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Ammonia oxidising archaea are among the most abundant living organisms on Earth and key microbial players in the global
nitrogen cycle. They carry out oxidation of ammonia to nitrite, and their activity is relevant for both food security and climate
change. Since their discovery nearly 20 years ago, major insights have been gained into their nitrogen and carbon metabolism,
growth preferences and their mechanisms of adaptation to the environment, as well as their diversity, abundance and activity in
the environment. Despite significant strides forward through the cultivation of novel organisms and omics-based approaches, there
are still many knowledge gaps on their metabolism and the mechanisms which enable them to adapt to the environment.
Ammonia oxidising microorganisms are typically considered metabolically streamlined and highly specialised. Here we review the
physiology of ammonia oxidising archaea, with focus on aspects of metabolic versatility and regulation, and discuss these traits in
the context of nitrifier ecology.

The ISME Journal (2023) 17:1358–1368; https://doi.org/10.1038/s41396-023-01467-0

INTRODUCTION
Our understanding of the global nitrogen cycle has been
revolutionised in the last few decades thanks to the discovery of
novel processes and microbial players. This includes the detection of
anaerobic ammonia oxidising (anammox) bacteria in natural and
engineered ecosystems [1–3] and, more recently, the characterisa-
tion of complete ammonia oxidation (comammox) by comammox
Nitrospira, which oxidise both ammonia and nitrite within the same
cell to produce nitrate [4, 5]. Perhaps the most unanticipated
breakthrough though, was the discovery of aerobic ammonia
oxidation within the domain Archaea nearly two decades ago [6, 7].
Ammonia oxidising archaea (AOA) constitute a major fraction of
microbial biomass on Earth [8] and play a vital role in the global
biogeochemical cycling of nitrogen. Understanding the drivers of
ammonia oxidation in the environment is of major importance since
it could contribute towards food security and help mitigate the
release of the greenhouse gas nitrous oxide (N2O) and nitrate (NO3

-),
which play roles in climate change and groundwater pollution,
respectively [9]. Whilst significant progress has been made into
cultivation and physiology of AOA, as well as environmental factors
affecting their distribution and activity, many knowledge gaps still
remain in our understanding of their metabolism, cellular regulation
and adaptation to environmental changes. Ammonia oxidisers,
including AOA, are autotrophic and able to fix their own carbon
from inorganic CO2 and to generate reductant from ammonia
[6, 10]. They are considered specialists in this specific metabolism.
Here we review the physiology and metabolism of ammonia
oxidising archaea, including whether AOA are as metabolically
constrained as often thought. This is an ever-unfolding field of
research as more ammonia oxidisers are isolated or highly enriched
in culture, and novel insights into their metabolism revealed.

AMMONIA OXIDATION KINETICS: THE ROLES OF AMMONIA
AND OXYGEN
Ammonia (NH3), rather than ammonium (NH4

+), is the substrate
oxidised by the key enzyme ammonia monooxygenase (AMO)
from the AOB Nitrosomonas europaea [11]. The current consensus
is that ammonia is also the preferred substrate for the archaeal
AMO [12]. Ammonia oxidisers are widely considered to be
specialist microorganisms, for whom ammonia is usually the sole
source of reducing power [4–6, 13]. It is therefore not surprising
that the affinity for ammonia has been a subject of intensive
research [12, 14, 15]. Ammonia concentration is a key eco-
physiological factor influencing the abundance and distribution of
nitrifiers. Early kinetics studies suggested that AOA and comam-
mox bacteria are adapted to low ammonia concentrations,
although it is now known that ammonia oxidisers exhibit a wide
range of ammonia affinities. Within AOA, the Km(app) for ammonia
ranges across four orders of magnitude from representatives of
genus Nitrosocosmicus with the highest Km values (>12 µM),
comparable to many characterised soil AOB [16–19], to the lowest
values in Nitrosopumilales and ‘Ca. Nitrosotaleales’ genera with
Km(app) in the low nM range (<2.8 nM) [12, 14]. In addition, there
could be differences in the kinetics between AOA strains, but
potentially also depending on growth conditions. For instance,
Nitrosocosmicus-affiliated AOA outcompeted other ammonia
oxidisers in ammonia-limited soil enrichments, suggesting that
some members of this genus are adapted to low ammonia
concentrations at least under certain conditions [19]. Although
cultured representatives of genus Nitrosocosmicus have a high
tolerance to ammonia compared to other AOA [16–19], there is no
indication that high ammonia tolerance is necessarily linked to
low ammonia affinity.
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Ammonia and ammonium exist in pH-dependent equilibrium
with a pKa of 9.25, meaning that ammonia decreases exponen-
tially with decreasing pH. Laboratory cultures usually have ample
supply of ammonia, but nitrifiers in the environment are
frequently exposed to low and fluctuating substrate concentra-
tions [6, 20]. Affinity for ammonia is thus likely to be an important
factor for survival in the environment [6, 20]. A high affinity for
ammonia would be advantageous to nitrifiers found in environ-
ments with low ammonia concentrations or low pH. The ammonia
oxidation kinetics are also relevant to agriculture and engineered
systems [21–25]. Nitrifiers, denitrifiers and anammox bacteria
often integrate themselves into biofilms, where diffusion causes
gradients in ammonia concentrations [11, 26, 27]. This means that
microorganisms embedded deeper in the biofilm may experience
lower ammonia concentrations. Subsequently, ammonia avail-
ability can influence competition and cooperation between these
communities [26–29].
Whilst more research efforts have focused on the affinity for

ammonia, the AMO has two substrates: ammonia and oxygen.
Oxygen plays an important role in nitrification both as a substrate
for the AMO enzyme and as a terminal electron acceptor for
ammonia oxidisers [26]. Even though oxygen is a substrate for
AMO, it is often overlooked, despite the potential value of
characterising kinetic parameters and linking to niche, as has been
done with ammonia. In marine environments, AOA of the family
Nitrosopumilaceae, particularly those associated with the marine
low ammonia ecotype, are successful under oxygen-limited
conditions, with the highest abundances often detected in oxygen
minimum zones (OMZs) and deep ocean sediments [30, 31]. Rates
of ammonia oxidation in OMZs were measurable at <0.01 μM O2,
likely driven exclusively by communities of AOA [31]. The
enrichment of AOA from marine sediments was attributed to
their ability to outcompete co-occurring bacteria at low O2 [32].
Recently, it was demonstrated Nitrosopumilus maritimus SCM1 was
able to generate small amounts of oxygen under anoxic
conditions, most likely by nitric oxide disproportionation [33].
Although the potential oxygen production by other AOA strains or
in the environment is not yet fully explored, the ability to produce
oxygen may provide an explanation for the presence of AOA in
oxygen-limited habitats such as OMZs. In N. maritimus, some of
the oxygen produced is used by the aerobic metabolism, which
includes both the ammonia oxidation pathway and the respiratory
chain, and some oxygen is released from the cells [33]. The
metabolic pathway of oxygen production in Nitrosopumilus
maritimus is not yet fully resolved, but involves nitric oxide and
nitrous oxide [33, 34]. Many AOA encode chlorite dismutase-like

enzymes [35], however, the function of these in AOA is unknown.
Chlorite dismutase from the NOB “Candidatus Nitrospira defluvii”
has been shown to reduce chlorite to chloride and O2 [36, 37].
Further studies are required to test the impact of oxygen
producing metabolism in the environment. Affinity for oxygen
and the ability to produce oxygen could influence niche
specialisation and competition between different groups of
ammonia oxidisers. For instance, comammox bacteria are well-
adapted to the low oxygen concentrations in the oxic-anoxic
interface of the biofilms and have been enriched from bioreactors
under low dissolved oxygen conditions [3, 4, 38, 39]. AOA from
wet tropical soils were resistant to prolonged intervals of anoxia
[40] and reacted faster to anoxic/oxic fluctuations compared to
AOB [41]. AOA seem to have a somewhat higher affinity for
oxygen than AOB, with Nitrosopumilus representatives having the
highest affinity (Table 1). However, studying the affinity for oxygen
in further AOA, AOB and comammox strains and mixed
communities, could provide insights into how oxygen availability
shapes nitrifying communities.
Despite intense research on ammonia oxidation kinetics over

the past few years, there are still outstanding questions,
particularly with regards to mechanisms which underpin the
whole-cell kinetics. Structural basis of AMO conferring high or low
affinity is not understood, nor is the role of ammonia transport.
Furthermore, although AMO is known to be a membrane-bound
enzyme [13, 42], the location and orientation of the AMO active
site remain open research questions. In addition, the role of
oxygen in AOA is understudied and could shed light on the niche
adaptation of ammonia oxidisers in the future.

NITROGEN UPTAKE AND METABOLISM
Ammonium transport mechanisms
Much research focus has been on ammonia oxidation, but
ammonium is required for both energy metabolism and assimila-
tion in ammonia oxidisers. There must presumably exist reason-
ably sophisticated regulation for ammonium uptake, assimilation,
and oxidation, particularly because ammonia is a relatively poor
energy-yielding substrate. An overwhelming majority of ammonia
is used for energy metabolism rather than anabolism, indicated by
the near stoichiometry of 1:1 for ammonia:nitrite typically
observed for ammonia oxidation [6, 13]. It is not known, whether
ammonium transport is in any way coupled to oxidation in AOA,
or if the transport is solely required for assimilation. Ammonia can
cross biological membranes, but many organisms rely on the
import of ammonium to meet nitrogen demands. Ammonium

Table 1. Oxygen uptake kinetics by ammonia oxidisers.

Strain Km (μM) Vmax (μmol O2 mg prot−1 h−1) Reference

AOA

Nitrosarchaeum koreense MY1 10.4 (1.1) 20 [37]

Nitrosopumilus maritimus SCM1 3.9 (0.6) 36 [15]

Nitrosopumilus AR Enrichment 2.0 (0.5) 11 [30]

Ca. Nitrososphaera sp. JG1 4.7 (0.2) 35 [38]

Ca. Nitrosocosmicus franklandus C13 11.5 (1.9) N.D. Lehtovirta-Morley, unpublished

AOB

Nitrosomonas europaea (ATCC 19178) 1.3–14.9 N.D. [39]

Nitrosomonas europaea C-31 (ATCC
25978)

186 129 [30]

Nitrosomonas mobilis Ms1 21.7 (4.0) N.D. [40]

Activated sludge 15.6 N.D. [41]

N.D. not determined.
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transport is mediated by a class of ubiquitous membrane proteins
comprising ammonium transporters (Amts), methylammonium
permeases (Meps) and rhesus (Rh) proteins [43, 44]. Many
previously characterised Amts function as energy-dependent
electrogenic ammonium transporters whilst the Rh-type proteins
act as low-affinity ammonia channels [43, 45]. Mechanism of
ammonium transport has been studied for decades and is still not
fully understood. Recently, a two-lane mechanism was demon-
strated for electrogenic ammonium transport by Escherichia coli
AmtB and Nitrosomonas europaea [46]. Active transport against an
ammonium gradient would presumably require energy, although
energetics of ammonium transport remain enigmatic and
intracellular ammonium concentrations in AOA are not known.
Ammonia oxidation provides low energy yield, and active
transport would be energetically costly [13]. On the other hand,
active transport of ammonium could be advantageous to nitrifiers
in acidic habitats and nitrogen-limited environments (Fig. 1),
because, despite requiring energy, it could enable these nitrifiers
to colonise otherwise inaccessible niches.
Most AOA encode at least two Amt-type transporters, whilst

approximately half of the available AOB genomes contain Rh
proteins [47]. Other AOB lack recognisable transporters and
presumably rely on ammonia diffusion [47]. The two different
clades of comammox bacteria appear to utilise distinct ammo-
nium uptake mechanisms. Clade A encode Rh-type transporters
with >70% amino acid similarity to those of the β-AOB, whereas
clade B encode Amt-type transporters [48]. Anammox bacteria
encode both types of transporters [49] (Supplementary Fig. S1).
The Rh protein (Rh50) from Nitrosomonas europaea and Amt5
from ‘Ca. Kuenenia stuttgartiensis’ have both been isolated by
recombinant expression and structurally characterised [50, 51].
Rh50 from Nitrosomonas europaea has been experimentally
demonstrated to function as an ammonia transporter
[46, 50, 52]. Electrophysiological analysis of ‘Ca. Kuenenia
stuttgartiensis’ Amt5 revealed no transport function and instead
this protein acts as an ammonium sensor [51]. Sequence and
structural dissimilarities between the ammonium transporters in
AOA and bacterial ammonia oxidisers indicate that they are
functionally distinct [53]. Additionally, the transcriptional response

of the archaeal Amt transporters to different ammonia concentra-
tion suggests they operate as high- and low-affinity transporters
[54–56]. All sequenced representatives of the Nitrosocosmicus
genus only encode one low-affinity Amt [16–18, 57]. Additionally,
these strains lack the S-layers, which can function as ammonium
concentrating mechanisms [58, 59]. The affinities of archaeal
ammonium transporters have been inferred from transcriptomic
studies, but not yet tested directly [56]. In addition, the role of the
thaumarchaeal cell envelope in concentrating ions remains
underexplored, as does the regulation of how ammonia is
partitioned for assimilation and oxidation by AOA. Furthermore,
archaeal and bacterial membranes have distinctly different
compositions, which may affect membrane permeability and the
rate at which ammonia can diffuse [60], although this question has
not yet been fully explored.

Ammonia assimilation pathways
All characterised AOA contain glutamate dehydrogenase (GDH)
and glutamine synthetase (GS) [57]. GDH is a key enzyme in
ammonia assimilation and catalyses the reversible reductive
amination of 2-oxoglutarate to glutamate [57, 61] (Fig. 2). In
heterotrophs, this low-affinity pathway is favourable under energy
and carbon limiting conditions since no ATP is consumed and less
carbon is used per ammonia molecule assimilated [62]. The role of
GDH in AOA is understudied. It seems likely that intracellular
ammonium concentration and the regulation between ammonia
uptake, assimilation and oxidation would be important for the
function of this pathway in AOA, although this currently remains
untested. GS catalyses an ATP-dependent conversion of ammonia
and glutamate into glutamine and is considered to play an
important role in central nitrogen metabolism. Nearly all AOA
contain PII signal transduction protein homologues which belong
to the glnK/B subfamily and regulate nitrogen metabolism [60, 63].
GlnK and GlnB interact directly with Amt transporters and
glutamine synthetase (GS), respectively, to regulate ammonium
influx into the cell by uridylylation of PII in response to low
ammonia concentration, and also GS activity in response to
extracellular and intracellular nitrogen concentrations [63]. The
external ammonia concentration is likely important for ammonia

Fig. 1 Amt and Rh-type transporters encoded by ammonia oxidising microorganisms. Amt transporters are energy-dependent and bind
ammonium. Amt2 is a high-affinity Amt and can function at low pH and substrate concentration. Rh proteins facilitate the bidirectional flow of
NH3 and therefore function at high pH and substrate concentration. NH3 can also cross the bilipid membrane by diffusion. NH4

+ and NH3 exist
in equilibrium based on pH. Membrane permeability between AOA and AOB may differ as their membrane compositions are different [60].
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assimilation, and the transcriptional activity of both GS and GDH in
Nitrosocosmicus agrestis was upregulated in response to high
ammonia concentrations [64].
Two known AOA, Nitrosocosmicus arcticus and Nitrosocosmicus

oleophilus, encode genes for the glutamine synthetase-glutamate
synthase (GS-GOGAT) pathway [17, 57]. In this pathway, GS which
is conserved in AOA, converts glutamate to glutamine. Glutamine-
oxoglutarate amidotransferase (GOGAT) catalyses the NADPH-
dependent formation of two glutamate molecules from glutamine
and 2-oxoglutarate (Fig. 2). This high affinity, energy consuming
pathway for ammonia assimilation functions well at low ammonia
concentrations, and when the cell is not energy or carbon limited
[61]. The reason for the presence of GS/GOGAT in some AOA is
unknown as are many details of ammonia assimilation in AOA. It is
possible that most AOA use GDH, as this pathway is energetically
less costly than GS/GOGAT, even if it requires high concentrations
of ammonia. It was also postulated that some Nitrosocosmicus
strains might have as-yet unidentified, auxiliary energy sources,
which may explain their use of ATP-dependent GS/GOGAT
pathway [57].

THE BIOCHEMISTRY OF ENERGY METABOLISM OF AOA
The structure, function, and substrate range of the AMO
The AMO is a copper-dependent multimeric transmembrane
enzyme belonging to the CuMMO superfamily which comprises of
ammonia, methane, and alkane monooxygenases [4–6, 13, 42].
Based on the similarities to bacterial AMO and pMMO, it is
assumed that the oxidation of ammonia by the archaeal AMO
requires two electrons [13]. These electrons are provided via
electron carriers from the downstream pathway, the oxidation of
hydroxylamine, and possibly nitric oxide, although the role of
nitric oxide in AOA is not fully understood [65, 66]. Assuming that
the archaeal AMO functions similarly to its bacterial counterparts,
two net electrons per ammonia molecule are generated from the
ammonia oxidation pathway and this reductant powers the ATP
synthesis and cellular anabolism, including carbon fixation [13].

Nitrous oxide is also produced by AOA during ammonia oxidation,
and in 15N-labelling studies with Nitrososphaera viennensis, nitrous
oxide was generated through N-nitrosating hybrid formation [67].
A recent on study on Nitrosopumilus maritimus found that,
although hybrid formation is a key mechanism of nitrous oxide
production, there are multiple pathways through which the
constituent atoms of nitrous oxide are derived from ammonia,
nitrite, O2 and H2O [68]. In addition, Nitrosopumilus maritimus can
produce nitrous oxide through NO dismutation under anoxic
conditions [31]. Active AMO is difficult to purify and many
predictions about the structure have been based on homology to
the better-characterised particulate methane monooxygenase
(pMMO) from methanotrophs [69, 70]. The AMO is predicted to
exist as a heterotrimeric complex composed of three subunits in
bacteria: AmoA, AmoB, and AmoC [71]. The archaeal AMO is very
divergent from bacterial AMO and other CuMMOs and appears to
have additional subunits including AmoX, AmoY, and AmoZ [42]
(Fig. 3). The location and nature of the AMO active site has not
been identified. Analysis of the AmoB and AmoC protein structure
favours an extracellular active site (outwards facing) [47], which
would be logical considering the toxicity of hydroxylamine. The
location and nature of the pMMO active site also remain uncertain,
although mono- and di-copper sites have been proposed to reside
in the soluble region of the PmoB [72] and a newly discovered tri-
copper site is found in the PmoC subunit, close to the periplasm
[73]. Mutagenesis studies on the hydrocarbon monooxygenase, a
member of the CuMMO superfamily, in Mycobacterium NBB4 have
demonstrated that the metal-binding residues on the C subunit
are essential for activity [74]. Substrates and inhibitors of the AMO
are largely non-polar, suggesting the active site is hydrophobic,
and consistent with ammonia rather than ammonium as the
natural substrate [75].
Copper is thought to be a co-factor in both the archaeal and

bacterial AMO. The respiratory chain in AOA is predicted to be
copper-based, and they contain numerous small blue copper
proteins and multicopper oxidases which may be involved in
electron transfer [61, 76]. In contrast, the respiratory chain and key

Fig. 2 Ammonia assimilation pathways. The glutamate dehydrogenase (GDH) pathway, represented in yellow, has a low-affinity for NH4
+

and is found in all sequenced AOA. The high-affinity glutamine synthetase-glutamate synthase (GS-GOGAT) pathway is represented in purple
and is only present in some representatives of the Nitrosocosmicus genera. One ATP is required per NH4

+.

C.L. Wright and L.E. Lehtovirta-Morley

1361

The ISME Journal (2023) 17:1358 – 1368



enzymes e.g. hydroxylamine dehydrogenase (HAO) in AOB use
proteins which require heme [13]. Nevertheless, it is estimated
that both iron and copper may be limiting factors to the growth of
AOA in the ocean [77, 78]. There are no known examples of AOA
producing chalkophores (copper-binding molecules), and Nitroso-
sphaera viennensis has a higher affinity for copper uptake than
Nitrosopumilus maritimus does [78, 79]. Translating culture-based
findings to the environmental context is challenging because
copper bioavailability in many habitats is affected by factors such
as pH and complexation with organic molecules [80].
Due to the difficulty in purifying AMO in its active state, much of

what is known about the AMO has been discovered using
inhibitors. Acetylene is a well characterised inhibitor of both the
AMO and pMMO [81, 82]. With Nitrosomonas europaea, acetylene
acts as a suicide substrate and cells require de novo protein
synthesis of new AMO to re-establish ammonia-oxidising activity
[83]. Incubations with 14[C]-acetylene resulted in the covalent
radiolabelling of Nitrosomonas europaea AMO, enabling identifica-
tion of the genes coding for AMO [84]. A subsequent study found
that the ketene product of acetylene activation bound covalently
to a histidine residue (H191) on the AmoA subunit of Nitrosomo-
nas europaea, a residue thought to be in close proximity to the
putative active site [85]. While acetylene is also an irreversible
inhibitor of the archaeal AMO [86], the AMO from archaea lack the
histidine residue responsible for binding in Nitrosomonas euro-
paea, suggesting that acetylene must bind at a different position
on the enzyme [85].
Insights into the structure of the archaeal AMO active site(s) and

its potential substrate range has been provided by characterising
the inhibition of archaeal AMOs to linear 1-alkynes [87–89]. The
archaeal AMO demonstrates a reduced sensitivity to inhibition by
larger 1-alkynes compared to bacterial AMO, suggesting they have a
narrower hydrocarbon substrate range [87–89]. In fact, archaeal
1-alkyne inhibition profiles were similar to that of pMMO which can
only oxidise linear C1-C5 alkanes and alkenes [88, 89]. Recent
reconstitution of the pMMO in a lipid bilayer revealed the PmoC tri-
copper binding site, which is adjacent to a hydrophobic cavity
capable of accommodating up to C5 linear hydrocarbons [73, 90].
The aromatic alkyne, phenylacetylene, inhibited the archaeal and
bacterial AMO at different threshold concentrations and by different
mechanisms of inhibition, highlighting functional differences
between the archaeal and bacterial AMO [89]. Kinetic analysis of
the inhibition of ammonia oxidation by Nitrosomonas europaea
demonstrated that unlike acetylene, phenylacetylene does not
compete with ammonia for the same binding site and behaved as
an uncompetitive inhibitor, suggesting phenylacetylene only had

affinity for the AMO-ammonia complex [89]. Phenylacetylene
inhibition of ‘Ca. Nitrosocosmicus franklandus’ was found to be
non-competitive [89]. The results indicate the presence of
secondary, non-ammonia, binding sites on both the archaeal and
bacterial AMO, as previously suggested for the AMO from
Nitrosomonas europaea and the pMMO [91–93].
It is proposed that the downstream metabolism refines the

functional role of microorganisms containing CuMMO [94]. For
example, the bacterial ammonia oxidisers Nitrosococcus oceani
and Nitrosomonas europaea can oxidise methane but lack
necessary downstream enzymes to gain energy from methane
oxidation [95]. Likewise, several methanotrophs have been shown
to co-oxidise ammonia, but this does not support growth [96].
AMO- and pMMO-expressing microorganisms have received
interest for their potential use in bioremediation due to their
capability to co-oxidize persistent organic pollutants such as
halogenated alkanes and alkenes and chlorinated hydrocarbons
[97, 98]. It was shown that ‘Ca. Nitrososphaera gargensis Ga9.2’
was capable of co-metabolising two tertiary amines, mianserin
and ranitidine (pharmaceutical drugs), with the initial oxidative
reaction possibly carried out by AMO [99]. Co-oxidation of
compounds other than ammonia by AOA is an open question
and has not been fully explored yet. The work on alkyne inhibitors
suggests that the substrate range for archaeal AMO may include
hydrocarbons with chain-lengths <C5. If AOA participate in co-
oxidation of such compounds e.g. methane, ethane, or propane,
or even more complex branched hydrocarbons, this would be of
importance for both bioremediation and for understanding global
biogeochemical carbon cycling.

METABOLIC VERSATILITY
Autotrophic ammonia oxidising microorganisms are generally
considered metabolically streamlined, and specialised in using
ammonia as their sole source of energy. In contrast, several
nitrifying microorganisms demonstrate remarkable metabolic
flexibility [100]. Best known examples are nitrite-oxidising bacteria,
which can derive energy for growth from formate, hydrogen and
sulfide [100]. Some, but not all, ammonia oxidisers can use urea or
cyanate as the sole source of energy and reductant as both are
enzymatically converted to ammonium [101–104] (Fig. 4). Growth
on urea or cyanate is not pH-dependent and therefore may be
advantageous in acidic and low ammonium environments
[105, 106]. Urea uptake is mediated by specific urea transporters
(UTs) and solute/sodium symporters (SSS (DUR3)), after which urea
hydrolysed intracellularly by a urease [107]. SSS transporters are
phylogenetically divided into several distinct clusters, of which
AOA share the closest sequence similarity with the plant urea
transporters [107]. Urea uptake systems and urease enzymes have
been reported in AOB, AOA and comammox bacteria
[61, 101–103]. The hydrolysis of urea can support the growth of
AOB such as Nitrosoglobus terrae and Nitrosospira sp. at low pH
[105, 108]. However, the use of urea by marine AOA is not directly
related to pH unlike often reported for ammonia oxidisers in acidic
soils [102]. Urea is commonly present in marine habitats, and
being able to use urea in addition to ammonia may give these
AOA a competitive advantage [109]. Nitrososphaera gargensis
Ga9.2 is currently the only genome-sequenced AOA that encodes
a known cyanase, which catalyses conversion of cyanate to
ammonium and CO2 [104]. Nitrosopumilus maritimus lacks a
canonical cyanase, but also produces ammonia from cyanate,
which suggests there must exist an as-yet unknown mechanism,
which breaks down cyanate in Nitrosopumilus maritimus [109].
Genes putatively encoding for enzymes of a novel class of
nitrilases or cyanide hydratases are found in genomes of AOA
from the Nitrosocaldus, Nitrosotenuis and Nitrosopumilus genera
[110–112]. Nitrilases catalyse the conversion of nitriles to the
corresponding acid and cyanide hydratases convert hydrogen

Fig. 3 Schematic of the archaeal ammonia monooxygenase
(AMO). AmoA, AmoB, and AmoC (yellow), are conserved and form
trimers (AmoABC). AmoB and AmoC contain copper binding sites,
which are conserved in AOA and AOB. AmoX (orange), AmoY
(purple), and AmoZ (blue), are putative archaeal AMO accessory
proteins.
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cyanide (HCN) to formamide, both of which can produce ammonia
[112]. These homologues might be involved in the conversion of
cyanate to ammonia, but their function has not yet been
experimentally proven (Fig. 4).
Hydroxylamine is a physiological intermediate in the archaeal

ammonia oxidation pathway [113]. No HAO homologue exists in
AOA, nor do they have the genetic repertoire to fully synthesise
c-type hemes. Therefore, AOA have a novel enzymology for the
oxidation of hydroxylamine [113]. Hydrazine, a key intermediate
in anammox catabolism and a structural analogue of hydro-
xylamine [114], was found to be an inhibitor of hydroxylamine
oxidation by AOA [115]. In addition, the AOA isolate “Ca.
Nitrosocosmicus franklandus” oxidised hydrazine to dinitrogen,
with O2 consumption coupled with ATP production [115] (Fig. 4).
Hydrazine is also a substrate for the bacterial HAO, and is
oxidised to N2 (Eq. (1), [116]).

N2H4 ! N2 þ 4Hþ þ 4e� (1)

Electrons derived from this reaction can serve as reducing
equivalents for the AMO and hydrazine has been used as an
external source of reductant to fuel alternative substrate oxida-
tions by Nitrosomonas europaea [117–119]. Ammonia, urea,
cyanate, hydroxylamine, and hydrazine are currently the only

experimentally confirmed energy-yielding substrates in AOA.
However, there are many other predicted, as-yet unproven types
of metabolism in AOA as discussed below.
Ammonia oxidisers are chemolithoautotrophs and able to fix

their own carbon. Ammonia oxidising archaea fix their carbon
using the 3-hydroxypropionate/4-hydroxybutyrate pathway and
reductant generated from ammonia oxidation [10]. Nevertheless,
there are some indirect indications of mixotrophic growth in
ammonia oxidisers. Early studies of carbon metabolism in marine
archaea indicated both autotrophic and heterotrophic modes of
carbon assimilation occur, although it is possible that not all
archaea in these environmental samples were AOA [120, 121]. A
recent study found that in the Pacific Ocean, a proportion of the
Marine Group I archaea, which includes AOA, incorporated
auxiliary carbon from urea and amino acids [122]. However, it
can be challenging to disentangle mixotrophy and autotrophy,
because e.g. urea could be metabolised into CO2 and fixed
autotrophically, resulting in indirect incorporation. In addition, a
discrepancy between a high abundance of AOA marine water
column and a low nitrification rate was reported [30]. One possible
explanation for this observation would be mixotrophic growth,
where AOA would use electron donors other than ammonia or fix
carbon from alternative organic carbon sources instead of CO2.
However, the only direct evidence of mixotrophy in ammonia

Fig. 4 Schematic of predicted metabolic features from the genomes of AOA. Yellow represents genomic features encoded by all AOA. Blue
indicates metabolisms not shared by all AOA. AMO ammonia monooxygenase, QRED quinone reductase, HURM hydroxylamine ubiquinone
redox module, PQQ pyrroloquinoline quinone, DH dehydrogenase, ADH alcohol dehydrogenase, Amt ammonium transporter, UT urea
transporter, SSS solute/sodium symporter, Ure urease, N/C hyd nitrile/cyanide hydratases, Cyn cyanase, TCA tricarboxylic acid cycle, HP/HB
hydroxypropionate/hydroxybutyrate cycle, CA carbonic anhydrase, Hyd hydrogenase, GDH glutamate dehydrogenase, GS-GOGAT glutamine
synthetase-glutamate synthase, ROS reactive oxygen species.
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oxidisers is known in Nitrosomonas europaea, the growth of which
is stimulated by fructose and pyruvate which are assimilated as
carbon sources [123]. There have been efforts to investigate the
potential of AOA for mixotrophy using organic acids, some of
which are tricarboxylic acid cycle intermediates [18, 124, 125].
However, the apparent stimulation of catalase-negative AOA by α-
keto acids is due to the alleviation of oxidative stress, rather than
mixotrophic growth [126] (Fig. 4). In addition, organic compounds
can inhibit some AOA strains, potentially due to their high copper
complexation potential or their toxic effect at low pH [80, 125].
The genome of “Ca. Nitrosocosmicus hydrocola” encodes for

genes putatively involved in one-carbon (C1) metabolism, includ-
ing methanol oxidation to formaldehyde and formate oxidation to
CO2 [18]. Some AOA from deep seafloor sediments have the
genetic repertoire to perform proteolysis and deamination to
regenerate ammonia, coupling mixotrophic and autotrophic
metabolisms [127]. Intriguingly, the growth of the recently
described AOA “Ca. Nitrosocosmicus arcticus” was uncoupled
from ammonia oxidation, suggesting that this strain has
alternative or supplementing energy metabolism(s) [57]. The
genomes of some “Ca. Nitrosocosmicus” strains encode putative
periplasmic or membrane-bound pyrroloquinoline quinone (PQQ)-
dependent dehydrogenases, which oxidise sugars/alcohols by
simultaneously reducing electron acceptors, potentially contribut-
ing reducing equivalents to the respiratory chain [57] (Fig. 4). PQQ-
dependent dehydrogenases were among the most highly
expressed genes by the newly discovered heterotrophic marine
thaumarchaea, and therefore are likely to be important for energy
metabolism since these Thaumarchaeota lack the ability to oxidise
ammonia [128].
Some AOA genomes contain coding sequences related to

hydrogenases, although their function has not been verified in any
AOA. The genomes of the thermophilic AOA “Ca. Nitrosocaldus
cavascurensis” and “Ca. Nitrosocaldus islandicus” both contain
genes encoding for the four subunits of a putative cytoplasmic
Group 3b [NiFe]-hydrogenase [35, 129] (Fig. 4). Some previously
characterised members of Group 3b hydrogenases are oxygen-
tolerant and bidirectional, and can couple oxidation of H2 to
reduction of NAD(P), or oxidation of NAD(P)H to fermentative
production of H2 [130–132]. In addition, Abby and colleagues also
speculate that oxidised F420 could be a potential cofactor for the
3b-[NiFe]-hydrogenase in “Ca. Nitrosocaldus cavascurensis”,

although this has not yet been tested experimentally [129]. All
members of genus ‘Ca. Nitrosocaldus’ are thermophilic and thrive
in hot springs at temperatures of ~70 °C, although the link
between the growth temperature and presence of Group 3b
[NiFe] hydrogenases in AOA remains unproven. Hydrogenases
appear to be mainly absent in the genomes of AOB, apart from
two representatives from the Nitrosomonas cluster 6a and
Nitrosospira multiformis [103, 133], both of which originate from
soil ecosystems and contain putative Group 3d hydrogenases.
Group 3b hydrogenases are also found in comammox Nitrospira,
predominantly in the representatives from clade A [101]. The
genomes of other AOA (including some representatives of genera
Nitrosotalea, Nitrososphaera and Nitrosocosmicus) contain genes
with homology to Group 4a [NiFe]-hydrogenases. These proteins,
termed energy conserving hydrogenase-related complexes (Ehr),
lack the CxxC motif required for hydrogenase activity and might
play another role in electron transfer [134]. Ehr complexes are also
found in comammox Nitrospira [135, 136]. It is unknown whether
the Ehr complexes confer any advantages in terms of metabolic
flexibility and environmental adaptation in ammonia oxidisers.

OUTLOOK
This review aimed to highlight some key knowledge gaps in AOA
research, aside from the seemingly elusive enzymology of
ammonia oxidation pathway and its intermediates [137, 138].
Ammonia oxidisers are widely regarded as relatively inflexible, but
we have covered some possibilities of alternative metabolisms,
including predicted pathways and potential co-oxidation, which
require further exploration. In contrast to the laboratory, where
culture conditions can be carefully controlled, AOA in the
environment are exposed to fluctuating conditions in a complex
ecosystem where substrates can often be limiting for growth
(Table 2). There are knowledge gaps in how AOA respond to these
environmental changes and which types of metabolisms are
required for them to survive and thrive. Ammonia oxidation is
highly specialised and not a widespread trait, and an argument
could be made that there is little return on investing in alternative
metabolisms. In contrast, ammonia oxidation offers little energetic
reward and supplementing autotrophic growth could benefit
nitrifiers, especially in oligotrophic environments, in environments
where they co-exist with heterotrophs or in environments where

Table 2. Future perspectives.

Ammonia uptake, assimilation, and oxidation.

Ammonia has a dual role in ammonia oxidisers, because it is required for both energy and building biomass.

● How is the partitioning between ammonia assimilation and oxidation regulated, and does ammonium transport play a role in both?

Co-oxidation of alternative substrates.

The archaeal ammonia monooxygenase (AMO) can interact with a range of compounds, including hydrocarbons.

● Can the archaeal AMO also co-oxidise alternative substrates?

● What are the consequences of inhibition of, and co-oxidation by, AMO for biogeochemical cycling of nitrogen and other elements?

Alternative energy yielding pathways.

Metabolic pathways, including energy conservation coupled to H2 production, have been predicted, but not yet validated.

● Are these pathways functional, and under which environmental conditions do they operate?

Some alternative types of metabolism, such utilisation of cyanate and urea, have been confirmed in AOA.

● How important are the cyanate and urea metabolism in the adaptation of AOA to the environment?

Linking metabolism and adaptation of AOA to their environments.

Environmental conditions, including ammonia and oxygen concentrations, fluctuate and ammonia oxidisers will need to adapt to these potentially sudden
changes.

● How do AOA sense and respond to these changes, and which metabolisms contribute to their success and resilience in the environment?

● Are AOA as metabolically inflexible as often thought?

● Do AOA use different strategies to grow and persist, and how important is dormancy in underpinning their cosmopolitanism?
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ammonia oxidation is difficult, such as low oxygen conditions. For
example, utilisation of small nitrogenous compounds such as urea
and cyanate by AOA has been reported previously, but there are
gaps in our understanding of the function and ecological
importance of these pathways (Table 2). Likewise, it is known
that compounds other than ammonia can interact with the
archaeal AMO enzyme, but little is known about the potential role
of alternative substrates and inhibitors of the AMO in the
environment. Some of these substrates and inhibitors of the
AMO occur naturally, but their influence on biogeochemical
cycling is unknown (Table 2). An additional aspect of regulation
and energy metabolism in ammonia oxidising microorganisms is
that ammonia is both a source of energy as well as being required
for constructing biomass. There must therefore presumably exist a
system for sensing and regulating how ammonia is allocated
within the cell (Table 2), particularly as ammonia oxidisers need to
be able to rapidly respond to a changing environment, and to
switch from growing to persisting or vice versa.
The cultivation of ammonia oxidising microorganisms is

notoriously difficult owing to their low yield and slow growth
[139]. Nevertheless, validation of metabolism cannot be done
from genetic repertoire alone. The study of isolated or highly
enriched cultures is paramount to testing if the predicted
metabolic pathways are functional, and to obtaining a mechanistic
understanding of how they operate. The development of a
genetic system for AOA would be especially valuable for
investigating some of the putative metabolisms highlighted in
this review and providing information about the regulation of
major genes (Table 2). Furthermore, heterologous expression of
AOA proteins could provide crucial insights on structure and
biochemistry of key enzymes and transporters in vitro. In addition,
single-cell and systems biology can deliver new knowledge which
is not to easily accessible by other means. There is a promising
outlook to further our understanding of nitrogen cycling and AOA
by linking culture-based studies and culture-independent experi-
ments on mixed communities from the environment. Novel
mechanistic insights on the metabolism and biochemistry,
including regulation, structure and function of key enzymes and
discovery of new pathways, may help explain and predict how
nitrifying communities respond to environmental changes, and
how these factors together influence nitrification process rates in
the environment.
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