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Viruses in deep-sea cold seep sediments harbor diverse survival
mechanisms and remain genetically conserved within species
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Deep sea cold seep sediments have been discovered to harbor novel, abundant, and diverse bacterial and archaeal viruses.
However, little is known about viral genetic features and evolutionary patterns in these environments. Here, we examined the
evolutionary ecology of viruses across active and extinct seep stages in the area of Haima cold seeps in the South China Sea. A total
of 338 viral operational taxonomic units are identified and linked to 36 bacterial and archaeal phyla. The dynamics of host-virus
interactions are informed by diverse antiviral defense systems across 43 families found in 487 microbial genomes. Cold seep viruses
are predicted to harbor diverse adaptive strategies to persist in this environment, including counter-defense systems, auxiliary
metabolic genes, reverse transcriptases, and alternative genetic code assignments. Extremely low nucleotide diversity is observed
in cold seep viral populations, being influenced by factors including microbial host, sediment depth, and cold seep stage. Most cold
seep viral genes are under strong purifying selection with trajectories that differ depending on whether cold seeps are active or
extinct. This work sheds light on the understanding of environmental adaptation mechanisms and evolutionary patterns of viruses
in the sub-seafloor biosphere.
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INTRODUCTION
Cold seeps are deep-sea environments where hydrocarbon fluids
and gas seepage occur at the continental margins worldwide. The
continuous seepage of gaseous and liquid hydrocarbons boosts
local biodiversity and microbial activity, featuring prevalent
archaeal anaerobic methanotrophs (ANME) and sulfate-reducing
bacteria (SRB) [1, 2]. Compared to the rich knowledge of cold seep
bacterial and archaeal communities, viruses remain largely
underexplored in spite of their significant roles in impacting
microbes and corresponding biogeochemical cycles [3, 4]. Virus
studies using enumeration or cultivation have shown that cold
seep sediments are hotspots of viral production with high virus-
prokaryote ratios [5, 6]. A recent survey of metagenomes from
seven cold seeps demonstrates that these sediments harbor
diverse and novel viruses, hinting at their potential impact on
hydrocarbon biodegradation and other local metabolisms cata-
lyzed by cold seep microbiomes [7]. However, cold seep viral
diversity and distribution patterns, virus-microbe interactions,
adaptive mechanisms to environmental factors, and viral genetic
diversity are still relatively unexplored.
Viruses have a genetic toolbox of diverse mechanisms to adapt

to the environment and co-evolve with hosts. As foreign mobile
genetic elements, viruses face a wide repertoire of antiviral
defense systems, including restriction-modification (RM) and
CRISPR-Cas [8]. In line with antagonistic co-evolution of viruses

and their hosts [9, 10], viruses have developed efficient and robust
counter-defense systems, such as anti-restriction, anti-CRISPR, and
other counter-defense proteins [11, 12]. Diversity-generating
retroelements (DGRs) containing reverse transcriptase (RT) are
another important diversification mechanism for driving sustained
amino acid-level diversification of their target domains [13, 14].
Viruses also encode DGRs to produce many mutations in specific
regions of host target genes through error-prone reverse
transcription [15–17]. To replicate more efficiently, viruses can
alter their hosts’ metabolic potential through the expression of
auxiliary metabolic genes (AMGs) to modulate host cell metabo-
lism during infection [18]. In addition to these gene inventories,
viruses can use alternative genetic codes different from those of
their host, potentially increasing viral adaptability (e.g., in
regulating translation of lytic genes) [19, 20]. Whether or not cold
seep viruses incorporate these strategies into their repertoire of
mechanisms for mediating host-virus interactions and environ-
mental adaptation in these harsh deep-sea subseafloor environ-
ments requires further investigation.
Intra-population genetic variations (microdiversity) can also

improve virus adaptation to their environment by driving
phenotypic variation [21, 22]. For example, depth-dependent
evolutionary strategies of viruses were observed in the Mediterra-
nean Sea [9] and grassland soil in northern California [10]. Large
viral microdiversity was observed for perhaps the most abundant
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ocean virus in temperate and tropical waters infecting Pelagibacter
[23], whereas viruses were under significantly low evolutionary
pressures in stable subzero Arctic brines [24]. The principles
governing the viral evolution likely differ depending on environ-
mental conditions, such as host dynamics, physicochemical
properties, and population sizes [25–27]. Examining 39 abundant
microbial species identified in sediment layers below the sea floor
and across six cold seep sites, we previously reported that their
evolutionary trajectories were depth-dependent and differed
across phylogenetic clades [1]. However, it remains to be
answered if cold-seep viruses are undergoing similar evolutionary
patterns and selection pressures.
To understand adaptive survival mechanisms and genetic

microdiversity of cold seep viruses, we extracted viral genomes
from 16 sediment core samples in the area of Haima cold seeps
in the South China Sea (Supplementary Figure 1 and Supple-
mentary Table 1). Cores were collected from two active seeps
with dense and living bivalves, as well as from one extinct seep
covered with many dead clams [28]. We explored viral diversity
patterns at both the community-level (macrodiversity) and
population-level (microdiversity), and the viral functional gene
repertoire related to arms race between viruses and their
prokaryotic hosts. This study expands the knowledge of
ecological and evolutionary patterns of viruses inhabiting
cold seep subsurface ecosystems.

RESULTS AND DISCUSSION
Diverse antiviral strategies in cold seep microbial genomes
In total, 16 metagenomic data sets were derived from depth-
discrete sediment core samples obtained from two active (n= 5
for Active1; n= 6 for Active2) and one extinct (n= 5) cold seeps
(Supplementary Figure 1 and Supplementary Table 1), at depths
ranging from 0 to 20 cm below the sea floor (cmbsf) [28]. Bacterial
and archaeal community structures varied between different
depth layers at the three sites (Supplementary Fig. 2 and
Supplementary Table 2). Active seep sediments were dominated
by taxa affiliated with Halobacteriota and Desulfobacterota,
whereas the members of Desulfobacterota and Chloroflexota were
the major microbial lineages in extinct seep sediments. After
assembly, 487 species-level metagenome-assembled genomes
(MAGs) were reconstructed at an average nucleotide identity (ANI)
threshold of 95% (Supplementary Figure 3 and Supplementary
Table 3), spanning 53 bacterial and 10 archaeal phyla, with the
majority affiliated with Proteobacteria (n= 59), Desulfobacterota
(n= 56), Chloroflexota (n= 49), Bacteroidota (n= 38), and Thermo-
plasmatota (n= 24).
Bacteria and archaea possess diverse antiviral strategies to

defend against infection by their viruses [29–31]. A total of 2,145
antiviral genes were detected in 63% of cold seep microbial
genomes, and could be assigned to 43 families of antiviral systems
[8, 32]; these include restriction-modification (RM) systems that
target specific sequences on the invading DNA elements, and
CRISPR-Cas systems that use RNA-guided nucleases to cleave
foreign sequences [33] (Fig. 1a and Supplementary Table 4). On
average, the cold seep microbial genomes encode two antiviral
systems per genome and the number of antiviral systems is
positively correlated with the genome size for each MAG (linear
regression; R2= 0.27, p= 4.73 × 10−5; Fig. 1b), similar to previous
observations on the importance of genome size for encoding
accessory systems in prokaryotes or ocean microbiomes [8, 34].
The number of antiviral systems per genome varies from zero (179
genomes) to 32 in a genome belonging to the phylum
Fermentibacterota (classified as JAFGKV01 at the family-level;
Supplementary Table 4), followed by 30 in a Gammaproteobacteria
genome and 27 in a Bacteroidia genome. On average, the bacterial
genomes encode more antiviral systems per genome than those
in archaeal genomes (3.9 vs 2.4). The most abundant species in the

metagenomic dataset (18% of the microbial community) is the
putative anaerobic methanotroph ANME-1 SY_S15_40 that
encodes two RM type II and one RM Type IIG systems
(Supplementary Tables 3 and 4). Based on surveying large
datasets of sequenced genomes, RM and CRISPR-Cas systems
were reported to be present in ~75% and ~40% of microbial
genomes, respectively [29, 35]. Relatively fewer cold seep
microbial genomes appear to encode RM (50.8%) and CRISPR-
Cas systems (22.7%), yet feature higher frequencies of AbiEii (44%;
one antiviral system of Abortive infection [36]) and SoFlC (38%)
that can modulate various target protein activities [32] (Fig. 1c and
Supplementary Table 4). Diverse antiviral systems were also found
in microbial communities from Mediterranean sponge species
[37], epipelagic and mesopelagic layers in the Pacific Ocean [38], a
deep-sea hydrothermal microbial mat in the Guaymas Basin [39].
In general, they have different distribution patterns of antiviral
systems from cold seep sediments. Overall, these data reveal
diverse antiviral strategies throughout the Haima cold seep
microbiome with specific enrichment in some antiviral systems
that govern the dynamics of host-virus interactions.

Novel viral genomes linked to 36 microbial phyla
Cold seep samples contained highly abundant viruses with
densities up to 7.6 × 1011 per gram sediments, with viral
abundances being associated with sediment depth (Supplemen-
tary Table 5). From the 16 metagenomic data set, 488 single-
contig viral genomes with ≥50% estimated completeness (based
on CheckV [40]) were recovered using multiple virus identification
tools (Fig. 2a and Supplementary Figure 4). Viral genomes were
clustered into 338 species-level viral operational taxonomic units
(vOTUs) [41], belonging to 83 viral clusters (VCs; roughly
equivalent to an ICTV genus) utilizing whole genome gene-
sharing profiles [42] (Supplementary Fig. 5 and Supplementary
Table 6). Similar to observations in prokaryotic communities [1,
2, 43], alpha and beta diversity analyses of 338 vOTUs suggest that
sampling site, sediment depth in relation to redox conditions [28],
and the geological state of cold seeps (active or extinct) shape the
structure of viral communities (Supplementary Fig. 6 and
Supplementary Table 5).
Among the 338 vOTUs, 291 could be taxonomically assigned

revealing that 288 are affiliated with the class Caudoviricetes
(Fig. 2a and Supplementary Table 6), which encompasses tailed
phages that are the most prevalent viral taxon across ecosystems
[44]. Only ten vOTUs could be annotated at the order level,
confirming a large knowledge gap in the taxonomy of deep-sea
cold seep viruses [7]. With respect to viral lifestyles, 48 and 22
vOTUs were predicted to be lytic and lysogenic, respectively, with
others being unclassified (Fig. 2a). Host predictions of these vOTUs
revealed that virus-infected hosts were detected in 36 bacterial
and archaeal phyla (Fig. 2b, c and Supplementary Table 7). From
the 475 host-virus linkages, the most common phylum among
predicted hosts was Chloroflexota (n= 80), followed by Halobac-
teriota (n= 31), Asgardarchaeota (n= 30), and Desulfobacterota
(n= 29). This is consistent with our previous observation that a
significant portion of viruses targeted archaea in cold seep
sediments, and such a host-virus pattern has not been reported in
other deep-sea ecosystems [7, 45, 46]. Ten viruses were predicted
to infect ANME-1 and ANME-2 groups that perform anaerobic
methane oxidation. Viruses infecting Methanosarcinales and
Gammaproteobacteria were highly abundant in the extinct and
active cold seep samples, respectively.

Cold seep viruses harbor diverse strategies for environmental
adaptation
To protect against antiviral systems of their microbial hosts, cold
seep viruses encode an extensive repertoire of counter-defense
systems, including anti-CRISPR (Acr) proteins, methyltransferases,
and antitoxins (Fig. 3a–c and Supplementary Table 8). A total of
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75 type II DNA methyltransferases without counterpart restriction
enzymes were detected in 55 viral genomes (16% of all viruses),
encoding diverse DNA modification enzymes (e.g., adenine- and
cytosine-specific methyltransferases, and adenine methylase) [34].
The acr-aca operon (anti-CRISPR gene acr and acr-associated gene
aca) [47] was identified in ten viral genomes (3%), which may

inhibit the CRISPR-Cas immunity of the host to allow viruses to
propagate [48]. Accordingly, one Poribacteria genome SY_Acti-
ve_Co137 infected by a virus with the acr-aca operon has nine cas
genes (Supplementary Tables 4 and 8). Interference modules of
the antitoxin genes (e.g., vapBC, relBE, hicBA) were found in 63
viruses (19%) and belonged to the type II Toxin-antitoxin (TA)

0

10

20

30

RM Cas
AbiEii

SoFIC
CBASS

Wadjet
Septu

Psyr
TA
DarTG

Gabija

Lamassu
−Fam

Shedu
BREX

Menshen
Borvo

Retron

Rst_
PARISAbi2

MokoshNhi
SEFIR

ShosTA
Thoeris

dCTPdeaminase
AVAST

Druantia

Gao_Qat

Hachiman
Shango

Gao_Ppl
PrrC
Tiamat

Aditi Dsr

Gao_Her

Gao_Hhe
Olokun

Rst_
Helica

seDUF2290
Uzume

dGTPase
DRT

Gao_Ape
Viperin

Pr
op

or
tio

n 
of

 a
nt

iv
ira

l g
en

es
 (%

) 

10

20

30

40

50

RM
AbiEii

SoFICCas
CBASS

Psyr
TA
Septu

Gabija
DarTG

Borvo
Shedu

Wadjet
Abi2

Lamassu
−FamNhi

Retron
SEFIR

dCTPdeaminase

Rst_
PARIS

BREX

Menshen
Mokosh

AVAST

Gao_Ppl

ShosTA
Thoeris

Tiamat

Gao_Hhe

Hachiman
Uzume

Aditi

dGTPaseDRT
Druantia Dsr

Gao_Ape

Gao_Her

Gao_Qat
Olokun

PrrC

Rst_
Helica

seDUF2290
Shango

Viperin

Pr
op

or
tio

n 
of

 g
en

om
es

 e
nc

od
in

g 

0

2000 4000 6000
Genome size (kb)

An
tiv

ira
l s

ys
te

m
s

a

b

c

0

10

20

30
R = 0.27, p = 4.725e-052

an
tiv

ira
l s

ys
te

m
s 

(%
)

Fig. 1 Diversity of antiviral systems found in cold seep bacterial and archaeal genomes. a Proportion of antiviral genes from each type of
antiviral systems in all the identified antiviral genes. b Relationship between antiviral system numbers per prokaryotic genome and their
genome sizes. The correlation analysis was conducted with the completeness-filtered dataset (>90% genome completeness) to reduce the
potential bias caused by the genome incompleteness. c Frequency of antiviral systems detected in microbial genomes. Detailed statistics for
antiviral systems of microbial genomes are provided in Supplementary Table 4.
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system [49]. Additionally, a total of 17 viruses were found to
encode two or more types of counter-defense systems.
As an important mechanism in adaptation to the environment,

viruses can acquire new functional genes via transduction, namely
auxiliary metabolic genes (AMGs) that contribute to host and/or
viral fitness [4, 45]. Ten AMGs were identified in seven viral
genomes (Fig. 3d, Supplementary Fig. 7 and Supplementary
Table 9), related to four different types of functions. Two AMGs
encoded GTP cyclohydrolase I (FolE), and six belonging to Que
super family (QueC and QueD) may contribute to synthesizing GTP
to 7-Cyano-7-deazaguanine (preQ0) for genome modifications and
translational efficiency [50]. The preQ0 is the key intermediate in Q
and G+ pathways, which can be further modified for protecting
viral DNA from host restriction enzymes [51]. AMGs encoding
S-adenosylmethionine (SAM) decarboxylase (SpeD) and Dehydro-
genase E1 component were also identified, and are involved in
biosynthesis of amines or polyamines and the tricarboxylic acid
cycle, respectively. SAM is the methyl donor for methyltransferases
that modify DNA, RNA, histones, and other proteins; decarboxyla-
tion of SAM to S-adenosylmethioninamine might reduce the SAM

required for methylation by host enzymes [52]. These AMGs have
been also reported to be encoded by viruses in other deep-sea
settings, including seawater and sediments of oceanic trenches,
and free-living and particle-attached fractions from the bath-
ypelagic ocean [45, 53–55], suggesting their importance roles in
increasing viral adaptability in deep oceans.
Different classes of reverse transcriptases (RTs) were also found

in 22 viruses, including diversity-generating retroelements (DGRs),
retrons, UG26, and UG28 (Fig. 3e and Supplementary Fig. 8).
Among them, RTs associated with DGRs were detected in five
viruses; this mechanism can introduce variations in the target
gene and facilitating the evolution of their hosts [17]. Retrons
were found in three viruses, also possibly involved in defense
systems for foreign DNA elements [49, 56]. Other RTs systems
were identified with their roles and mechanisms remaining
unknown.
Diverse lineages of viruses from different habitats have been

seen to be self-beneficially employ alternative genetic codes to
reassign one or more codons [20, 57–59]. In the dataset from the
Haima cold seeps, 16 viral genomes are predicted to use genetic

Fig. 2 Ecological features of cold seep viruses. a Workflow for identification, taxonomic assignment, and lifestyle prediction of viruses.
Phylogenomic trees of predicted (b) archaeal and (c) bacterial hosts based on concatenated alignments of single-copy marker genes
predicted by GTDB-Tk. Scale bars indicate the average number of substitutions per site. The orange triangle shows the number of viruses
predicted to infect hosts in each clade, and the blue circle shows the number of microbial genomes in each clade with predicted viruses.
Detailed statistics for taxonomy, lifestyles, and host-virus linkages are provided in Supplementary Tables 6 and 7.
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codes characterized by reassignments of the ochre (TAA; n= 620
recoding events of genes), amber (TAG; n= 182) or opal (TGA;
n= 3) stop codons (Fig. 3f, Supplementary Fig. 9a and Supple-
mentary Table 10). These viruses are associated with hosts in
multiple phyla (e.g., Desulfobacterota and Acidobacteriota). Gen-
ome sizes of these viruses range from 5.2 kb to 179.7 kb, with
larger genomes having more recoding events of genes (linear
regression; R2= 0.58, p= 0.0004). Recoded genes were mostly
associated with replication, recombination and repair functions,
followed by unknown functions (Supplementary Fig. 9b), suggest-
ing adaptive recoding in controlling viral replication and
regulation.

Cold seep viruses are genetically conserved and under strong
purifying selection
Nucleotide diversity (π), single nucleotide polymorphisms (SNPs)
and fixation indices (FST) were calculated to track viral micro-
diversity (Supplementary Tables 11 and 12). Nucleotide diversity of
cold seep viral populations ranged from zero to 3.06 × 10−3, and
were on-average 1.29 × 10−4 (median 3.38 × 10−5) for viruses
detected in both active and extinct cold seep sediments (Fig. 4a).
This viral nucleotide diversity is significantly lower than that
observed for viral populations in seawater sampled from
throughout the world’s oceans (on-average 3.78 × 10−4) [22] and
in soils having various land uses (on-average 6.54 × 10−3) [60]. Low
SNP frequencies were also observed in Haima cold seep viral

populations (0.33 SNP per 1000 bp on average, median 0.076;
Fig. 4b), e.g., compared to those detected in the SARS-CoV-2
coronavirus, in 25 uncultivated virophage populations in North
American freshwater lakes, and in 44 dsDNA viral populations
dominating the oceans, based on various approaches for the
extraction of viral genomes [61–63]. FST values between viral
populations in relation to different sediment samples ranged from
zero to 0.89 and were on-average 0.048, with 80% of pairwise
fixation indices being zero (Fig. 4c). These data reflect that cold
seep viral populations are genetically conserved and homoge-
neous contrary to observations of their microbial hosts [1],
suggesting viruses and microbes might undergo different types
of environmental selection.
Nucleotide diversity of viral populations is significantly different

among viruses infecting different microbial hosts (p= 0.0003;
Fig. 4d and Supplementary Table 11). Archaeal viruses associated
with Halobacteriota have the highest nucleotide diversity. Like
evolutionary trajectories of microbial populations in cold seeps [1]
(e.g., Asgardarchaeota, Halobacteriota, and Bacteroidota), the
nucleotide diversity of associated viruses is also depth-
dependent in active cold seeps (linear regression; R2= 0.21,
p= 1.65 × 10−5; Fig. 4e). On the other hand, no obvious depth-
dependent trends were observed for viruses in the extinct cold
seep (linear regression; R2=−0.0048, p= 0.40). This is in
agreement with the significant difference for nucleotide diversity
between the two cold seep stages (Fig. 4a; p= 0.051).

Fig. 3 Diverse strategies for environmental adaptation in cold seep viruses. a Viruses encode methylases that can modify their DNA to
prevent its recognition by host restriction-modification systems and cleavage by certain restriction endonucleases. b Anti-CRISPR genes in
viruses can inhibit CRISPR-Cas activities when it is targeted by the CRISPR-Cas system of the host. c Viruses encode antitoxins that can
neutralize host toxin-antitoxin systems. d Potential functions of auxiliary metabolic genes. SAM: S-adenosylmethionine. preQ0: 7-cyano-7-
deazaguanine. e Reverse transcriptases (RTs) in cold seep viruses including diversity generating retroelements (DGRs), retrons, UG26, and
UG28. For DGR, RT mediates exchange between two repeats: one serves as a donor template (TR) and the other as a recipient of variable
sequence information (VR). f Alternative genetic codes found in some cold seep viral genomes. Related genes identified in cold seep viruses
are marked in red (gene name) or with red border (gene arrow). Detailed statistics for diverse strategies for environmental adaptation in
viruses are provided in Supplementary Tables 8–10.
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At the gene level, 90.6% of pN/pS ratios were less than 0.4,
much lower (p < 0.0001) than those observed for viral assem-
blages present in underground saline waters from hypersaline
springs [64] (Fig. 5a, Supplementary Fig. 10 and Supplementary
Table 13), indicating that most cold seep viral genes were under
strong purifying selection. However, genes under positive selec-
tion were also detected in relation to viral DNA replication,
recombination, repair, and maturation (Fig. 5b), including genes
encoding TerL, transposase, and leucyl-tRNA synthetase with
abnormally high pN/pS values (Supplementary Table 13). Sig-
nificant differences were exhibited for pN/pS ratios between the
two cold seep stages (Fig. 5a; p < 0.0001). When grouped

according to the functional categories of VOGDB (http://
vogdb.org/), nucleotide diversity values were found to be
significantly different while no significant differences were
observed for pN/pS ratios (Supplementary Fig. 11). Tajima’s D
values ranged from −9.7 to zero and significantly varied
(p= 1.66 × 10−8) between the two cold seep stages (Fig. 5c). A
total of 90.5% of viral gene Tajima’s D values were found to be
zero with no detected SNP. For others, genes under natural
selection (Tajima’s D <−2.5; 6.1%) outnumbered those under
neutral processes (Tajima’s D= 0; 3.4%). The observation of large
number of negative values supports the presence of excess rare
alleles and recent expansion of cold seep viral populations [65].
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CONCLUSIONS
Previous studies of viral ecology and evolution have paid little
attention to how subsurface viruses evolve to adjust to their
surrounding environment and interact with their hosts [4, 25, 26].
Besides investigating structural and functional characteristics of
viral communities, this study highlights evolutionary adaptation
patterns of viruses at different sediment depths in cold seeps that
are active and extinct. Novel and abundant deep-sea cold seep
viruses were identified and observed to vary between active and
extinct cold seeps and different sediment depths. These viruses
are associated with major lineages of cold seep archaea and
bacteria, including many taxonomic groups with no cultured
representatives. Cold seep archaea and bacteria have various
antiviral defense systems to prevent infections of diverse and
abundant viruses, such as RM, AbiEii, SoFlC, and CRISPR-Cas
systems. Likewise, their viruses have evolved to harbor a rich
repertoire of adaptive strategies to defend against these host
systems, including anti-CRISPR (Acr) proteins and methyltrans-
ferases. In addition to counter-defense systems to combat
microbial hosts, cold seep viruses also contain RTs and AMGs
that contribute to viral fitness, as well as alternative genetic code
assignments to increase phenotypic diversity. Beyond genetically
diverse features of cold seep viruses, their evolutionary trajectories
are also surprisingly unique, featuring genetic conservation and
homogenous genomes with unexpectedly low microdiversity.

Most viral genes generally undergo strong purifying selection, in
both the active and extinct cold seep sediments. These findings
indicate that multiple factors are likely to determine the
evolutionary patterns of cold seep viruses, including microbial
hosts, sediment depth, and cold seep geology.
Together, these analyses of evolutionary dynamics of viruses

will help guide future studies targeting the viral evolution and
virus-host systems in extreme environments. However, it should
be noted our results are representative only of double-stranded
DNA viruses, such that other viral particles are not incorporated in
the extraction process and analysis [9]. Nevertheless, studies with
more samples from more locations and covering larger spatial
gradients via the combination of metagenomes and viromes as
well as single-virus genomics [23, 61] will be necessary to
determine if the trends presented here are universal for deep
sea subseafloor viral communities.

METHODS
Sample description, metagenomic sequencing and analysis
Metagenomic sequencing was performed on 16 sediment samples
collected from the Haima cold seeps in the northern part of the South
China Sea (Supplementary Fig. 1). Samples were taken from two active
seep sites and one extinct seep site via the R/V Tansuo Yihao using the
piloted submersible ShenHai YongShi [28]. Sediment cores penetrated
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Fig. 5 Gene-wide evolutionary metrics of cold seep viral populations. a pN/pS ratio of viral genes from cold seeps (this study) and viral
genes from an ancient saltern [64]. b Viral genes under positive selection in active and extinct cold seeps. Viral genes are divided into two
groups based on pN/pS values, consisting of genes under positive selection (pN/pS≥1) and those under purifying selection or relaxed
selection (pN/pS < 1). c Tajima’s D of viral genes across 16 sediment samples from extinct (blue) and active (red) cold seeps. Detailed statistics
for evolutionary metrics of cold seep viral genes are provided in Supplementary Table 13.

Y. Peng et al.

1780

The ISME Journal (2023) 17:1774 – 1784



18 to 20 cm into the seabed. Details for DNA sequencing can be found
elsewhere [28] and involved genomic DNA extraction with the MO BIO
PowerSoil DNA Isolation Kit followed by sequencing on the MGI
sequencing platforms DNBSEQ-T1 or BGISEQ500 (MGI Tech Co., Ltd.,
China) at BGI-Shenzhen (China).
For assessing microbial community composition, metagenomic reads

were screened using singleM v0.13.2 (https://github.com/wwood/singlem)
to extract rplB operational taxonomic units (OTUs). Quality-control of raw
reads, assembly of clean reads into contigs, and generation of
metagenome-assembled genomes (MAGs) used the metaWRAP [66]
pipeline (v1.3) with details as reported previously [28]. Following
depreciation using dRep v3.0.0 (parameters: -comp 50 -con 10 -sa 0.95)
[67] a non-redundant set of 487 species-level MAGs was obtained.
Taxonomic classifications of bacterial and archaeal genomes were assigned
using GTDB-Tk v2.1.1 with the Genome Taxonomy Database using the
R207_v2 reference package [68]. The set of 120 bacterial or 53 archaeal
marker genes were identified, aligned, concatenated, and trimmed using
GTDB-Tk v2.1.1. Genomes are then placed into the domain-specific trees
using IQ-TREE v2.0.5 with best-fit models and 1000 ultrafast bootstraps
[69, 70]. Bacterial and archaeal trees were visualized and beautified in the
Interactive Tree Of Life (iTOL; v6) [71]. DefenseFinder v1.0.2 (parameters:
-dbtype gembase) [8] was used to systematically detect antiviral defense
systems in MAGs based on MacSyFinder models v1.2.0 in line with
MacSyfinder rules [72].

Enumeration of viruses via fluorescence microscopy
Viral particles in sediments were counted by fluorescence microscopy
according to a previous protocol [73]. In brief, around ~0.8 g sediment
from each sample was transferred into a sterile 50mL centrifuge tube and
promptly fixed in 0.5% glutaraldehyde. Viruses were separated from
sediments by vortexing in the dark, incubated in sodium pyrophosphate,
and sonicated on ice. Samples were then filtered onto 0.02 μm pore-size
membrane filters (Anodisc 25, Whatman), stained with SYBR Green I and
observed using a HORIBA Aqualog fluorescence microscope (Tokyo, Japan)
with a Leica imaging system. The Find maxima tool of Image J (https://
imagej.net) was used to automatically select the fluorescent points [74]
with manual curation.

Virus identification, vOTU clustering and taxonomic
assignment
Potential single-contig viral genomes were identified from 18 metage-
nomic assemblies (contigs larger than 10 kb) using DeepVirFinder v1.0 [75],
Virsorter2 v2.2.3 [76], and VIBRANT v1.2.1 [77]. Additionally, the Metavir-
alSPAdes module of SPAdes v3.15.2 was used to assemble viral contigs
from metagenomic reads with default parameters [78]. CheckV v1.0.1
(database v1.1) [40] was applied to estimate the completeness and
contamination of contigs identified (n= 6,520) using the above four
methods. Genomes with ≥50% estimated completeness (n= 488) were
clustered into species-level vOTUs according to MIUViG guidelines (95%
average nucleotide identity; 85% aligned fraction) [41]. Clustering used the
method for single-contig viral genomes [44] based on the supporting code
of the CheckV v1.0.1 repository [15, 40]. Representative viral genomes for
each species-level vOTU (n= 338) were clustered into viral clusters (VCs)
that were roughly equivalent to ICTV (International Committee on
Taxonomy of Viruses) prokaryotic viral genera using vConTACT2 v0.11.3
(parameters: --pcs-mode MCL --vcs-mode ClusterONE --rel-mode ‘Dia-
mond’ --db ‘ProkaryoticViralRefSeq94-Merged’) enabled by gene-sharing
networks [42]. The geNomad v1.3.3 pipeline (genomad end-to-end)
[44, 79] was employed for the taxonomic assignment of viral genomes
in accordance with the taxonomy contained in ICTV’s VMR number 19
(https://ictv.global/). BACPHLIP v0.9.6 (with a minimum score of ≥0.8) [80]
and VIBRANT v1.2.1 [77] were used to test if complete viral genomes were
likely to be either temperate (lysogenic) or virulent (lytic). Remaining viral
genomes were predicted to be lysogenic or unclassified depending on if
they contained provirus integration sites or integrase genes based on the
annotation provided with each genome.

Host assignments for bacteriophages and archaeoviruses
A total of 2678 bacterial and archaeal MAGs recovered from 68 previously
sequenced cold seep sediments were used to serve as the host reference
database [1]. Multiple host prediction strategies were used to link viral
genomes to their microbial hosts following our previous method [7]
complemented with iPHoP, an automated command-line pipeline for host

predictions [81] (Supplementary Fig. 4). (i) For CRISPR spacer matches, the
CRISPR arrays of cold seep microbial genomes were predicted using the
CRISPRidentify v1.1.0 with default parameters [82]. Spacers shorter than
25 bp and CRISPR array with fewer than three spacers were dropped out.
CRISPR spacers were aligned with viral genomes with ≤1 mismatch using
BLASTn, and the thresholds of 95% identity were selected. Additionally,
1,398,130 spacers from 40,036 distinct genomes in the iPHoP_db_Sept21
database were also used for CRISPR-based predictions by version 1.1.0 of
iPHoP [81]. (ii) For the detection of shared tRNA between viruses and hosts,
tRNA genes were annotated using tRNAscan-SE v2.0.9 (parameters: -B -A)
[83]. Putative host-virus linkages satisfied a threshold of ≥90% length
identity over the 95% of the sequences by BLASTn. (iii) For alignment-
based matches, viral genomes were aligned with microbial genomes using
BLASTn based on their nucleotide sequence homology (e-value ≥ 0.001,
nucleotide identity ≥70%, match coverage over the length of viral
genomes ≥75% and bitscore ≥50). (iv) For host predictions based on
independent signals (k-mer usage profiles and protein content), VirHost-
Matcher (VHM) [84], WIsH [85], Prokaryotic virus Host Predictor (PHP) [86],
and RaFAH [87] were performed individually using iPHoP v1.1.0. Match
criteria were d2

* values ≤ 0.2 for VHM, p-values ≤ 0.05 for WIsH, the
predicted ‘maxScoreHost’ for PHP, and RaFAH_scores>0.14 for RaFAH. The
genome was considered to be the host if it belonged to the same family
with top hits for each viral genome based on multiple methods.

Identification of counter-defense systems, reverse
transcriptases, auxiliary metabolic genes, and alternative
genetic codes
For counter-defense systems, Acr-Aca operons were predicted based on
the guilt-by-association approach using Acafinder (--Virus; version of Oct
15, 2022) [47]. Methyltransferases and restriction endonucleases of all
types of restriction-modification (RM) systems were identified using
previous hidden markov model profiles and scripts (https://github.com/
oliveira-lab/RMS; version of Mar 16, 2018) [34]. Toxin and Antitoxin genes
were identified based on specific domains of TA systems using Metafisher
(https://github.com/JeanMainguy/MeTAfisher). Reverse transcriptases (RTs)
were predicted and classified through the myRT web-server (https://
omics.informatics.indiana.edu/myRT/) [14].
Auxiliary metabolic gene (AMG) identification was performed following

previous protocols [7, 88]. Briefly, checkV-trimmed viral genomes were run
through VirSorter2 (--prep-for-dramv) to produce the viral-affi-contigs-for-
dramv.tab, and then the annotations were done using DRAM v1.2.0 (viral
mode; default parameters) [89]. Genes with auxiliary scores of 1-3 and AMG
flags of M and F were considered putative AMGs for further validation by
manual checking of gene locations. PROSITE [90] was used to analyze the
conserved domains of AMGs, and SWISS-MODEL [91] was used for protein
structural predictions. Three-dimensional structures of viral AMGs were
predicted using ColabFold by combining the fast homology search of
MMseqs2 with AlphaFold2 [92, 93]. Genome maps of AMG-containing viral
genomes were visualized based on DRAM-v annotations using Easyfig
v.2.2.0 (ref. [94]).
Mgcod v1.0.0 was used to identify blocks with specific genetic codes for

cold seep viral genomes (parameters: --isoforms) [95]. In this pipeline,
MetaGeneMark [96] was applied to find the highest scoring model among
four genetic code models: i) the standard genetic code (genetic code 11),
ii) a model with the opal (TGA) reassignment (genetic code 4), iii) a model
with the amber (TAG) reassignment (genetic code 15), and iv) a model with
the ochre (TAA) reassignment (genetic code 101). Identified recoded
regions were annotated using eggnog-mapper v2.1.9 (ref. [97]) against the
eggNOG database (v5.0) [98].

Macro- and microdiversity analyses of viral populations
Filtered reads from each sample were mapped to 338 single-contig viral
genomes that represent each vOTU using Bowtie2 v 2.3.5 [99]. Resulting
BAM files, viral genomes, and read counts for each metagenome were
used as input for the MetaPop pipeline [100] for pre-processing,
macrodiversity and microdiversity analyses. MetaPop was run using the
default parameters (--snp_scale both), and genes from viral genomes were
predicted using Prodigal v2.6.3 [101]. Macrodiversity estimates include
population abundances, alpha-diversity (within community) and beta-
diversity (between community) indices. To accurately call SNPs and assess
contig-level microdiversity, 207 viral populations with >10× average read
depth coverage and >70% length of genome covered were retained for
microdiversity analyses [100]. SNP frequencies subsampled down to 10×
coverage were used to assess nucleotide diversity (θ and π) at the
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individual gene and whole-genome levels, as well as fixation indices (FST;
between population microdiversity) and selective pressures on specific
genes (pN/pS and Tajima’s D).

Statistical analyses
Statistical analyses were performed using R v4.0.0. The normality and
variance homogeneity of the data were assessed using Shapiro-Wilk and
Bartlett’s tests. Wilcoxon tests were used to compare differences in viral
microdiversity parameters (π, Tajima’s D, pN/pS) across cold seep stages. The
Kruskal-Wallis rank-sum test with Chi-square correction was used to compare
differences in evolutionary metrics of genomes and genes among different
groups and samples. Correlations between microdiversity and sediment
depth, defense system numbers, genome sizes, and others parameters were
obtained using the linear regression with the fitness and confidence of the
regression curves characterized as R2 and p values, respectively.

DATA AVAILABILITY
MAGs, vOTUs, AMGs, and other related information have been uploaded to figshare
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