
ARTICLE OPEN

High intensity perturbations induce an abrupt shift in soil
microbial state
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Soil microbial communities play a pivotal role in regulating ecosystem functioning. But they are increasingly being shaped by
human-induced environmental change, including intense “pulse” perturbations, such as droughts, which are predicted to increase
in frequency and intensity with climate change. While it is known that soil microbial communities are sensitive to such
perturbations and that effects can be long-lasting, it remains untested whether there is a threshold in the intensity and frequency
of perturbations that can trigger abrupt and persistent transitions in the taxonomic and functional characteristics of soil microbial
communities. Here we demonstrate experimentally that intense pulses of drought equivalent to a 30-year drought event (<15%
WHC) induce a major shift in the soil microbial community characterised by significantly altered bacterial and fungal community
structures of reduced complexity and functionality. Moreover, the characteristics of this transformed microbial community persisted
after returning soil to its previous moisture status. As a result, we found that drought had a strong legacy effect on bacterial
community function, inducing an enhanced growth rate following subsequent drought. Abrupt transitions are widely documented
in aquatic and terrestrial plant communities in response to human-induced perturbations. Our findings demonstrate that such
transitions also occur in soil microbial communities in response to high intensity pulse perturbations, with potentially deleterious
consequences for soil health.

The ISME Journal (2023) 17:2190–2199; https://doi.org/10.1038/s41396-023-01512-y

INTRODUCTION
Natural ecosystems are constantly exposed to natural fluctuations
in environmental conditions and under such conditions they retain
a stable equilibrium state, or quasi-stable state, characterised by
minor fluctuations in community composition and function [1].
However, human-induced perturbations, including those related to
climate change, can destabilise this dynamic equilibrium and
potentially trigger a cascade of events that may lead to an abrupt
change [2]. This is particularly relevant in a warmer world, where
the speed of soil drying is increasingly higher [3] and multiple
combined climate change factors interact [4]. Abrupt transitions
occur when an ecosystem surpasses a certain threshold, which can
have important consequences for ecosystem functioning [2].
Numerous studies have demonstrated the existence of abrupt
changes in aquatic ecosystems [5, 6], terrestrial plant communities
[7, 8], and the human gut microbiome in response to perturbations
[9, 10]. However, abrupt transitions in soil microbial communities
have so far received little attention [11], despite their fundamental
role in terrestrial ecosystems, driving key processes of organic
matter decomposition, nutrient cycling, and carbon and nutrient
storage [12], which regulate ecosystem productivity. As such,
abrupt shifts in soil microbial communities in response to
perturbations may have significant implications for soil function-
ing, with consequences for ecosystem services, such as food
production and climate regulation [13].

Soil microbial communities are increasingly challenged by
perturbations associated with human-induced environment
change, including intense “pulse” perturbations [14] caused by
climate extremes (e.g., droughts, heat waves and floods), which
are predicted to increase in frequency and intensity with ongoing
climate change [15]. Microbial communities can withstand such
pulse perturbations in different ways. In this context, resistance is
defined as the degree to which microbial community attributes
change in the face of a perturbation, and resilience as the rate at
which they recover from it [11]. Thus, if the attributes (i.e.,
structure and function) of a microbial community stay stable
following a perturbation, it is considered resistant [11, 16],
whereas if its attributes change, but it recovers to its original
configuration over time, it is considered resilient [11, 17].
Additionally, if the ecosystem processes remain stable whereas
microbial community composition changes, this points to func-
tional redundancy within the microbial community [18]. However,
evidence is mounting that different microbial groups vary in their
resistance and resilience to drought [19–21], and while intense
droughts can de-stabilise soil bacterial networks, potentially
rendering them more vulnerable to subsequent drought, soil
fungal networks appear to be more resistant [22]. Frequent,
recurring droughts can also lead to soil microbial communities
becoming more resistant to drought [23–26], although repeated
dry-wet cycles can induce shifts in the functional state of

Received: 27 February 2023 Revised: 29 August 2023 Accepted: 4 September 2023
Published online: 9 October 2023

1Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK. 2Department of Community
Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. 3Department of Biology, Lund University,
Lund, Sweden. ✉email: irene.cordero@wsl.ch

www.nature.com/ismej

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01512-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01512-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01512-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01512-y&domain=pdf
http://orcid.org/0000-0002-6249-8348
http://orcid.org/0000-0002-6249-8348
http://orcid.org/0000-0002-6249-8348
http://orcid.org/0000-0002-6249-8348
http://orcid.org/0000-0002-6249-8348
http://orcid.org/0000-0002-4985-7262
http://orcid.org/0000-0002-4985-7262
http://orcid.org/0000-0002-4985-7262
http://orcid.org/0000-0002-4985-7262
http://orcid.org/0000-0002-4985-7262
http://orcid.org/0000-0002-5131-0127
http://orcid.org/0000-0002-5131-0127
http://orcid.org/0000-0002-5131-0127
http://orcid.org/0000-0002-5131-0127
http://orcid.org/0000-0002-5131-0127
https://doi.org/10.1038/s41396-023-01512-y
mailto:irene.cordero@wsl.ch
www.nature.com/ismej


agricultural soils, measured as soil respiration [27]. Similarly, high
intensity drought has been shown to cause abrupt shifts in
peatland moisture characteristics [28] and plant-fungal interac-
tions [29], although evidence of thresholds beyond which soil
microbial communities have no resilience to drought, leading to
abrupt shifts in their taxonomic and functional attributes, is
lacking.
Here, we experimentally tested whether increases in the

intensity and frequency of drought pulses can trigger an abrupt
and persistent shift in the structural and functional attributes of
natural grassland soil microbial communities. We also tested for
the existence of a drought intensity and/or frequency threshold
after which the soil microbial community shifts to a functionally
and structurally different state. Moreover, we tested whether the
bacterial and fungal communities showed any adaptation in their
growth characteristics to the drying/rewetting cycle. To achieve
this, we carried out an incubation experiment whereby we
imposed a matrix of drought frequency and intensity treatments
on a natural grassland soil. Microbial responses were assessed
with a broad range of taxonomic and functional attributes of
microbial communities over an extended period of time after
returning soils to their original moisture condition. This enabled us
to test for abrupt shifts in soil microbial communities that
persisted under the same environmental conditions after the end
of the perturbation. We hypothesised that soil microbial commu-
nities exposed to more intense and frequent droughts will show a
lower resistance and resilience than those subject to milder, less
frequent droughts. We also hypothesised that this lower resistance
and resilience of microbial communities to more intense, frequent
droughts will induce a shift in microbial taxonomic and
functional state.

MATERIALS AND METHODS
Soil collection and experimental design
A pot experiment was designed to test the effects of drought intensity and
frequency (3 levels each, full factorial including a well-watered control,
Fig. S1), on the microbial communities of a natural grassland soil. Soil was
collected from Selside, Yorkshire Dales (54.17 N, 2.34W), from four
independent plots (replicates). These plots correspond to the control
plots in the experiment detailed elsewhere [30, 31]. The soils are part of the
Malham Series of Eutric Endoleptic Cambisols; a clayey brown earth [32].
Chemical characteristics of the soil are shown in Table S1. The sampled soil
was sieved and divided into pots. Pots were incubated at 18 °C, 30% air
relative humidity, and kept at 65% water holding capacity (WHC), which
correspond to ~40% volumetric water content. After 3 weeks of
stabilisation, drought treatments were applied by reducing watering,
reaching three selected drought intensity levels. A mild drought treatment
(40% WHC, 23% volumetric water content) corresponded to average values
of soil moisture during summer (June–August), an intermediate drought
level (23% WHC, 14% volumetric water content) corresponded to common
summer drought events (once every 4 years), and a high intensity drought
level (11% WHC, 7% volumetric water content) corresponded to a once in a
century drought in the studied ecosystem. Additional details can be found
in SI methods. The drying period lasted for 2 weeks followed by 2 weeks of
recovery, when pots were slowly rewetted to optimum moisture (65%
WHC). All soils dried out at the very similar pace (Fig. S2a). Drought was
repeated up to 3 times depending on the drought frequency treatment.
Control pots were always kept at 65% WHC (Fig. S1).
Immediately after the last drought cycle, samples were collected to

evaluate the resistance of the system. We consider the perturbation to be the
entire drying/rewetting cycle, and thus, to evaluate the resistance we
harvested the pots once the perturbation had ended (when all pots
recovered to the sameWHC, 11 days after the start of the rewetting, Fig. S2a).
Additionally, pots were harvested over time, to evaluate the resilience of the
system in the long term (1, 3, and 6 months after drought, Fig. S1), which
covers the length of the typical growing season for the study site where soil
was collected in the Yorkshire Dales (Met Office UK). During this whole
period, pots were kept at optimum soil moisture (65% WHC). 40 extra pots
were harvested 1 month after drought to evaluate the adaptation of
microbial growth characteristics to drought. Total number of pots: 200.

Microbial community structure
Soil samples were collected in Eppendorf tubes (approx. 0.25 g) and frozen
at -80 °C immediately after sampling. DNA was extracted in frozen samples,
without thawing, with PowerSoil DNA isolation Kit (Qiagen, Germany). DNA
was sent to Macrogen sequencing service (Macrogen Inc., Korea), for
sequencing on a MiSeq v3 (Illumina). Fungal diversity was evaluated by
ITS2 sequencing, using the primer pair 5.8S-Fun and ITS4-Fun [33]. Bacterial
diversity was evaluated by 16 S rRNA gene V3-V4 sequencing, with primers
Bakt_341F and Bakt_805R [34]. Microbial community analysis was not done
in samples from the 3 months after drought time point. Alongside the
samples, three extraction blanks were included and a mock community
sample for each primer pair: 19 strains genomic DNA even mix from Bakker
lab for fungi [35], and MSA-1000 10 strain even mix genomic material for
bacteria from the American Type Culture Collection (ATCC, Manassas, US).
Sequences were analysed using the DADA2 pipeline [36]. Taxonomic

identification was performed by IDTAXA taxonomic classification method
in DECIPHER [37] package using UNITE 7.2 reference database for fungi and
SILVA release 138 database for bacteria. See SI methods for full details.
After filtering, de-noising and refining steps, final databases contained
2760 amplicon sequence variants (ASVs) and 4,316,693 reads for fungi, and
7313 ASVs and 2,383,395 reads for bacteria. Mean sampling depth was
36,275 reads in fungi and 19,937 reads in bacteria.

Soil functionality
Soil functionality was assessed by measuring soil enzymatic activities and
different soil nutrient pools, as indicators, among others, of soil organic
matter decomposition capacity, nutrient cycling capacity, soil fertility,
available stocks of energy for microbial process, and soil carbon and
nutrient storage capacity [38, 39]. β-glucosidase (GLC), cellobiohydrolase
(CBH), xylosidase (XYL), N-acetylglucosaminidase (NAG), and acid phos-
phatase (PHO) were measured photometrically using pNP-linked substrate
analogues [40]. Urease (URE) was evaluated by the production of
ammonium after urea addition to soils, following the optimised high
throughput method [41]. Phenoloxidase (POX) and peroxidase (PER)
activities were measured photometrically by the oxidation of L-DOPA [42].
See SI methods for full details. All enzymes were measured in fresh soil,
kept at 4 °C, within five days from harvest.
Different nutrient pools were measured by means of soil extractions

with different extracting solutions depending on the nutrient and the pool
of interest [43]. Dissolved organic carbon (DOC) and dissolved organic
nitrogen (DON) were evaluated in water extracts and plant available
nitrogen (ammonium and nitrate) were evaluated in 1 M KCl extracts. Plant
available P was extracted with 2.5% acetic acid solution and total organic P
(TOP) was estimated by evaluation of available phosphate before and after
sample ignition at 550 °C for 4 h, and extracted with 0.5 M H2SO4 [44].
Microbial biomass nutrients were measured using fumigation–extraction
techniques. Microbial C and N were measured after fumigation with CHCl3
and extraction with 0.5 M K2SO4 [45, 46]. Microbial P was estimated by
fumigation with hexanol and extraction with anion-exchange membranes
[47]. Microbial C, N, and P were calculated as the difference in C, N, and P
between fumigated and un-fumigated samples, and they were converted
to microbial biomass using kEC factor of 0.35 for C [48], kEN factor of 0.54 for
N [45], and kEP factor of 0.40 for P [49]. Microbial P was further corrected by
sorption percentage using spiked samples. After extraction, N pools were
measured in AA3 HR Auto Analyser (Seal Analytical, UK) while C pools
were measured in 5000 A TOC-L analyser (Shimadzu, Japan). P pools were
detected by molybdate colorimetry in a CLARIOstar plate reader (BMG
Labtech, Germany). All soil nutrients were measured in fresh soil (except
organic P), kept at 4 °C, within two weeks from harvest, including
extraction and measurement of extracts. Nutrients were evaluated in
duplicates, and reported values are the mean of those two analytical
replicates. See SI methods for full details.

Microbial functional adaptation to drying/rewetting cycles
Microbial adaptation to a subsequent dry-wet cycle was assessed using a
two-tiered approach. First, the moisture dependence of microbial growth
and respiration were assessed. To do so, soils were air dried under a
ventilator until they reached constant weight. During the drying down, to
assess how microbial functions were inhibited by lack of moisture, soils
were subsampled every 2–3 h, and gravimetric water content, microbial
growth and respiration were measured. Microbial growth rates were
measured by radioisotope incorporation [50]. For bacterial growth, the rate
of protein production was estimated using 3H-leucine incorporation into
bacteria following homogenisation/centrifugation [51] with modifications
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as described previously [52]. Fungal growth rates were assessed by tracing
14C-acetate incorporation into the fungal-specific lipid ergosterol [53].
To measure soil respiration, 1.0 g of soil was weighed into 20ml glass vials,
which were purged with pressurised air, sealed with crimp caps and
incubated. CO2 production was measured using a gas chromatograph
equipped with a methaniser and a flame-ionisation detector. A logistic
model was then fitted to the inhibition curves describing the relationship
between microbial growth or respiration rates and moisture [54], and
microbial tolerance to drought was estimated using IC10 values (moisture
level at which the microbial function is inhibited by 10%), with lower
values of IC10 indicating higher drought tolerance.
Second, air dried soils were rewetted to 60% WHC in order to evaluate

microbial responses to rewetting. After rewetting, microbial growth rates,
along with respiration, were measured with a high temporal resolution of
approximately 6 h for a week (more frequent at the beginning and every
24 h afterwards, 12 time points in total), as previously described.
Cumulative bacterial growth, fungal growth, and respiration during 1 week
after rewetting was calculated. Furthermore, in all soils, bacterial growth
exhibited a lag period of no growth before the growth rates started
increasing exponentially, which has been previously observed [55]. These
growth response patterns were therefore modelled using a Gompertz
curve, which was then used to calculate the lag periods before the increase
in growth rate [56].

Statistical analyses
All statistical analyses were done in R v4.0 [57]. To evaluate microbial
community structure, we investigated alpha diversity, ordination analyses,
proportion of different taxa and functional guilds, and indicator species
analysis. Resistance and resilience of soil functions were evaluated with a
linear regression analysis between the value of the variable under drought
and time after drought. The value of the intercept was used as a resistance
index (RS), and the value of the slope as a resilience index (RL). Soil
functional data (soil extracellular enzymes and nutrient pools) were
analysed with a non-metric multidimensional scaling (NMDS) ordination
analysis. Multifunctionality index was calculated with all the soil enzymatic
activities, which represent the organic matter decomposition capacity of
soils. The effects of drought intensity and frequency on all variables were
analysed by linear mixed effect models (LME) with drought intensity and
frequency as fixed factors and soil replicate as random factor. See SI
methods for full details.

RESULTS
Changes in microbial community structure
Our data show that intense drought (~11%WHC), simulating a once
in a century drought event in England, had a profound and long-
lasting impact on soil microbial community structure and diversity,
despite environmental conditions being returned to their original
state (optimum moisture, 65% WHC). Six months after the end of
the high intensity drought, bacterial diversity (Fig. 1a, b) was still
reduced, while fungal Shannon diversity was significantly higher
than in the non-droughted control treatment (Fig. 1d), despite no
effects on fungal species richness being detected (Fig. 1c).
Bacterial and fungal community structures were strongly

affected by drought (Fig. 1e, f, Fig. S3a, b) and changes in
microbial community structures observed after drought were
exacerbated with time. This is exemplified in the proportion of
variance in community structure explained by drought intensity
(Fig. 1g), which increased after 6 months compared to immedi-
ately after drought, particularly under the most intense drought
treatment. However, bacterial communities in soils subjected to
intermediate intensity drought which simulated drought events in
England occurring every 4 years, partially recovered (Fig. 1g), with
less variance explained by drought treatments after 6 months
than after drought, i.e., they were more similar to the control
treatments after 6 months than at the end of the perturbation.
Mild drought, which simulated common drought events occurring
annually in England, had no detectable impact on microbial
community structure. Drought frequency also significantly
affected bacterial and fungal community structures (Fig. 1e, f),
with communities of those soils exposed to more frequent

drought pulses being more distinct from the non-droughted
control soils than those subject to fewer drought events.
The proportion of different bacterial taxa observed in the soil

communities was mainly affected by drought intensity and time,
with some minor effects of drought frequency (Table S2). Bacterial
phyla Proteobacteria, Actinobacteriota, and Firmicutes increased in
relative abundance with drought intensity, while taxa affiliated
with Acidobacteriota, Bacteroidota, and Myxococcota decreased
(Fig. S3c). There was a clear shift in the bacterial community,
persistent through time, from a community co-dominated by
Acidobacteriota and Proteobacteria taxa in the control towards one
dominated by Proteobacteria under high intensity drought. At
family level, particularly significant were the increases in ASVs
affiliated with Xanthobacteraceae, Chthoniobacteraceae, Rhodano-
bacteraceae, and a transient increase in Oxalobacteraceae after
drought (Fig. 1h), and the decrease in the relative abundance of
Solibacteraceae and Pedosphaeraceae with drought intensity
(Fig. 1h). Seventy-five of the 86 indicator genera identified for
bacteria in our database (Fig. S4a) were indicators for all of the
groups except the high intensity drought, i.e. their abundance was
significantly reduced under intense drought. Only the genera
Edaphobacter, Paenibacillus, Streptomyces, Sphingomonas, and an
unassigned genus in the family Intrasporangiaceae were more
abundant under intense drought than the rest of the treatments,
and the genera Tumebacillus, and two unassigned genera in the
families Microbacteriaceae and Micrococcaceae were more abun-
dant under intense and intermediate drought.
The relative abundance of main fungal phyla was mostly

affected by drought intensity and time (Fig. S3e, Table S2). We
observed an increase in Ascomycota and a decrease in Mortier-
ellomycota. In particular, we observed an increase in relative
abundance of taxa affiliated with Piskurozymaceae, Helotiales,
Trimorphomycetaceae, and Nectriaceae, and a substantial decrease
of Mortierellaceae and Clavariaceae, the two most abundant fungal
families (Fig. 1i), which are both typical soil saprotrophs. In
agreement with this, we observed a significant decrease with
drought treatments in the relative abundance of fungal taxa
considered as saprotrophs (Fig. S3g). Fungal indicator genera
(Fig. S4b) were mostly identified for the control + mild +
intermediate drought group (17 out of 20), with no genus
indicator for the most intense drought.
Bacterial diversity and community structure were correlated

with a decrease in soil pH at the last sampling point (Fig. S5a–c),
which was associated with increased nitrate ion concentrations at
this sampling time (Fig. S5f). Fungal diversity was only marginally
affected by soil pH (Fig. S5d,e).

Changes in microbial community function
After the end of drought, when soils were rewetted to the level of
the control, seven of the eight extracellular enzyme activities
evaluated were significantly reduced by drought intensity and/or
frequency, displaying a low resistance to drought (Fig. 2a,
Fig. S6a–h, Table S3). Phenoloxidase (POX) activity was slightly
reduced by all drought treatments compared to the control, with
no significant effect of drought intensity or frequency levels
(Fig. 2a, Fig. S6g). Only the activity of peroxidase (PER) was not
affected by drought (only a marginal effect of drought frequency)
(Fig. S6h). The effects of drought intensity on soil enzymes were
still detectable after six months (Fig. S6i–p), with very little or no
resilience, or even a stronger reduction of their activity than
immediately after drought (phosphatase) (Fig. 2b).
Soil nutrients were highly affected by drought, particularly

available ammonium and dissolved organic carbon (DOC), with a
significant increase due to drought intensity and frequency and an
interaction between them: the more intense the drought, the
bigger the effect of drought frequency on their concentration
(Fig. 2e, f, Fig. S7a–f, Table S3). On the other hand, soil nitrate
concentrations were reduced with most drought treatments
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compared to the control, showing a low resistance (Fig. 2a). After six
months, this big ammonium and DOC flush hadmostly disappeared
and in turn, nitrate levels significantly increased (Fig. 2b, Fig. S7k–p).
Drought had no significant effect on the resistance and resilience
indexes of available phosphate (Fig. 2a), but there was a significant
increase in available phosphate in the most intense and frequent
drought treatment when evaluating the raw data after drought,
instead of the calculated indexes (Fig. S7c). Microbial biomass C, N,
and P were reduced by increasing drought intensity (Fig. 2a, h, i),
and this effect was still detected after 6 months of returning soils to
moisture levels of the control, with microbial P in intense drought
treatments showing a stronger decrease with time (Fig. 2b,
Fig. S7g–i, q–s, Table S3). Taken together, we observed that soils
exposed to the most intense drought were in a significantly
different functional state than the control soils even 6 months after
the end of the perturbation (Fig. 2c, d).

Microbial functional adaptation to drying/rewetting cycles
Drought intensity had a legacy effect resulting in shorter lag times
and higher cumulative bacterial growth (Fig. 3a, b) after rewetting,

while cumulative fungal growth and cumulative respiration
(Fig. 3c, d) significantly decreased with previous drought intensity.
Fungi were more resistant to low moisture than bacteria, as shown
by the lower IC10 (moisture level at which growth rate is reduced
by 10%), but this was not significantly affected by previous
drought treatments (Fig. S8a, b). Respiration showed reduced
resistance to drought with previous drought intensity (Fig. S8c).

DISCUSSION
Our findings demonstrate that soil microbial communities are
generally resistant to, and recover rapidly from, mild, infrequent
droughts. However, we demonstrate a lack of resilience to high
intensity drought, which triggers an abrupt and persistent shift in
the soil microbial community to one of reduced structural
complexity and impaired functioning. We also discovered that
the functional characteristics of soil microbial communities can
react to drought exposure, with exposure to high intensity
drought inducing an enhanced ability of bacteria to recover
growth rates following subsequent drought.
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Bacterial and fungal communities were strongly and persis-
tently modified by high intensity drought, with clear changes in
diversity and community structure that persisted despite returning
soils to their original moisture conditions. Consistent with previous
studies, high intensity drought caused a reduction in bacterial
diversity, which is indicative of reduced community resistance
[22, 58]. Moreover, under high intensity drought, bacterial
communities shifted from being co-dominated by Acidobacteriota
and Proteobacteria to being dominated by Proteobacteria, with
persistent increases in Actinobacteriota and Firmicutes, and a
decrease in Bacteroidetes and Myxococcota. This community shift is
consistent with previous reports on the drought tolerance of
Proteobacteria [24], Actinobacteria [20, 23], and Firmicutes [59, 60],
and drought sensitivity of Acidobacteria [20] and Bacteroidetes [58].
In contrast to bacteria, we observed an increase in fungal

diversity under high intensity drought. This fungal community
change was not associated with a change in species richness, but
with an increase in evenness due to reduced abundances of the
two dominant fungal taxa, Mortierellaceae and Clavariaceae,
typical soil saprotrophs. These two families have been previously
identified as drought sensitive [22, 61] and their decrease could be
related to persistent changes in nutrient availability elicited by
drought. Fungi are generally considered to be more resistant to
drought than bacteria [22, 62] and several studies demonstrate a
lack of drought effect on fungal communities [19]. In contrast, we
observed a clear shift in the fungal community, which was still
evident 6 months after returning droughted soils to their original,
pre-drought moisture content. In our experiment, changes in
community structure and the reduction in bacterial diversity were
partially related to a decrease in soil pH, as previously demon-
strated at a global [63] and local scale [64]. However, fungal
diversity was only marginally related to soil pH, also in agreement
with the literature [64, 65].
Microbial community shifts in response to high intensity

drought were also associated with persistent changes in microbial
functioning. Extracellular enzymes are not produced by a wide
diversity of soil organisms [66], and, therefore, they do not reflect
the whole soil community functionally. Additionally, part of the
activity observed will come from stabilised enzymes within the soil
matrix and not new enzymes produced by viable microbial cells
[66]. Nevertheless, we observed a significant correlation between
community composition and combined enzymatic activity in our
experiment (Fig. S5g, h). High intensity drought effects on soil
enzymes were still detectable after six months with very little or
no recovery, manifesting a very low resilience and a persistent
reduction of soil functional capacity, or functional regime shift. A
reduction in soil enzymatic capacity with drought has been
frequently reported [67], probably associated with microbial death
and thus reduced enzyme production and reduced substrate
diffusion that limits enzyme activity [68]. Enzymatic activities can
also reflect the nutritional status of the microbial community and
the existence of any particular nutrient limitation, as microbes
invest in enzymes that minimise energy and nutrient costs and
maximise benefits [68]. In agreement with this, enzyme activities
were negatively correlated with available N and P (Fig. S5i-j). The
lack of recovery of enzymatic capacity over time, even though soil
nutrient returned to their original levels after rewetting, could be
explained by consistently low microbial biomass 6 months after
high intensity drought (Fig. S5l).
Increases in nutrient availability immediately after rewetting dry

soils are likely explained by the death of microorganisms and
increased availability of organic compounds [69, 70]. The fact that
nitrate levels in our experiment significantly increased over time
after rewetting, could be related to a high nitrification activity,
where the highly abundant ammonium was transformed into
nitrate [71]. Decreases in microbial biomass due to drought, as
observed here under high intensity drought, have been widely
reported [58, 72], although some authors observed an increase in
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microbial biomass under drought [73]. The observed constant
decline of microbial biomass P over time since rewetting could be
related to reduced phosphatase activity (Fig. S5m). This agrees
with the study of Dijkstra and collaborators [74] which showed a
strong reduction in P uptake by soil microbes during drought.
However, a decrease in microbial biomass over time in bare soils is
expected, as there is no additional C input from plants into the
system.
As well as clear changes in soil microbial community structure

and function elicited by drought, we also observed legacy effects
of drought and adaptation of growth responses of bacterial and
fungal communities when facing a further drying/rewetting cycle.
The observed shorter lag times and higher cumulative growth for
bacteria, in soils with a legacy of intense drought, are indicative of
a faster recolonisation ability [75]. An increased and faster
bacterial growth in soils with a history of drought could be a
competitive adaptive strategy in soils exposed to frequent
drought events [25, 26]. However, this could also be linked to
changes in soil chemistry associated with the legacy of the
different drought treatments. Although most of the nutrients
released just after drought were already consumed at the time of
the growth rate measurements (one month after drought), some
were still elevated compared to control soils (Fig. S9), which could
support bacterial growth. On the other hand, the reduced
cumulative fungal growth could underpin the reduced abundance
of the two dominant fungal families. This result contrasts with
other studies where fungal growth was not affected by drought
history [21, 76]. However, the fungal growth capacity in our study
could have also been constrained by the high bacterial growth in
the soils [77]. These effects on microbial growth were not
dependent on the microbial biomass of soils before drying/
rewetting (Fig. S5n, o). Cumulative respiration after rewetting
seems to be driven by fungi, as it follows approximately the same
pattern as cumulative fungal growth. This contrasts with some
recent observations, where respiration was mostly driven by
bacterial growth [21]. Alternatively, this decrease in cumulative
respiration with previous drought intensity could be also related
to resource availability. Previous high intensity drought led to a
strong increase of DOC, which was mostly used one month after
drought (Fig. S9c), and this likely depleted the soil carbon
available to fuel a respiration peak after the additional drying/
rewetting cycle. Reduced carbon availability in soils after drought
has been previously reported [71], as well as less intense
respiration peaks after repeated drying/rewetting cycles [25, 71].
Our results indicate that there are legacy effects of drought on

soil microbial communities, matching recent studies. For example,
pre-exposure to drought has been demonstrated to increase
bacterial resistance [23, 24] and resilience [25] to subsequent
droughts, although others have reported the opposite pattern,
with previous drought reducing stability and diversity of microbial
communities in the long term [22, 58]. We observed an increased
recolonisation capacity of bacteria, albeit a lower tolerance to
reduced soil moisture, while fungi showed a potential increased
resistance to drought but with less cumulative growth upon
rewetting. Thus, in this study system, there appears to be a trade-
off between growth after rewetting, which can be interpreted as
resilience, and resistance to low moisture. These strategy changes
could be the result of a shift in the relative abundance of different
taxa within the community or due to changes in individual taxa’s
physiology or traits (evolution). In any case, the response of fast re-
coloniser bacterial taxa appears to shape bacterial communities
after drought, as they occupy niches left vacant after drought,
conditioning community assembly afterwards [78].
As discussed above, our findings provide experimental evidence

that high intensity soil drying prevented microbial community
resilience upon rewetting. Moreover, we observed a clear thresh-
old of drought intensity level corresponding to a 30-year recurrent
drought event in England (15% WHC, 9% volumetric water

content; Fig. 4a–d). Below this moisture level, soil microbial
communities were markedly and persistently restructured with
impaired functioning, and they failed to recover over a period of
6 months, despite returning moisture levels to those of the
control. The existence of this threshold is further supported by a
previous study that demonstrated that below a threshold of 14%
WHC, the growth pattern of bacteria upon rewetting changed
significantly [79].
To further evaluate the abrupt and persistent microbial shifts in

our experiment, we mapped microbial community composition
and function with multivariate analysis, as it is a useful tool to
visualise stability landscapes and regime shifts [80]. We observed a
clear pattern in both community structure and function of soil
microbial communities where soils subjected to intense drought
occupy a distinct space separated from the control, which could
potentially be interpreted as an alternative state of the system
(Fig. 4e–h). Moreover, our experiment met most of the recognised
criteria for detecting an alternative state [81]. First, we demon-
strated the existence of two different microbial communities given
the same environmental condition (i.e., at optimum soil moisture
during the period after drought). Second, different intensities of
drought, or the scale of pulse perturbation, were found to have
contrasting effects on soil microbial communities, with mild and
intermediate drought intensities showing reversible effects, but
persistent changes in response to high intensity drought. Third,
our experiment was conducted over an extended period of time,
representing the typical length of the growing season in northern
England, where the soil samples were collected. While it is unlikely
that the identified microbial shifts are “stable”, we demonstrate
that microbial communities subject to high intensity drought shift
towards a different state that is distinct from its original one and
from the non-droughted control soils. We therefore propose that
the detected microbial shifts may reflect an alternative “transient”
state [78] or simply an alternative state.

CONCLUSION
Our findings demonstrate experimentally that while microbial
communities can buffer mild, infrequent droughts, increasing the
intensity and frequency of drought decreases soil microbial
community resistance and resilience, and triggers an abrupt shift
in soil microbial state. Moreover, we show that this abrupt shift in
microbial state occurs at a threshold of <15% WHC - correspond-
ing to a 30-year recurrent drought event in England - and is
characterised by a pronounced and persistent reduction in
microbial functional capacity, modified taxonomical composition
of reduced complexity, and bacterial communities with a
composition of functional traits that enable rapid recolonisation.
Based on these finding, we propose that the detected microbial
shifts may be indicative of an alternative microbial state after
intense drought. However, caution is needed on extrapolating
results from this laboratory study to real world settings and future
studies are necessary to consider the role of extrinsic factors that
might modify the vulnerability of soil microbial communities to
perturbation-induced transitions to alternative states, such as the
presence of plants, which can help the system recover after
drought [82], or differences in nutrient availability and other soil
abiotic properties [11]. Additionally, further experiments with
longer time-scales and under settings closer to those found in the
field are needed to better understand the responses of soil
microbial communities to drought intensity and frequency, and
how they vary under different climatic and edaphic conditions.
Nevertheless, our results provide novel experimental evidence of a
decreasing resistance and resilience of soil microbial communities
as drought intensity increases, and identify a threshold for an
abrupt and persistent shift in soil microbial state driven by high
intensity drought, with potentially deleterious consequences for
soil health.
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