Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitrogen fixation and diazotroph diversity in groundwater systems

Abstract

Biological nitrogen fixation (BNF), the conversion of N2 into bioavailable nitrogen (N), is the main process for replenishing N loss in the biosphere. However, BNF in groundwater systems remains poorly understood. In this study, we examined the activity, abundance, and community composition of diazotrophs in groundwater in the Hetao Plain of Inner Mongolia using 15N tracing methods, reverse transcription qPCR (RT-qPCR), and metagenomic/metatranscriptomic analyses. 15N2 tracing incubation of near in situ groundwater (9.5–585.4 nmol N L−1 h−1) and N2-fixer enrichment and isolates (13.2–1728.4 nmol N g−1 h−1, as directly verified by single-cell resonance Raman spectroscopy), suggested that BNF is a non-negligible source of N in groundwater in this region. The expression of nifH genes ranged from 3.4 × 103 to 1.2 × 106 copies L−1 and was tightly correlated with dissolved oxygen (DO), Fe(II), and NH4+. Diazotrophs in groundwater were chiefly aerobes or facultative anaerobes, dominated by Stutzerimonas, Pseudomonas, Paraburkholderia, Klebsiella, Rhodopseudomonas, Azoarcus, and additional uncultured populations. Active diazotrophs, which prefer reducing conditions, were more metabolically diverse and potentially associated with nitrification, sulfur/arsenic mobilization, Fe(II) transport, and CH4 oxidation. Our results highlight the importance of diazotrophs in subsurface geochemical cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of nifH gene abundances and their response to environment variables.
Fig. 2: Diversity and community composition of native and active diazotrophs in groundwater samples.
Fig. 3: Relationship between geochemical parameters and diazotrophic communities.
Fig. 4: Metabolic potential and genomic bins related to N2 fixation and N/S/Fe/CH4/As cycles in groundwater.
Fig. 5: N2 fixation rates in field groundwater and N2-fixer enrichments and isolates.

Similar content being viewed by others

Data availability

The raw data have been submitted to the NCBI database under BioProject numbers PRJNA937386, PRJNA996345, PRJNA996367, PRJNA882225, and PRJNA884812.

References

  1. Mosley O, Gios E, Close M, Weaver L, Daughney C, Handley K. Nitrogen cycling and microbial cooperation in the terrestrial subsurface. ISME J. 2022;16:2561–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dong X, Zhang C, Peng Y, Zhang H-X, Shi L-D, Wei G, et al. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nat Commun. 2022;13:4885.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gier J, Sommer S, Löscher C, Dale A, Schmitz R, Treude T. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences. 2016;13:4065–80.

    CAS  Google Scholar 

  4. Tian L, Yan Z, Wang C, Xu S, Jiang H. Habitat heterogeneity induces regional differences in sediment nitrogen fixation in eutrophic freshwater lake. Sci Total Environ. 2021;772:145594.

    CAS  PubMed  Google Scholar 

  5. Capone DG, Burns JA, Montoya JP, Subramaniam A, Mahaffey C, Gunderson T, et al. Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem Cy. 2005;19:GB2024.

  6. Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 2011;5:1484–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zehr J, Shilova I, Farnelid H, Muñoz Marin M, Turk-Kubo K. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:16214.

    PubMed  Google Scholar 

  8. Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiol Rev. 2000;24:487–506.

    CAS  PubMed  Google Scholar 

  9. Zhang X, Ward BB, Sigman DM. Global nitrogen cycle: Critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem Rev. 2020;120:5308–51.

    CAS  PubMed  Google Scholar 

  10. Hou L, Wang R, Yin G, Liu M, Zheng Y. Nitrogen fixation in the intertidal sediments of the Yangtze Estuary: Occurrence and environmental implications. J Geophys Res-Biogeo. 2018;123:936–44.

    CAS  Google Scholar 

  11. Saiz E, Sgouridis F, Drijfhout FP, Ullah S. Biological nitrogen fixation in peatlands: Comparison between acetylene reduction assay and 15N2 assimilation methods. Soil Biol Biochem. 2019;131:157–65.

    CAS  Google Scholar 

  12. Tsoy OV, Ravcheev DA, Čuklina J, Gelfand MS. Nitrogen fixation and molecular oxygen: Comparative genomic reconstruction of transcription regulation in Alphaproteobacteria. Front Microbiol. 2016;7:1343.

    PubMed  PubMed Central  Google Scholar 

  13. Boyd E, Peters J. New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol. 2013;4:201.

    PubMed  PubMed Central  Google Scholar 

  14. Newell S, Pritchard K, Foster S, Fulweiler W. Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ. 2016;4:e1615.

    PubMed  PubMed Central  Google Scholar 

  15. Reed S, Cleveland C, Townsend A. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annu Rev Ecol Evol Syst. 2011;42:489–512.

    Google Scholar 

  16. Houlton BZ, Wang Y-P, Vitousek PM, Field CB. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature. 2008;454:327–30.

    CAS  PubMed  Google Scholar 

  17. Smercina D, Evans S, Friesen M, Tiemann L. To fix or not to fix: Controls on free-living nitrogen-fixation in the rhizosphere. Appl Environ Microbiol. 2019;85:e02546–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kapili B, Barnett S, Buckley D, Dekas A. Evidence for phylogenetically and catabolically diverse active diazotrophs in deep-sea sediment. ISME J. 2020;14:971–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bertics V, Löscher C, Salonen I, Dale A, Gier J, Schmitz RA, et al. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences. 2013;10:1243–58.

    CAS  Google Scholar 

  20. Gier J, Löscher C, Dale A, Sommer S, Lomnitz U, Treude T. Benthic dinitrogen fixation traversing the oxygen minimum zone off Mauritania (NW Africa). Front Mar Sci. 2017;4:390.

    Google Scholar 

  21. Fulweiler W, Brown S, Nixon S, Jenkins B. Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Mar Ecol Prog Ser. 2013;482:57–68.

    CAS  Google Scholar 

  22. Jia R, Wang K, Li L, Qu Z, Shen W, Qu D. Abundance and community succession of nitrogen-fixing bacteria in ferrihydrite enriched cultures of paddy soils is closely related to Fe(III)-reduction. Sci Total Environ. 2020;720:137633.

    CAS  PubMed  Google Scholar 

  23. Sun X, Kong T, Häggblom M, Kolton M, Li F, Dong Y, et al. Chemolithoautotropic diazotrophy dominates the nitrogen fixation process in mine tailings. Environ Sci Technol. 2020;54:6082–93.

    CAS  PubMed  Google Scholar 

  24. Alley W, Healy R, LaBaugh J, Reilly T. Flow and storage in groundwater systems. Science. 2002;296:1985–90.

    CAS  PubMed  Google Scholar 

  25. Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.

    Google Scholar 

  26. Nai H, Xin J, Liu Y, Zheng X, Lin Z. Distribution and molecular chemodiversity of dissolved organic nitrogen in the vadose zone-groundwater system of a fluvial plain, northern China: Implications for understanding its loss pathway to groundwater. Sci Total Environ. 2020;723:137928.

    CAS  PubMed  Google Scholar 

  27. Jiang Z, Shen X, Shi B, Cui M, Wang Y, Li P. Arsenic mobilization and transformation by ammonium-generating bacteria isolated from high arsenic groundwater in Hetao Plain, China. Int J Environ Res Public Health. 2022;19:9606.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar S, Herrmann M, Blohm A, Hilke I, Frosch T, Trumbore S, et al. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol. 2018; 94; https://doi.org/10.1093/femsec/fiy141.

  29. Wang S, Radny D, Huang S, Zhuang L, Zhao S, Berg M, et al. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils. Sci Rep. 2017;7:40173.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Han L-L, Wang H, Ge L, Xu M, Tang J-M, Li L, et al. Transition of source/sink processes and fate of ammonium in groundwater along with redox gradients. Water Res. 2023;231:119600.

    CAS  PubMed  Google Scholar 

  31. Xiong Y, Du Y, Deng Y, Ma T, Wang Y. Feammox in alluvial-lacustrine aquifer system: Nitrogen/iron isotopic and biogeochemical evidences. Water Res. 2022;222:118867.

    CAS  PubMed  Google Scholar 

  32. Li P, Jiang Z, Wang Y, Deng Y, Van Nostrand J, Yuan T, et al. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. Water Res. 2017;123:268–76.

    CAS  PubMed  Google Scholar 

  33. Xin J, Liu Y, Chen F, Duan Y, Wei G, Zheng X, et al. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. Water Res. 2019;165:114977.

    CAS  PubMed  Google Scholar 

  34. Zhu G, Wang S, Li Y, Zhuang L, Zhao S, Wang C, et al. Microbial pathways for nitrogen loss in an upland soil. Environ Microbiol. 2018;20:1723–38.

    CAS  PubMed  Google Scholar 

  35. Zhou W, Xia L, Yan X. Vertical distribution of denitrification end-products in paddy soils. Sci Total Environ. 2017;576:462–71.

    CAS  PubMed  Google Scholar 

  36. Mosley OE, Gios E, Weaver L, Close M, Daughney C, van der Raaij R, et al. Metabolic diversity and aero-tolerance in anammox bacteria from geochemically distinct aquifers. mSystems. 2022;7:e01255–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang Z, Li P, Wang Y, Liu H, Wei D, Yuan C, et al. Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. Sci Rep. 2019;9:12972.

    PubMed  PubMed Central  Google Scholar 

  38. Dong Y, Sanford RA, Connor L, Chee-Sanford J, Wimmer BT, Iranmanesh A, et al. Differential structure and functional gene response to geochemistry associated with the suspended and attached shallow aquifer microbiomes from the Illinois Basin, IL. Water Res. 2021;202:117431.

    CAS  PubMed  Google Scholar 

  39. Méheust R, Castelle C, Carnevali P, Farag I, He C, Chen L, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.

    PubMed  PubMed Central  Google Scholar 

  40. Bae H-S, Rash B, Rainey F, Nobre M, Tiago I, da Costa M, et al. Description of Azospira restricta sp. nov., a nitrogen-fixing bacterium isolated from groundwater. Int J Syst Evol Microbiol. 2007;57:1521–26.

    CAS  PubMed  Google Scholar 

  41. Pedron R, Luchi E, Albiac MA, Di Cagno R, Catorci D, Esposito A, et al. Mesorhizobium comanense sp. nov., isolated from groundwater. Int J Syst Evol Microbiol. 2021; 71; https://doi.org/10.1099/ijsem.0.005131.

  42. Xiu W, Wu M, Nixon SL, Lloyd JR, Bassil NM, Gai R, et al. Genome-resolved metagenomic analysis of groundwater: Insights into arsenic mobilization in biogeochemical interaction networks. Environ Sci Technol. 2022;56:10105–19.

    CAS  PubMed  Google Scholar 

  43. Chen M, Lu Y, Jiao N, Tian J, Kao S-J, Zhang Y. Biogeographic drivers of diazotrophs in the western Pacific Ocean. Limnol Oceanogr. 2019;64:1403–21.

    CAS  Google Scholar 

  44. Wang Y, Zhang G, Wang H, Cheng Y, Liu H, Jiang Z, et al. Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers. J Hazard Mater. 2021;411:125146.

    CAS  PubMed  Google Scholar 

  45. Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol. 2001;152:95–103.

    CAS  PubMed  Google Scholar 

  46. Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.

    PubMed  PubMed Central  Google Scholar 

  47. Jiang Z, Zhong S, Shen X, Cui M, Wang Y, Li J. Microbially mediated arsenic mobilization in the clay layer and underlying aquifer in the Hetao Basin, Inner Mongolia, China. Sci Total Environ. 2022;836:155597.

    CAS  PubMed  Google Scholar 

  48. Wang H, Li P, Liu X, Zhang J, Stein LY, Gu J-D. An overlooked influence of reactive oxygen species on ammonia-oxidizing microbial communities in redox-fluctuating aquifers. Water Res. 2023;233:119734.

    CAS  PubMed  Google Scholar 

  49. Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N(inf2) fixation. Appl Environ Microbiol. 1996;62:986–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu S, Moge D, Wan X, Selden C, Benavides M, Bonnet S, et al. Insights into nitrogen fixation below the euphotic zone: Trials in an oligotrophic marginal sea and global compilation. Biogeosciences Discuss. 2021;2021:1–31.

    CAS  Google Scholar 

  51. Berthelot H, Benavides M, Moisander P, Grosso O, Bonnet S. High Nitrogen fixation rates in the particulate and dissolved pools in the Western Tropical Pacific (Solomon and Bismarck Seas). Geophys Res Lett. 2017;44:8414–23.

    CAS  Google Scholar 

  52. Knapp AN, Sigman DM, Lipschultz F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Global Biogeochem Cy. 2005;19:1–15.

  53. Xu MN, Wu Y, Zheng LW, Zheng Z, Zhao H, Laws EA, et al. Quantification of multiple simultaneously occurring nitrogen flows in the euphotic ocean. Biogeosciences. 2017;14:1021–38.

    CAS  Google Scholar 

  54. Lu Y, Wen Z, Shi D, Lin W, Bonnet S, Dai M, et al. Biogeography of N2 fixation influenced by the western boundary current intrusion in the South China Sea. J Geophys Res: Oceans. 2019;124:6983–96.

    CAS  Google Scholar 

  55. Lu Y, Wen Z, Shi D, Chen M, Zhang Y, Bonnet S, et al. Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study. Biogeosciences. 2018;15:1–12.

    Google Scholar 

  56. Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PH, et al. The contamination of commercial 15N2 gas stocks with 15N–labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE. 2014;9:e110335.

    PubMed  PubMed Central  Google Scholar 

  57. Fulweiler RWW, Heiss EM, Rogener MK, Newell SE, Wilhelm SW. Examining the impact of acetylene on N-fixation and the active sediment microbial community. Front Microbiol. 2015;6:418.

    PubMed  PubMed Central  Google Scholar 

  58. Cui L, Yang K, Li H-Z, Zhang H, Su J-Q, Paraskevaidi M, et al. Functional single-cell approach to probing nitrogen-fixing bacteria in soil communities by resonance raman spectroscopy with 15N2 labeling. Anal Chem. 2018;90:5082–89.

    CAS  PubMed  Google Scholar 

  59. Cui L, Yang K, Zhou G, Huang W. Surface-enhanced raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level. Anal Chem. 2017;89:5793–800.

    CAS  PubMed  Google Scholar 

  60. Csardi G, Nepusz T. The Igraph software package for complex network research. Interjournal Complex Systems. 2006;1695:1–9.

  61. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA. 2006;103:8577–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao Z, Weng H, Guo H. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches. J Hydrol. 2021;595:125981.

    CAS  Google Scholar 

  63. Aharoni I, Dahan O, Siebner H. Continuous monitoring of dissolved inorganic nitrogen (DIN) transformations along the waste-vadose zone - groundwater path of an uncontrolled landfill, using multiple N-species isotopic analysis. Water Res. 2022;219:118508.

    CAS  PubMed  Google Scholar 

  64. Carrey R, Ballesté E, Blanch AR, Lucena F, Pons P, López JM, et al. Combining multi-isotopic and molecular source tracking methods to identify nitrate pollution sources in surface and groundwater. Water Res. 2021;188:116537.

    CAS  PubMed  Google Scholar 

  65. Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, et al. Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci USA. 2014;111:734–39.

    CAS  PubMed  Google Scholar 

  66. Oremland Ronald S, Taylor, Barrie F. Inhibition of methanogenesis in marine sediments by acetylene and ethylene: Validity of the acetylene reduction assay for anaerobic microcosms. Appl Microbiol. 1975;30:707–09.

    PubMed Central  Google Scholar 

  67. Ho A, Bodelier PLE. Diazotrophic methanotrophs in peatlands: the missing link? Plant Soil. 2015;389:419–23.

    CAS  Google Scholar 

  68. Farías L, Faúndez J, Fernández C, Cornejo M, Sanhueza S, Carrasco C. Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures. PLoS ONE. 2013;8:e63956.

    PubMed  PubMed Central  Google Scholar 

  69. Desloover J, Roobroeck D, Heylen K, Puig S, Boeckx P, Verstraete W, et al. Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. Environ Microbiol. 2014;16:3143–52.

    CAS  PubMed  Google Scholar 

  70. Hynes RK, Knowles R. Effect of acetylene on autotrophic and heterotrophic nitrification. Can J Microbiol. 1982;28:334–40.

    CAS  Google Scholar 

  71. Shiozaki T, Ijichi M, Kodama T, Takeda S, Furuya K. Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the Indian Ocean. Global Biogeochem Cy. 2014;28:1096–110.

    CAS  Google Scholar 

  72. Sipler R, Gong D, Baer S, Sanderson M, Roberts Q, Mulholland M, et al. Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget. Limnol Oceanogr Lett. 2017;2:159–66.

    Google Scholar 

  73. Shiozaki T, Bombar D, Riemann L, Hashihama F, Takeda S, Yamaguchi T, et al. Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea. Global Biogeochem Cy. 2017;31:996–1009.

    CAS  Google Scholar 

  74. Moore M, Mills M, Achterberg E, Geider R, Laroche J, Lucas M, et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat Geosci. 2009;2:867–71.

    CAS  Google Scholar 

  75. Wen Z, Lin W, Shen R, Hong H, Kao S-J, Shi D. Nitrogen fixation in two coastal upwelling regions of the Taiwan Strait. Sci Rep. 2017;7:17601.

    PubMed  PubMed Central  Google Scholar 

  76. Chen Y-L, Chen H-Y, Tuo S-H, Ohki K. Seasonal dynamics of new production from Trichodesmium N2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin. Limnol Oceanogr. 2008;53:1705–21.

    CAS  Google Scholar 

  77. Kumar P, Singh A, Ramesh R, Nallathambi T. N2 fixation in the eastern Arabian sea: Probable role of heterotrophic diazotrophs. Front Mar Sci. 2017;4:80.

  78. Geisler E, Rahav E, Bar Zeev E. Contribution of heterotrophic diazotrophs to N2 fixation in a eutrophic river: free-living vs. aggregate-associated. Front Microbiol. 2022;13:779820.

    PubMed  PubMed Central  Google Scholar 

  79. Jabir T, Vipindas PV, Jesmi Y, Valliyodan S, Parambath PM, Singh A, et al. Nutrient stoichiometry (N:P) controls nitrogen fixation and distribution of diazotrophs in a tropical eutrophic estuary. Mar Pollut Bull. 2020;151:110799.

    CAS  PubMed  Google Scholar 

  80. Wang R, Li X, Hou L, Liu M, Zheng Y, Yin G, et al. Nitrogen fixation in surface sediments of the East China Sea: Occurrence and environmental implications. Mar Pollut Bull. 2018;137:542–48.

    CAS  PubMed  Google Scholar 

  81. Liu C, li N, Shao X, Gao D, Xia J, Cui Q, et al. Effects of coastal marsh conversion to shrimp aquaculture ponds on sediment nitrogen fixation. Front Mar Sci. 2022;9:1034145.

    Google Scholar 

  82. Glodowska M, Stopelli E, Straub D, Vu Thi D, Trang PTK, Viet PH, et al. Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. J Hazard Mater. 2021;407:124398.

    CAS  PubMed  Google Scholar 

  83. Karl DM, Church MJ. Ecosystem structure and dynamics in the north Pacific Subtropical Gyre: New views of an old ocean. Ecosystems. 2017;20:433–57.

    Google Scholar 

  84. Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature. 1997;388:533–38.

    CAS  Google Scholar 

  85. Zhu C, Friman V-P, Li L, Xu Q, Guo J, Guo S, et al. Meta-analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale. Environ Microbiol. 2022;24:2013–28.

    CAS  PubMed  Google Scholar 

  86. Messer L, Brown M, Furnas M, Carney R, McKinnon A, Seymour J. Diversity and activity of diazotrophs in Great Barrier reef surface waters. Front Microbiol. 2017;8:967.

    PubMed  PubMed Central  Google Scholar 

  87. Tan E, Hsu T-C, Huang X, Lin H-J, Kao S-J. Nitrogen transformations and removal efficiency enhancement of a constructed wetland in subtropical Taiwan. Sci Total Environ. 2017;601-602:1378–88.

    CAS  PubMed  Google Scholar 

  88. Farnelid H, Turk-Kubo K, Ploug H, Ossolinski J, Collins J, Van Mooy B, et al. Diverse diazotrophs are present on sinking particles in the North Pacific subtropical gyre. ISME J. 2018;13:170–82.

    PubMed  PubMed Central  Google Scholar 

  89. Bonnet S, Dekaezemacker J, Turk-Kubo K, Moutin T, Hamersley M, Grosso O, et al. Aphotic N2 fixation in the eastern tropical South Pacific Ocean. PLoS ONE. 2013;8:e81265.

    PubMed  PubMed Central  Google Scholar 

  90. Huang F, Lin X, Hu W, Zeng F, He L, Yin KD. Nitrogen cycling processes in sediments of the Pearl River Estuary: Spatial variations, controlling factors, and environmental implications. CATENA. 2021;206:105545.

    CAS  Google Scholar 

  91. Moynihan MA, Goodkin NF, Morgan KM, Kho PYY, Lopes dos Santos A, Lauro FM, et al. Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. ISME J. 2022;16:233–46.

    CAS  PubMed  Google Scholar 

  92. Zehr J, Capone D. Changing perspectives in marine nitrogen fixation. Science. 2020;368:729.

    Google Scholar 

  93. Delmont TO, Pierella Karlusich JJ, Veseli I, Fuessel J, Eren AM, Foster RA, et al. Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME J. 2022;16:927–36.

    CAS  PubMed  Google Scholar 

  94. Messer LF, Mahaffey C, M Robinson C, Jeffries TC, Baker KG, Bibiloni Isaksson J, et al. High levels of heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation. ISME J. 2016;10:1499–513.

    CAS  PubMed  Google Scholar 

  95. Bentzon-Tilia M, Severin I, Hansen L, Riemann L. Genomics and ecophysiology of heterotrophic nitrogen-fixing bacteria isolated from estuarine surface water. mBio. 2015;6:e00929–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yousuf J, Thajudeen J, Aneesa PA, Joseph A, Divya PS, Varghese A, et al. Diversity and activity of culturable nitrogen fixing heterotrophic bacteria from estuarine and coastal environments of Southeastern Arabian Sea (SEAS). Reg Stud Mar Sci. 2019; 33:100973.

  97. Handley K, Verberkmoes N, Steefel C, Williams K, Sharon I, Miller C, et al. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. ISME J. 2013;7:800–16.

    CAS  PubMed  Google Scholar 

  98. Bombar D, Paerl R, Riemann L. Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol. 2016;24:916–27.

    CAS  PubMed  Google Scholar 

  99. Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:374.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. McKinlay J, Harwood C. Inaugural Article: carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci USA. 2010;107:11669–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li Y, Guo L, Häggblom MM, Yang R, Li M, Sun X, et al. Serratia spp. are responsible for nitrogen fixation fueled by As(III) oxidation, a novel biogeochemical process identified in mine tailings. Environ Sci Technol. 2022;56:2033–43.

    CAS  PubMed  Google Scholar 

  102. Bertics V, Sohm J, Treude T, Chow C-E, Fuhrman J, Ziebis W. Burrowing deeper into benthic nitrogen cycling: The impact of Bioturbation on nitrogen fixation coupled to sulfate reduction. Mar Ecol Prog Ser. 2010;409:1–15.

    CAS  Google Scholar 

  103. Farhan Ul Haque M, Hernández M, Crombie AT, Murrell JC. Identification of active gaseous-alkane degraders at natural gas seeps. ISME J. 2022;16:1705–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Farhan Ul Haque M, Crombie AT, Ensminger SA, Baciu C, Murrell JC. Facultative methanotrophs are abundant at terrestrial natural gas seeps. Microbiome. 2018;6:118.

    PubMed  PubMed Central  Google Scholar 

  105. Bay SK, Dong X, Bradley JA, Leung PM, Grinter R, Jirapanjawat T, et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol. 2021;6:246–56.

    CAS  PubMed  Google Scholar 

  106. Cui J, Zhang M, Chen L, Zhang S, Luo Y, Cao W, et al. Methanotrophs contribute to nitrogen fixation in emergent macrophytes. Front Microbiol. 2022;13:851424.

    PubMed  PubMed Central  Google Scholar 

  107. Fulweiler RW, Nixon SW, Buckley BA, Granger SL. Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature. 2007;448:180–82.

    CAS  PubMed  Google Scholar 

  108. Yu X, Zhou J, Song W, Xu M, He Q, Peng Y, et al. SCycDB: A curated functional gene database for metagenomic profiling of sulfur cycling pathways. Mol Ecol Res. 2020;21:924–40.

    Google Scholar 

  109. Welsh D, Wellsbury P, Bourguès S, De Wit R, Herbert R. Relationship between porewater organic carbon content, sulphate reduction and nitrogen fixation (acetylene reduction) in the rhizosphere of Zostera noltii. Hydrobiologia. 1996;329:175–83.

    CAS  Google Scholar 

  110. Wang Y, Wei D, Li P, Jiang Z, Liu H, Qing C, et al. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. Ecotoxicology. 2021;30:1680–88.

    CAS  PubMed  Google Scholar 

  111. Hoven R, Santini J. Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. BBA Bioenergetics. 2004;1656:148–55.

    Google Scholar 

  112. Li L, Jia R, Qu Z, Li T, Shen W, Qu D. Coupling between nitrogen-fixing and iron(III)-reducing bacteria as revealed by the metabolically active bacterial community in flooded paddy soils amended with glucose. Sci Total Environ. 2020;716:137056.

    CAS  PubMed  Google Scholar 

  113. Zhang H, Liu F, Zheng S, Chen L, Zhang X, Gong J. The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Mar Life Sci Tech. 2019;2:87–96.

    Google Scholar 

  114. Liu H, Li P, Wang H, Qing C, Tan T, Shi B, et al. Arsenic mobilization affected by extracellular polymeric substances (EPS) of the dissimilatory iron reducing bacteria isolated from high arsenic groundwater. Sci Total Environ. 2020;735:139501.

    CAS  PubMed  Google Scholar 

  115. Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: A comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.

  116. Yan L, Herrmann M, Kampe B, Lehmann R, Totsche KU, Küsel K. Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Res. 2020;170:115341.

    CAS  PubMed  Google Scholar 

  117. Lovley DR. Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiol J. 1987;5:375–99.

    CAS  Google Scholar 

  118. Jones JG, Gardener S, Simon BM. Bacterial reduction of ferric iron in a stratified eutrophic lake. Microbiology. 1983;129:131–39.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No 42177068, 91851115, 91851209, and 91851101).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PL, XL, and HW. Sample collection and methodology: HW, XL, L-LH, PL, YW, and ZJ. Analysis and writing-original draft preparation: XL and HW. Writing-review and editing and funding acquisition: PL, LC, and S-JK. 15N analysis: L-LH and S-JK. Single-cell resonance Raman-15N2 SIP analysis: KY and LC.

Corresponding author

Correspondence to Ping Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, P., Wang, H. et al. Nitrogen fixation and diazotroph diversity in groundwater systems. ISME J 17, 2023–2034 (2023). https://doi.org/10.1038/s41396-023-01513-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01513-x

Search

Quick links