved provisional genomes of all abundant bacterial populations, mainly affiliated with Proteobacteria and Bacteroidetes. Almost
all these populations maintained a steady growth rate under both redox conditions at all three frequencies of change. Our results
supported three conclusions: (1) Oscillating oxic/anoxic conditions selected for generalistic species, rather than species specializing
in only a single condition. (2) A high frequency of change selected for strong codon usage bias. (3) Alignment of transcriptomes and
proteomes required multiple generations and was dependent on a low frequency of change.
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INTRODUCTION
“The only constant in life is change”, according to the philosopher
Heraclitus, ~500 BC in Ancient Greece. “Changes are in diverse
forms, up or down, rigid or flexible, and throughout the whole
universe”, as stated in I Ching, an ancient Chinese divination text,
~1000 BC. Microbes, the smallest and most abundant cellular
organisms, are coping with change all the time. Microbiomes of
the oral and digestive-tract of animals experience dynamics
associated with feeding regimes, leading to cycles of feast and
famine multiple times per day [1, 2]. Cyanobacteria display a
progression of gene expression in response to diurnal cycles [3, 4].
Seasons dictate change in lakes, with water columns mixing in
winter and stratifying during summer [5]. Often, change affects
redox conditions and triggers microbial response, which is the
topic of this study.
Even though it is often assumed that microbes are always

responsive to their environment, this is not necessarily the case.
After all, regulation is associated with trade-offs, such as the bio-
energetic costs associated with accelerated turnover of the
proteome. Both protein biosynthesis and protein degradation
cost energy and consume ATP [6]. Instead of responding to
change, microbes may survive a period of unfavorable conditions
without adaptation, counting on conditions to become more
favorable quickly enough. Alternatively, they may constitutively
express a multifunctional proteome that provides answers to
different conditions [7]. For example, in bioreactors cycled every
6–12 h, relatively few proteins were found responsive between

oxic and anoxic phases [8, 9]. In intertidal sediments, transcription
of genes for aerobic respiration and denitrification was not
affected by oxygen concentrations [10]. In tropical forest soils,
many taxa displayed sustained activity through rapidly fluctuating
redox conditions [11].
Acclimatization can also occur on the community level.

Generalists with multiple physiological capabilities are able to
deal with broader redox regimes than specialists focusing on a
single metabolism [12].
Here, we investigate to what extent the frequency of change

favors—selects for—specific metabolic and ecological strategies
and adaptations, such as (1) generalism versus specialism, (2) use
of post-translational modifications versus transcriptional
regulation.
When a wild microbiome is first transferred to the lab, initial

selection may be governed by factors outside the scope of a
study’s design—for example, the growth medium may be toxic to
some of the microbes present in the natural sample. On the other
hand, when an enrichment proceeds for too long, evolutionary
adaptation to the experimental setup may become a confounding
factor [13, 14]. To strike a balance between these two, we used a
16-week pre-adaptation period in batch-incubations, followed by
the actual experiments conducted in chemostats, for at most 16
generations, at a dilution rate of 0.5 volume changes per day. This
corresponds to a doubling time of 1.4 days, much longer than
typical for isolated bacteria grown in the lab but in the range of
doubling times of most wild microbes [15]. We applied three
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different change regimes (Fig. 1). In the first set of triplicated
chemostats, cells experienced alternatingly oxic and anoxic
conditions about twice per generation. In the second set, redox
conditions changed in pace with generation time. In the third set,
the cells experienced redox change about once per four
generations. We monitored microbial responses by transcrip-
tomics and proteomics.

MATERIALS AND METHODS
Sampling and pre-incubation
Sediment samples were collected at six sampling sites from sulfidic
streams at Canyon Creek, Canada (50.95159°N, 114.55951°W) on March
5th, 2020 (Fig. S1). In total, 60 g of the mixed sediments were inoculated
into six 1 l serum bottles with 600ml fresh medium. The medium
contained MgCl2 • 6H2O (2 mM), KH2PO4 (0.7 mM), CaCl2 (0.9 mM), NH4Cl
(1.9 mM), Na2SO4 (2.5 mM), NaNO3 (1 mM), sodium acetate (2 mM), FeCl2
(10mM), NaHCO3 (20 mM), trace element solution (1 ml/l) and vitamin
solution (1 ml/l). Trace element solution contained (per liter) titriplex III
(EDTA) (0.5 g), FeSO4 • 7H2O (0.2 g), ZnSO4 • 7H2O (0.01 g), MnCl2 • 4H2O
(0.003 g), H3BO3 (0.03 g), CoCl2 • 6H2O (0.02 g), CuCl2 • 2H2O (0.001 g), NiCl2
• 6H2O (0.002 g) and Na2MoO4 • 2H2O (0.003 g). Vitamin solution contained
(per liter) biotin (0.1 g), 4-aminobenzoic acid (0.5 g), calcium pantothenate
(0.1 g), thiamin (0.2 g), nicotinic acid (1.0 g), pyridoxamine (2.5 g) and
vitamin B12 (0.1 g). The six serum bottles were incubated in the dark, at
room temperature in a shaker for 16 weeks, for lab acclimatization. During
acclimatization, the bottles were alternately incubated with and without
oxygen for 1 week (8 oxic phases, 8 anoxic phases). At the beginning of
each oxic phase, the bottles were flushed with helium. Then, oxygen was
injected into each bottle with a syringe and the final concentration was
about 7%. At the beginning of each anoxic phase, the bottles were only
flushed with helium. Sodium acetate (2 mM), NaNO3 (1 mM) and NaHCO3

(20mM) (final concentrations) were added to the bottles every 4 weeks.

Chemostat incubation
After 16 weeks, the acclimatized cultures were used to inoculate
chemostat incubations. For this, the six cultures were first mixed together
and then used as inoculum for three sets of triplicated chemostats. In total,
100ml of mixed acclimatized culture were added to each 1 l chemostat
with 900ml fresh medium. The fresh medium contained MgCl2 • 6H2O
(2mM), KH2PO4 (0.7 mM), CaCl2 (0.9 mM), NH4Cl (1.9 mM), Na2SO4 (5 mM),
NaNO3 (2 mM), sodium acetate (5 mM), NaHCO3 (20mM), trace element
solution (1 ml/l) and vitamin solution (1 ml/l) and L-cysteine (5 mM).
L-cysteine solution was filter sterilized in an anaerobic chamber and kept
anoxic before it was added to the medium bottles. The final pH was
6.5–7.5.
Each chemostat setup consisted of a 1 l medium (feed) bottle, a 1 l

magnetically stirred culture bottle and an effluent collection bottle (Fig. S2).
Fresh medium was pumped from the medium bottle to the culture bottle

at a rate of 0.5 l per day (one volume change per 2 days). The total culture
volume of the culture bottles was maintained at 1 l by pumping out the
excess culture volume to the effluent collection bottle. All culture bottles of
the chemostats were covered with aluminum foil and stirred at 300 rounds
per minute with a magnetic stir bar. During oxic phases, 10 ml/min air was
supplied to the medium bottle and the culture bottle. During anoxic
phases, 10 ml/min Argon was supplied to the medium bottle and the
culture bottle. Thus, the chemostats experienced alternatingly oxic and
anoxic conditions. Two mM FeCl2 was added directly to the culture bottles
at the beginning of every oxic phase. Chemostats were started with an oxic
phase and ended with an anoxic phase.
There were three treatments for the chemostat incubations, high-

frequency, medium-frequency and low-frequency (Fig. 1). For each
treatment, a set of triplicated chemostats was run. The nine chemostats
were operated independently in parallel with the same inoculum. For high-
frequency experiments, each phase lasted for 0.5 days and the total culture
time was 10 days (10 oxic phases and 10 anoxic phases, 5 culture volume
changes). For medium-frequency experiments, each phase lasted for
2 days and the total culture time was 20 days (5 oxic phases and 5 anoxic
phases, 10 culture volume changes). For low-frequency experiments, each
phase lasted for 8 days and the total culture time was 32 days (2 oxic
phases and 2 anoxic phases, 16 culture volume changes).
Culture samples were collected immediately at the beginning of the

incubations and at the end of every phase. The samples were centrifuged
at 5000 rpm for 10min. Subsequently, 0.2 μm-filtered supernatants were
used for chemical measurements and cell pellets were used for DNA, RNA
and protein extractions.

Chemical measurements
Sulfide, ammonia, ferrous iron and nitrite were determined with an
Evolution 260 Bio UV-Visible Spectrophotometer (Thermo Scientific, CA,
USA). Ammonia was measured by the indophenol reaction [16]. Nitrite was
measured by a reaction with sulfanilamide and N-(1-naphthyl)ethylene-
diamine [17]. Sulfide was fixed with zinc acetate and determined by a
reaction with dimethylparaphenylenediamine and Fe(NH4)(SO4)2 • 12 H2O
as previously described [18]. Ferrous iron was measured with the ferrozine
method [19]. Acetate was quantified by high-performance liquid
chromatography (HPLC) using a Thermo RS3000 HPLC fitted with a
Kinetex 2.6 μm EVO C18 100 Å LC column, a Thermo RS3000 pump and an
UltiMate 3000 fluorescence detector (Thermo Scientific, CA, USA). Nitrate
and sulfate were measured by a Dionex ICS-5000 Ion Chromatography
System (Thermo Scientific, CA, USA) equipped with an anion-exchange
column (Dionex IonPac AS22; 4 × 250mm; Thermo Scientific), an EGC-500
K2CO3 eluent generator cartridge and a conductivity detector.

DNA extraction and amplicon sequencing
DNA was extracted from sediments, pre-incubated culture pellets and
chemostat culture pellets with the FastDNA SPIN Kit for Soil (MP
Biomedicals, Solon, OH, USA). Qubit 2.0 Fluorometer (Invitrogen, CA) was

Fig. 1 Experimental design of this study. Alternating phases of oxic and anoxic conditions were established in the three sets of triplicated
chemostats. The phases differed in length for each set, but the dilution rate was the same for all chemostats.
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used to quantify the DNA concentration. Amplicon sequencing was
performed with the primers A519F (5’-CAGCMGCCGCGGTAA-3’) and
Pro805R (5’-GACTACNVGGGTATCTAATCC-3’), targeting both archaea and
bacteria [20, 21]. PCR systems were prepared with template DNA, the
forward and the reverse primers and 2x KAPA HiFi Hot Start Ready Mix
(Roche, CA). PCR was performed with the following protocol: an initial
denaturation cycle (95 °C for 3 min), 25 cycles of denaturation (95 °C for
30 s), annealing (55 °C for 45 s) and extension (72 °C for 60 s), and a final
extension cycle (72 °C for 5 min). Triplicated PCR reactions were conducted
for each DNA sample and the PCR products were verified by 1% agarose
gel electrophoresis. The amplicons were pooled, purified and sequenced
with a Miseq System (Illumina, San Diego, CA) using the 2 × 300 bp MiSeq
Reagent Kit v3. Raw data was processed with amplicon sequencing variant
(ASV) analysis in MetaAmp [22]. Non-metric multidimensional scaling
(NMDS) analysis was performed with the “vegan” package in R v4.0.3.
Different groups were labeled with the “ordiellipse” function, which
invisibly returns an object that has a summary method that returns the
coordinates of centroids and areas of ellipses. A total of 123 samples
collected from the sediments and cultures were sequenced, yielding
4,632,919 reads after quality control (4858 to 169,903 reads per sample).

Metagenomic sequencing and data analysis
Eighteen samples were selected for metagenomic, metatranscriptomic and
metaproteomic analysis. These samples were collected at the final oxic and
anoxic phases of the triplicated treatments (2 × 3 × 3= 18). For metage-
nomics, extracted DNA (see above) was fragmented to an average insert
size of ~350 bp using acoustic sonication (Covaris model S220). Adapter-
ligated fragment libraries were generated using the Kapa Biosystems
HyperPrep PCR-free library preparation workflow, according to the
manufacturer’s protocol. The libraries were quantified with the KAPA
qPCR library quantitation assay and sequenced on a NextSeq 500 system
(Illumina, San Diego, CA) with the 300 cycle Mid-Output Kit (2 × 151 bp
paired end sequencing). The final output was ~7.2 M read pairs (~2.2 Gb)
per sample.
Raw reads were filtered with BBduk. First, the last base off of 151 bp reads

was trimmed with “ftm= 5”. Adapters were clipped off with “tbo tpe
k= 23 mink= 11 hdist= 1 ktrim= r”. PhiX sequences were filtered out with
“k= 31 hdist= 1”. 3’ low quality bases were clipped off with “qtrim=rl
trimq=15 minlength=30”. Quality-controlled reads were assembled sepa-
rately for each sample and co-assembled for all samples with MEGAHIT
v1.2.2-beta [23]. Contigs shorter than 500 bp were not considered for further
analysis. Per contig sequencing depth was determined with BBMap v38.06
with the parameter “minid=0.99”. The coassembly and each individually
assembled sample were binned separately by three methods, MetaBat
v2:2.15 [24], Maxbin v2.2.7 [25] and CONCOCT v1.1.0 [26]. DASTOOL v1.1.2
was applied to select the best bins from the three binning methods for each
library [27]. dRep v3.0.0 was used to dereplicate bins obtained from different
assemblies [28]. Completeness and contamination of bins (MAGs, Metagen-
ome-Assembled-Genomes) were estimated by CheckM v1.1.3 [29]. MAGs
were taxonomically classified with GTDBtk v1.3.0 [30]. Unbinned contigs
were dereplicated by blast searches to each other. If an unbinned contig was
99% identical to a binned contig, the unbinned contig was discarded. If two
unbinned contigs had 99% identity to each other, only the longer one was
kept. Sequencing depth information of all non-redundant contigs were
aggregated from mapping results using the MetaBAT’s “jgi_summarize_-
bam_contig_depths” script [24]. Contigs were annotated using MetaErg [31].
The relative sequence abundance of each population associated with a

MAG in metagenomes was calculated by dividing the sequencing depth of
the MAG by the sum of sequencing depths of all MAGs and the unbinned
contigs. Each MAG was associated with corresponding ASVs based on
abundance and taxonomy. The replication rate of each population was
estimated with iRep [32].

RNA extraction and metatranscriptomic sequencing
Pellets from 50ml culture were processed for RNA extraction using the
RNeasy PowerSoil Total RNA Kit (Qiagen, USA). A DNase kit (Invitrogen, CA)
was used for RNA purification. The RNA concentration was quantified with
a Qubit 2.0 Fluorometer (Invitrogen, CA). Libraries were prepared using the
New England Biolabs NEBNext rRNA depletion kit (Bacteria) and NEBNext
Ultra II Directional RNA library prep kit (Illumina, San Diego, CA). The
libraries were quantified by KAPA qPCR library quantitation assays and
sequenced paired-end using the MiSeq system (Illumina, San Diego, CA)
with a 150 cycle v3 sequencing kit, yielding ~1.5 M reads pairs for each
sample.

Read quality control was performed using the procedure described
above. Reads mapping to ribosomal genes were filtered out with
SortMeRNA v4.2.0 with a 1 × e−10 e-value cutoff [33]. The filtered reads
were mapped to the dereplicated contigs with 99% identity. Relative
transcriptional activity for each gene was calculated based on per base
sequencing depth.
To investigate transcriptional regulation of each gene in each MAG,

transcriptional abundance of each gene in each MAG was normalized by
total transcriptional abundance of all genes in the MAG. Relative
abundance of transcripts dedicated to key metabolic processes in each
MAG was calculated. Transcriptome turnover of each MAG was defined as
the percentage of gene transcripts that were different between two phases
or replicates. For transcriptome turnover calculations, only genes with
sequencing depths of ≥20 in the sum of two phases or replicates were
included. Transcriptome turnover for each MAG was calculated by dividing
the sum of the absolute differences in normalized transcriptome
sequencing depth of the genes in the MAG by two and by the number
of included genes. Transcriptome turnover was compared to expected
growth of a population, assuming per population abundances did not
change between phases (Supplementary Method). If the transcriptome
turnover was higher than the theoretical no-change value, this was taken
as evidence that a population was actively degrading old transcripts.

Protein extraction and metaproteomics
For protein extraction, 50 ml culture pellets were transferred to lysing
matrix bead tubes A (MP Biomedicals) with the addition of SDT-lysis buffer
(0.1 M DTT) in a 10:1 ratio [34]. Matrix tubes were bead-beated in an OMNI
Bead Ruptor 24 for 45 s at 6 m s−1 and then incubated at 95 °C for 10min.
These steps led to pelleted, lysed cells. Peptides were isolated from pellets
by filter-aided sample preparation (FASP) [35]. A Qubit 2.0 Fluorometer
(Invitrogen, CA) was used to quantify protein concentrations. For
proteomics, peptides were first separated on a 50 cm × 75 μm analytical
EASY-Spray column by an UltiMate 3000 RSLCnano Liquid Chromatograph
(Thermo Fisher Scientific, Waltham, MA, USA) as previously described [36].
Eluting peptides were analyzed in a QExactive Plus hybrid quadrupole-
Orbitrap mass spectrometer (Thermo Fisher Scientific, CA, USA).
Expressed proteins were identified and quantified with Proteome

Discoverer version 2.0.0.802 (Thermo Fisher Scientific, CA, USA), using
the Sequest HT node [34]. The Percolator Node and FidoCT were used to
estimate false discovery rates (FDR) at the peptide and protein level,
respectively. Peptides and proteins with FDR > 5% were discarded [36].
Relative abundance of proteins was estimated based on normalized
peptide-spectral matches (PSMs). The identification database was prepared
based on predicted protein sequences of all binned and unbinned contigs.
Redundant proteins (>95% amino acid identity) were removed by cd-hit
[37], while giving preference to proteins from binned contigs [34].
Phosphorylated and acetylated proteins were identified in parallel. Only
unambiguous PSMs with “high” FDR confidence were included in further
phosphorylation and acetylation analysis. In total, 2,216,073 MS/MS spectra
were acquired, yielding 616,029 PSMs, 20,928 identified proteins and
10,655 proteins of at least “medium” confidence.
Proteomic abundance of each gene in each MAG was normalized by total

protein abundance of all genes in the MAG. Relative abundance of proteins
dedicated to keymetabolic processes in eachMAGwas calculated. Proteome
turnover of each MAG was defined as the percentage of proteins that were
different between two phases or replicates. For proteome turnover
calculations, only genes with ≥10 detected PSMs in the sum of two phases
or replicates were included. Proteome turnover for each MAG was calculated
by dividing the sum of the absolute relative protein abundance differences
of the genes in the MAG by two and by the number of included genes.
Proteome turnover was compared to expected growth of a population,
assuming per population abundances did not change between phases
(Supplementary Method). If the proteome turnover was higher than the
theoretical no-change value, this was taken as evidence that a population
was actively degrading old proteins. Calculation of correlation between
transcriptional and translational regulation only included genes with the sum
of transcript sequencing depths ≥60 and the sum of detected PSMs ≥30 in
triplicates in two phases. For each MAG, the Pearson correlation coefficient
between the transcriptome differences and the proteome differences of the
involved genes between phases was calculated.

Statistical analyses
Calculations of transcriptome/proteome turnover and their correlation were
performed with the “tidyverse” package in R v4.0.3. Nutrient concentrations,
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DNA concentrations and relative abundance of microbial populations were
compared between phases and between frequencies in t-tests for
independent samples. For the comparison between phases, t-tests were
performed between all samples collected at the oxic phases and all samples
collected at the anoxic phases. iRep values were compared between phases
in t-tests for paired samples. Fold changes in activity of genes associated
with key metabolic subsystems were compared to 1 in t-test for one sample.
Transcriptome/proteome turnover and correlation values of single popula-
tions were compared within and between frequencies in t-tests for
independent samples. Transcriptome/proteome turnovers of single popula-
tions were compared to theoretical cell turnovers in t-test for one sample. All
t-tests were carried out in PASW Statistics v18.0. Statistical analyses were
considered significant with p values < 0.05.

RESULTS
Outcomes of microbial metabolism
Rhythms in nutrient concentrations proceeded in pace with shifts
in air and Argon flushing (Fig. 2). This showed that (1) the shifts in
redox conditions were established and (2) the enriched bacteria
were responding to the shifting conditions. After 2–4 generations,
acetate was always fully consumed during oxic phases. During
anoxic phases, it accumulated to 4.2 mM (SD= 1.1 mM) in low-
frequency experiments. We observed little change in sulfate

concentrations at high- (mean= 4.9 mM, SD= 0.35 mM) and
medium-frequency (mean= 4.6 mM, SD= 0.57 mM). At low-fre-
quency, sulfate accumulated to 8.1 mM (SD= 1.1 mM) during oxic
phases, significantly higher than that during anoxic phases
(mean= 4.8 mM, SD= 0.61 mM, two-sample two-sided t-tests;
p= 0.00018). Sulfide remained undetectable during oxic phases,
and accumulated to 1.1 mM (SD= 0.39 mM) during anoxic phases
at low-frequency. Nitrate was mostly used up during both oxic and
anoxic phases (Supplementary Table 2). These results indicated
occurrence of aerobic respiration, (aerobic) denitrification, sulfide
oxidation and cysteine metabolism. At low-frequency, total
cellular biomass was 3.9 times (SD= 1.5) higher during oxic
phases than anoxic phases (two-sample two-sided t-tests;
p= 0.00026) (with DNA as a proxy for biomass, Supplementary
Table 2). At medium-frequency, oxic biomass was 2.6 times
(SD= 1.7) higher than anoxic biomass (two-sample two-sided t-
tests; p= 0.0017). No significant differences between oxic and
anoxic biomass were observed at high-frequency (two-sample
two-sided t-tests; p= 0.11). Because aerobic metabolism provides
more energy, biomass was expected to be higher at the end of
oxic phases than anoxic phases. In addition, cells growing slower
than a chemostat’s dilution rate may also be washed out during
anoxic periods, reducing biomass.

Fig. 2 Concentrations of acetate, ammonia, sulfate and sulfide during oxic and anoxic phases at different frequencies. Triplicates are
indicated by black, red and blue lines and symbols. The green bar at the top shows chemostat dilutions. In the second bar, oxic and anoxic
phases are shown in red and blue respectively.
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Community dynamics
16S rRNA gene amplicon sequencing showed both aerobes (e.g.,
Thiobacillus, Thiothrix and Thiomicrorhabdus) and anaerobes (e.g.,
Geobacter, Desulfocapsa and Sulfurovum) were present in the
original sediment community (Fig. S5 and Supplementary Table 3).
By the end of the 16-week pre-adaptation, 199 populations
remained, with 34 of the 119 most abundant stream populations
(relative sequence abundance in situ >0.1%) still present
(Supplementary Table 3). This biodiversity was the starting point
for subsequent selection in the main chemostat experiment.
Selection in chemostats was very effective, as within 2 days, most
of the 199 populations present in the inoculum became
undetectable and a simple microbial community was established
in each experiment. These communities featured the same ten
abundant populations (ASVs), making up >88% of relative
sequence abundance across all chemostat experiments (Fig. 3a
and Supplementary Table 3). Three of these ten populations, “ASV
3 Thiobacillus”, “ASV 9 Arenimonas” and “ASV 10 Brevundimonas”
were ubiquitous in the natural stream microbiomes. Among the
ten most abundant populations from the stream, three were
represented in the chemostats, including “ASV 3 Thiobacillus”
(Fig. S5).
At high-frequency, we observed little turnover of populations

between oxic and anoxic phases, with “ASV 1 Pseudomonas”
dominating communities in two of the replicates. At low-
frequency, community compositions oscillated in tune with oxic
and anoxic conditions. For example, “ASV 1 Pseudomonas” (two-
sample two-sided t-tests; p= 0.0037) and “ASV 2 Allorhizobium”
(two-sample two-sided t-tests; p= 0.000072) were significantly
more abundant during anoxic and oxic phases respectively. This
was the only treatment where community differences between
phases were larger than between replicates, as shown by NMDS
(Fig. 3b, c).

Physiology and growth of enriched populations
To investigate the metabolic potential and lifestyle of the enriched
populations more closely, shotgun metagenomes were sequenced
for samples collected at the end of the final oxic and anoxic
phases of each chemostat experiment. The metagenomes were
assembled and binned into metagenome-assembled genomes
(MAGs). Twenty-six MAGs accounted for over 99% of sequenced
DNA in all samples (Fig. 4a and Supplementary Table 5).
Community composition based on 16S rRNA gene and shotgun
sequencing were consistent, but relationships between ASVs and
MAGs were not always one to one. For example, “ASV 1
Pseudomonas” was associated with two MAGs, “ASV Pseudomonas
A” and “ASV Pseudomonas C”.
Analysis of gene content of MAGs indicated that 22 out of 26

associated populations were capable of both aerobic and
anaerobic growth (Fig. 4a and Supplementary Tables 6–31). Most
deciphered metabolic pathways were encoded in >50% of MAGs,
indicating vast functional redundancy among community mem-
bers. As cysteine was a major source of energy, carbon and sulfur
in the medium, it was not surprising that all selected populations
encoded cysteine desulfurase in their genomes. Aerobic respira-
tion, denitrification and sulfide oxidation were common (Fig. 2).
One metabolic pathway we did not expect was the Calvin cycle for
carbon fixation: ten genomes contained both ribulose-1,5-bispho-
sphate carboxylase-oxygenase (RuBisCO) and phosphoribuloki-
nase (PRK) [38]. Apparently, almost half of the enriched
populations potentially used carbon dioxide as a carbon source
even though organic substrates such as acetate were often
present in excess (Fig. 2).
The capacity of most populations to grow both aerobically and

anaerobically was supported by similar relative sequence abun-
dance of associated MAGs during oxic and anoxic phases at high-
and medium-frequency, in agreement with amplicon sequencing
results. However, at low-frequency, “1 Pseudomonas AC” and “2

Allorhizobium A” were more abundant during anoxic and oxic
phases respectively. To compare aerobic and anaerobic growth
rates of individual populations, we calculated the peak-to-trough
(PTR) ratio of sequencing depth for each MAG during oxic and
anoxic conditions with iRep [32]. A high growth rate is associated
with a high genome replication rate, resulting in a high PTR ratio.
Although PTR is a poor proxy for growth rate when comparing
different species [39], it works well for comparing growth rates of
the same species across different samples [32]. We found PTR
ratios did not differ significantly between phases, even for “2
Allorhizobium A” (two-sample two-sided t-tests; p= 0.94) at low-
frequency (Fig. 4b and Supplementary Table 32). This indicated
that aerobic and anaerobic growth rates were similar. Overall,
analysis of PTR ratios supported the conclusion that dynamic
conditions selected for species that coped well with both oxic and
anoxic conditions. Even in the case of “1 Pseudomonas AC” and “2
Allorhizobium A” at low-frequency, the observed changes in
abundance could be explained with only minor differences in
growth rate.
Differences in relative abundances of MAGs showed that

frequency of change selected for specific populations, in
agreement with amplicon sequencing results. For example, “1
Pseudomonas AC”, “4 Allorhizobium B” and “3,6 Thiobacillus AB”
were most abundant at high-, medium- and low-frequency
respectively. To explore the potential underlying mechanisms,
we investigated the codon usage bias of the MAGs with gRodon
(Supplementary Table 33) [40]. Strong codon usage is associated
with rapid growth, but could also facilitate rapid gene expression
in response to environmental cues. According to the predicted
minimum doubling times by gRodon, we classified the popula-
tions to fast copiotrophs (<2 h), slow copiotrophs (>2 and <5 h)
and oligotrophs (>5 h) (Fig. 4c and Supplementary Table 33). Even
though doubling times in the chemostats were the same in all
experiments, they selected for a mix of copiotrophs and
oligotrophs (Fig. 4c). However, fast copiotrophs were more
abundant at high- and medium-frequency than at low-frequency
(two-sample two-sided t-tests; p= 0.000053). Slow copiotrophs
were more abundant at medium- and low-frequency (two-sample
two-sided t-tests; p= 0.00028), and oligotrophs were more
abundant at low-frequency (two-sample two-sided t-tests;
p= 0.00013) (Fig. 4c). To generalize this finding in the natural
environment, the codon usage bias of microbes experiencing
redox dynamics in permeable sandy sediments was investigated
[41]. The relative abundance of copiotrophs was higher at
shallower sediments which experienced more frequent redox
change, and decreased with depth at all three sampling sites
(Supplementary Table 34). Thus, in the natural environment,
strong codon usage may also be an important factor in adapting
to a high pace of change.

Transcriptional and translational regulation
Metatranscriptomics and proteomics were used to determine
changes to each population’s gene expression from the final oxic
phase to the final anoxic phase (Fig. 5a and Supplementary
Tables 35–42). Genes involved in all investigated metabolic
categories, including the Calvin cycle, were active during both
oxic and anoxic phases. At all three frequencies, genes for aerobic
respiration were more actively transcribed during oxic phases,
while denitrification genes were more active during anoxic
phases. The responses of some subsystems were determined by
the frequency of change. For example, hydrogen oxidation
performed by NiFe hydrogenases was more active during the
oxic phase at low-frequency and during the anoxic phase at high-
frequency, respectively. Most subsystems showed no significant
differences in proteomes.
To explore the role of gene expression in adaptation more

broadly than these categories, we calculated the “turnover” of
each population’s entire transcriptome and proteome across
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phases and frequencies. The turnover is the percentage of
transcriptome/proteome that differs between two samples. To
get a sense of the experimental noise and natural variability, we
compared the turnover from the oxic to the anoxic phase of
individual replicates to the turnover between two replicates at the
same phase (oxic or anoxic).
Whereas transcriptome “turnover” between replicates was

highest at high-frequency, transcriptome turnover between

phases was highest at low-frequency (Fig. 5b and Supplementary
Table 43). Exposure to change of higher frequency led to higher
natural variability in transcriptomes. Only at low-frequency was
transcriptome turnover associated with regulation (mean= 44.9%,
SD= 15.4%, n= 63) higher than stochastic differences between
replicates (mean= 24.0%, SD= 13.4%, n= 118) (two-sample two-
sided t-tests; p= 2.5 × 10−17). Transcriptome turnover was always
equal to or lower than cell turnover (two-sample two-sided t-tests;

Fig. 3 Community dynamics in the chemostats. a Change in relative sequence abundances of the ten most abundant populations (amplicon
sequence variants, ASVs) in chemostat incubations, based on 16S rRNA gene amplicon sequencing. Outcomes of triplicated experiments are
shown individually for each frequency. The green bar at the top enumerates chemostat dilutions. In the second bar, oxic and anoxic phases
are shown in red and blue respectively. b Non-metric multidimensional scaling (NMDS) (based on Bray–Curtis distances) of all samples
collected along the chemostat incubations and (c) only samples collected during the final oxic and the final anoxic phases. Colored ellipses
show variation among samples of the two phases of each treatment obtained with the “ordiellipse” function from the “vegan” package in R.
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p ≤ 0.068), indicating that microbes may not have actively
degraded old transcripts (messenger RNA), but only responded
to change by adding new ones.
Surprisingly, proteomes showed a different trend (Fig. 5c and

Supplementary Table 43): Here, turnover between replicates and
phases were both highest at high-frequency. Proteome turnover
between phases was similar to transcriptome turnover between

phases at low-frequency (two-sample two-sided t-tests; p= 0.92),
but much higher than transcriptome turnover between phases at
high- (two-sample two-sided t-tests; p= 8.9 × 10−29) and medium-
frequency (two-sample two-sided t-tests; p= 8.9 × 10−10). Pro-
teome turnover was lower than cell turnover at medium- (two-
sample two-sided t-tests; p= 9.3 × 10−6) and low-frequency (two-
sample two-sided t-tests; p= 1.0 × 10−47), but larger than cell

Fig. 4 Enriched populations associated with metagenome-assembled genomes (MAGs) in the three sets of chemostats during the final
oxic phase and the final anoxic phase. a Metabolic potential, taxonomy and relative sequence abundance of the populations
(Supplementary Tables 5–31). R1, R2 and R3 represent the chemostat triplicates. Fast copiotrophs, slow copiotrophs and oligotrophs are
indicated by blue, yellow and pink taxon names respectively. “d” represents the minimum doubling time predicted by gRodon [40]
(Supplementary Table 33). b iRep values (Supplementary Table 32) of the populations. c Relative abundance of fast copiotrophs, slow
copiotrophs and oligotrophs in the three sets of chemostats. Horizontal lines show significant differences determined in two-sample two-
sided t-tests, with p values < 0.01 indicated with “**” and <0.001 indicated with “***”.
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turnover at high-frequency (two-sample two-sided t-tests;
p= 7.2 × 10−27). This indicated active proteome remodeling
(degradation of old proteins). Alternatively, and perhaps more
likely, these results could also be explained by active use of post-
translational modifications (PTMs, see below) at high-frequency.
Because many PTMs are unknown and not in our databases or
might have been lost during sample processing, proteins with
PTMs may not have been identified, artifactually increasing
protein turnover numbers.
The coherence of transcriptional and translational responses

was determined by calculating the Pearson correlation coefficient
of mRNA and protein differences between phases (Fig. 5d and
Supplementary Table 44). Significantly higher correlations were
observed at low-frequency (mean= 0.26, SD= 0.36, n= 24) than
high-frequency (mean= 0.0053, SD= 0.31, n= 50) (two-sample

two-sided t-tests; p= 0.0023). Coherence between the transcrip-
tome and proteome was thus only observed when the pace of
change was lower than the generation time.

Post-translational modifications
PTM is a mechanism for rapidly activating or suppressing a
protein’s function. Phosphorylation and acetylation are two
commonly observed PTMs [42]. In total, we observed 2320
phosphorylation events and 2003 acetylation events with high
confidence across all 18 replicates and conditions (Fig. S6 and
Supplementary Tables 45 and 46). We observed more phosphory-
lated proteins at medium-frequency (mean= 0.88% of detected
proteins, SD= 0.49%) compared to the other two frequencies
(mean= 0.28% of detected proteins, SD= 0.21%) (two-sample
two-sided t-tests; p= 0.0034). Phosphorylation was mainly

Fig. 5 Change in transcriptomes and proteomes in the three sets of chemostats. a Fold change in activity of genes associated with key
metabolic subsystems (Supplementary Tables 35–42) from the final oxic phase to the final anoxic phase. Each data point is associated with
one of 26 MAGs. Results are shown for transcriptomes (left) and proteomes (right), each at the three different frequencies of change.
Significances, determined with one-sample two-sided t-tests, are indicated, with p values < 0.05 as “*”, <0.01 as “**” and <0.001 as “***”. The
enzymes involved in the analysis of each metabolism were indicated below the figure. b Turnover of transcriptomes across phases and
replicates (Supplementary Table 43). Each dot shows overall transcriptome turnover between phases and replicates for a single MAG.
c Turnover of proteomes across phases and replicates (Supplementary Table 43). Each dot shows overall proteome turnover between phases
and replicates for a single MAG. d Pearson correlation coefficients of transcriptome differences and proteome differences between phases for
a single MAG (Supplementary Table 44). Each dot shows the correlation between the transcriptome and the proteome for a single MAG.
Horizontal lines in (b–d) show significant differences determined with two-sample two-sided t-tests.
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observed for enzymes involved in central metabolism (the TCA
cycle and glycolysis), such as Enolase, Malate dehydrogenase and
Phosphoglycerate kinase. Acetylated proteins were detected in
similar amounts at the three frequencies (mean= 0.45% of
detected proteins, SD= 0.18%) and were more often observed
for proteins associated with the cell envelope, including
membrane proteins, flagellar biogenesis, and regulators, such as
molecular sensors and two-component response regulators.

DISCUSSION
In this study, we sampled a microbial community from a sulfidic
spring, a community that was naturally exposed to redox
gradients in space and time and was easily accessible year-round,
facilitating future reproduction of the work. Next, we pre-adapted
this community to the laboratory using weekly alternating oxic/
anoxic conditions for 16 weeks. The pre-adaptation yielded an
enrichment culture featuring at least 199 different populations,
including many that were relatively abundant in the original
spring. Although it remains unknown if a different frequency
during the pre-incubation would have retained different popula-
tions, at least many remained at the start of the main experiment.
In the main experiment, the pre-adapted community was

incubated at three different frequencies of oxic/anoxic change in
three sets of triplicated chemostats. All chemostats had the same
dilution rate, enforcing the same growth rate in all experiments.
Though the total incubation time (and # of generations) at each
frequency was different (Fig. 1), stabilization of community
composition as well as concentrations of substrates and products
indicated a pseudo steady state was reached long before the end
of each experiment (Figs. 2 and 3). Thus, although this difference
could have been a confounding factor, this did not appear to be
the case in practice.
The amplicon sequencing data clearly showed at high-

frequency, redox change selected for a single, generalist micro-
biome capable of coping with both oxic and anoxic conditions. In
contrast, diverging aerobic and anaerobic microbiomes appeared
at low-frequency. Even at low-frequency, populations displayed
similar growth rates independent of redox conditions, as shown
by co-expression of genes for both aerobic and anaerobic
metabolism, similar peak-to-trough ratios in genome sequencing
depth and persistent relative sequence abundances, with only few
exceptions at low-frequency. Note that our low-frequency
experiment featured 8-day long oxic and anoxic phases, much
longer than common natural oscillations such as day/night cycles
and feeding regimes. Thus, even though specialization of
microbiomes was detectable, the enriched populations were
overwhelmingly generalist. At an even slower pace of change,
selection of specialized microbiomes will proceed eventually, as
reported in previous studies, for example, seasonal change
[43, 44].
We also investigated the use of transcriptional regulation and

PTMs. We did not see an evident trend of PTMs at different
frequencies, which might be explained by losses of PTMs during
sample processing in combination with occurrence of an untested
diversity in potential PTMs. Dedicated approaches to quantify
PTMs will be needed to address the importance of PTMs more
conclusively [45, 46]. Significant regulation was observed for some
metabolisms on RNA level. For example, expression of genes
involved in denitrification was higher during anoxic conditions,
independent of frequency. In addition, the overall gene expres-
sions were more variable at high-frequency. This variability was
not associated with changing conditions but was stochastic,
caused by differences between replicates.
In contrast, at low-frequency, variability in gene transcription

could be mainly explained by redox state. This was also the only
frequency at which transcriptomes and proteomes were overall
consistent with each other. The discrepancy between

transcriptional and translational regulation was observed pre-
viously. For example, abundance oscillations of proteins involved
in central metabolisms of the cyanobacterium Prochlorococcus
experiencing a 2-h light-dark cycle were substantially damped
compared to the corresponding transcripts, while proteins and
transcripts for some genes were completely antiphase [47]. Also in
carbon-starved Caulobacter crescentus some genes reacted either
on the mRNA or protein level, while other genes displayed
opposite mRNA and protein responses [48]. Transcriptional
regulation is commonly assumed to be a fast response, because
a mRNA response is often observed immediately [49]. Whereas our
study also detected rapid transcriptomic response for some genes,
the entire transcriptome and proteome only aligned completely
after multiple generations. It seems that transcriptional regulation
could not be finished within a single generation. This was also
reflected in some previous studies: for example, the transcrip-
tomes of Dinoroseobacter shibae and Candidatus Accumulibacter
phosphatis were still changing in response to oxic/anoxic change
after more than half a generation [50, 51]. Other studies found
transcriptomes to be significantly different multiple generations
after a redox change [52, 53]. Transcriptomes are often used to
probe microbial ecology and have been shown to have short
(<10min) half lives [54]. The much slower apparent response
times observed here and in the cited studies might be important
to consider in the design of future studies of ecosystems
experiencing rapid change, such as intestinal [55], soil [56] and
ocean-surface [57] microbiomes.
We compared the strength of the codon usage bias at different

frequencies. Codon usage bias was previously associated with
maximum growth rate (copiotrophs versus oligotrophs) [40]. In
our experiments, success was not determined by differences in
growth rate, as the growth rate was the same across all
experiments. This was also observed in permeable sandy
sediments, where oligotrophs were more abundant in more
stable deeper sediments [41]. Because strong codon bias could
enable copiotrophs to more rapidly respond to change, selection
of copiotrophs at high-frequency can still be infered.
In conclusion, we incubated a sulfidic stream microbiome in

replicated chemostats subjected to oxic/anoxic change at
different frequencies. We found that generalists capable of both
oxic and anoxic metabolism were more abundant than specialists
and these microbes co-expressed genes for aerobic and anaerobic
metabolisms continuously, independent of redox state. Individual
populations expressed proteomes that enabled them to be active
all the time, while transcriptional and translational regulation was
only consistent at multi-generational timescales. Selection by high
and low frequency of change was found to act on codon usage
bias and this defines a novel perspective on this global feature of
bacterial genomes. Future studies with different approaches and
source microbiomes will validate if these findings can be
generalized.
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