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The root microbiome is shaped by plant root activity, which selects specific microbial taxa from the surrounding soil. This influence
on the microorganisms and soil chemistry in the immediate vicinity of the roots has been referred to as the rhizosphere effect.
Understanding the traits that make bacteria successful in the rhizosphere is critical for developing sustainable agriculture solutions.
In this study, we compared the growth rate potential, a complex trait that can be predicted from bacterial genome sequences, to
functional traits encoded by proteins. We analyzed 84 paired rhizosphere- and soil-derived 16S rRNA gene amplicon datasets from
18 different plants and soil types, performed differential abundance analysis, and estimated growth rates for each bacterial genus.
We found that bacteria with higher growth rate potential consistently dominated the rhizosphere, and this trend was confirmed in
different bacterial phyla using genome sequences of 3270 bacterial isolates and 6707 metagenome-assembled genomes (MAGs)
from 1121 plant- and soil-associated metagenomes. We then identified which functional traits were enriched in MAGs according to
their niche or growth rate status. We found that predicted growth rate potential was the main feature for differentiating
rhizosphere and soil bacteria in machine learning models, and we then analyzed the features that were important for achieving
faster growth rates, which makes bacteria more competitive in the rhizosphere. As growth rate potential can be predicted from
genomic data, this work has implications for understanding bacterial community assembly in the rhizosphere, where many
uncultivated bacteria reside.
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INTRODUCTION
Soils represent the most complex and diverse microbiomes in the
world. A notable component of these is the rhizosphere, comprising
the soil region near plant roots, which are influenced by root
exudates and rhizodeposition [1]. Rhizosphere microbiomes assem-
ble by enriching a subset of the microbiota present in the
surrounding bulk soil, which may pose beneficial, neutral, or
detrimental effects on the host plants [1, 2]. The changes in microbial
community toward the rhizosphere, known as the “rhizosphere
effect” [3], involves a decrease in species richness imposed by
stronger selection [4]. Rhizosphere communities display significant
variation across experimental settings, exhibiting distinctive or
overlapping microbial composition compared to the bulk soil
[4–10]. While methodological differences between these studies
cannot be ruled out, including biases during rhizosphere microbiome
isolation, there may also be physiological factors that influence the
rhizosphere effect [3]. On the plant side, the rhizosphere effect may
be influenced by the host plant species [11], the stage of the plant
life cycle [12], or the location on the root [8, 13].
Understanding the biological factors driving rhizosphere com-

munity assembly has been a complex and intricate endeavor [3].
Approaches to studying rhizosphere-associated traits have

included analyzing changes in bacterial composition or function
between roots and soils [14–19]. A comparative analysis of
thousands of genomes from isolates obtained in plant-associated
and non-plant-associated environments has identified genomic
traits associated with plant colonization [14], but analysis of
unculturable bacteria was previously lacking.
Besides taxonomic or functional changes in the rhizosphere

microbiome, growth rate potential has been suggested as an
ecological indicator of microbial lifestyle in the soil [20].
Copiotrophs, adapted to high nutrient conditions with faster
growth rates, are enriched in soils with abundant labile organic
substrates (i.e., glycine, sucrose), while oligotrophs, adapted to low
nutrient conditions with slower but more efficient growth, are
enriched in soils containing recalcitrant chemicals (i.e., cellulose,
lignin, or tannin–protein) [21]. Agricultural inputs of nitrogen and
phosphorus have also been associated with increased relative
abundance of copiotrophic bacteria [22]. These observations
suggest that plant root exudates may contribute to the selection
of copiotrophs in the rhizosphere, playing a role in establishing
the rhizosphere effect.
Recently, a model based on genomic data has enabled

estimating bacterial growth rate potential without the need for
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culturing [23]. This model takes into account codon usage bias,
codon usage pattern consistency in highly-expressed genes,
and genome-wide codon pair bias, to estimate a minimum
doubling time that can be used to classify microbes as fast- or
slow-growing [23]. Growth rate potential has been explored in
various biomes, including the nutrient-rich human gut and in
oligotrophic marine systems, where it was found that community-
wide average growth rate potential decreased with depth, likely
due to a decrease in nutrient availability [24, 25]. To study how
growth rate potential may contribute to the rhizosphere effect,
here we analyzed 460 rhizosphere and 232 bulk soil 16S rRNA
gene datasets comprising 84 paired rhizosphere and bulk-soil
datasets from 18 different plant genotypes, a set of previously
analyzed isolate genomes from plants and soils [14], and MAGs
from 501 rhizosphere and 620 soil full metagenomes from diverse
studies.

METHODS
Matching rhizosphere and bulk soil datasets in 16S rRNA gene
datasets
We identified studies in the MGnify database [26] where both rhizosphere
and bulk soil samples were available with sufficient sequencing depth
(>10,000 reads/sample, Supplementary Table 1). We downloaded BIOM
files of SSU rRNA amplicon sequence variant (ASV) counts and taxonomic
assignments and prepared genus-rank abundance matrices. Using DESeq2
[27], we identified genera enriched in the rhizosphere or bulk soil (adjusted
p < 0.05, Benjamini-Hochberg FDR, log-2 fold change (L2FC) > 1 for soil-
enriched genera, L2FC <−1 for rhizosphere-enriched genera). We analysed
genera because ASVs often cannot be classified at the species level, and
there is a strong conservation in growth rate potential at the genus rank
[23, 28].

Minimal doubling time predictions
We estimated bacterial growth rate potential using the gRodon R package
and EGGO database, which includes predicted minimum doubling times
(PMDTs) for over 217,000 prokaryotic genomes, MAGs, and single-
amplified genomes (SAGs) [23]. To avoid unreliable predictions, particularly
in slow-growing organisms where codon usage bias patterns may be lost
[23], we computed the median PMDT (mPMDT) for each identified genus
from the affiliated genomes in the EGGO database. We estimated PMDTs
for MAGs and isolate genomes using gRodon 1.0.0 [23]. Ribosomal protein-
coding genes were identified by searching “rps”,”rpm”,”rpl” terms in the
eggNOG annotation file, and used as highly expressed reference genes for
gRodon predictions [29], which was run using “partial” mode, and “vs”
training set. Following Weissman et al. [23] we classified copiotrophs or
oligotrophs as having PMDTs of <5hs and ≥5hs, respectively, but we also
analyzed other cutoffs. Copiotrophs tend to have a higher maximal growth
rate and are more responsive to carbon sources, but use resources less
efficiently than oligotrophs, which in turn grow relatively slowly and prefer
nutrient-poor environments with low energy flows [28]. We use the terms
copiotrophs/oligotrophs and fast-/slow-growing bacteria interchangeably,
although we acknowledge that the former are also associated with
differences in resource utilization, which we did not analyze.

Functional and phylogenetic annotation of MAGs
We obtained high- and medium-quality (HQ/MQ) rhizosphere and soil
MAGs (≥50% completeness, <10% contamination [30]) from IMG/M [31].
IMG/M pipeline includes Metabat v2:2.15 [32] and checkM v1.1.3 [33]. We
extracted contigs and functional annotations for each MAG and created
presence/absence matrices of Clusters of Orthologous Groups (COGs),
KEGG Orthology (KO), and Protein Families (Pfam). For gRodon predictions
on MAGs and isolate genomes, nucleotide and protein sequences for
genes were predicted using Prodigal version 2.6.3 [34] and functions were
annotated using eggNOG mapper 2.1.3 [35]. We further grouped functions
into broader modules with DRAM 1.4.6 [36] and expanded DRAM to a total
of 445 categories including KEGG modules, hydrolytic enzymes, and
flagellar assembly (Supplementary Table 2). Module completeness was
calculated as in DRAM. To place MAGs in the context of known strains, we
generated a maximum-likelihood phylogeny from concatenated GTDB
marker genes, using GTDB-Tk 1.3.0 with database 95 ([37], gtdbtk identify,
align, and infer).

Mapping whole metagenomic samples from paired
rhizospheres and their bulk soils to our MAGs collection
We downloaded paired rhizosphere and bulk soil samples from Arabidopsis
thaliana, Cucumis sativus, and Triticum aestivum (Supplementary Table 3)
and performed a QC quality filtering step as implemented in ATLAS [38].
QC-filtered reads were then mapped to our collection of MAGs (see above)
using BBMap [39] with default parameters. To achieve this, we created a
reference database of all the MAG contigs concatenated into a single
sequence, including 200 N characters between each contig. Bam files were
sorted, and horizontal coverage was obtained for each MAG using
samtools [[40], sort and coverage commands]. The number of mapped
reads to each MAG were used as input for differential enrichment using
DESeq2 [27], and significantly enriched MAGs in rhizospheres or bulk soil
samples were identified using adjusted p < 0.05.

Phylogeny-aware functional enrichment analyses
To identify functions associated with rhizosphere or soil bacteria, MAGs
were labeled according to the sample from which they were recovered
(rhizosphere or soil, Supplementary Table 4). Phylogenetic Generalized
Linear Models (PhyloGLMs) [41] were used for functional enrichment
analysis using presence/absence of functional categories (KO, COG, or
Pfam) as independent variables to predict rhizosphere/soil association.
Similar models were generated to predict functions associated with
copiotrophs (PMDT<5hs) or oligotrophs (PMDT≥5hs, Supplementary
Table 5). We corrected p values with Benjamini-Hochberg FDR and used
adjusted p < 0.05 to consider significantly enriched functions. The broader
DRAM categories were also used to predict rhizosphere/soil and
copiotroph/oligotroph associations, using a completeness cutoff of 50%
to determine the presence/absence of modules. These analyses were
performed using the phylolm R package v. 2.6.2 [41].

Machine learning models
Binary matrices contained 6707 MAGs (3692 rhizosphere and 3015 soil)
and 8680, 4841, 9132, and 445 binary features for KO, COG, Pfam, and
DRAM respectively. To classify MAGs as rhizosphere- or soil-associated, we
used Random Forest (RF) and Gradient Boosting Classifier (GBC) models
trained on a binary target label vector based on MAG origin, utilizing the
scikit-learn Python package (https://scikit-learn.org/). We employed 5-fold
cross-validation and tested RF hyperparameters including number of trees
(n_estimators), maximum number of features per node (max_features),
maximum depth of trees (max_depth), maximum leaf nodes in the trees
(max_leaf_nodes), minimum number of samples to create a leaf node
(min_samples_leaf), and minimum number of samples to generate a split
(min_samples_split). For GBC models, we evaluated different settings for
n_estimators, max_depth, and the learning rate (learning_rate). We also
obtained Gini feature importances, which measure the relative accumula-
tion of impurity decrease for each feature in the model. Functional
connections between the most important and significant COGs were
analyzed with STRING 11.5 [42].

RESULTS AND DISCUSSION
Rhizosphere bacteria have shorter predicted doubling times
than soil bacteria
To investigate whether growth rate potential predictions correlate
with rhizosphere enrichment, we re-analyzed previously published
metacommunities. These included rhizospheres and associated
bulk soil microbiomes from 18 different plant genotypes and
conditions such as: Arabidopsis thaliana ecotypes and sister
species [9], A. thaliana Col-0 ecotype under light-dark cycles
[43], wild and modern accessions of Phaseolus vulgaris (common
bean) [44], Zea mays grown in different crop rotations [45],
Sorghum bicolor under drought stress and control conditions, at
different timepoints in their lifecycle [46], and A. thaliana Col-0
sampled along a bulk soil-to-rhizosphere gradient [47]. First, we
identified genera enriched in rhizosphere or bulk soil, and
compared the median predicted minimal doubling time (mPMDT)
associated with these genera (See Methods). Growth rate potential
is generally conserved below the genus level [23, 48]. Thus, by
grouping ASVs to genus level we were able to expand the number
of ASVs analysed to include all those with missing species-level
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taxonomy affiliations. This allowed us to compare the mPMDT of
rhizosphere-enriched to soil-enriched genera (see Materials and
Methods), which revealed that rhizosphere-enriched genera have
on average faster growth rates (lower mPMDT) than soil-enriched
genera (Fig. 1A-B).
Analyzing diverse datasets in more detail allowed us to assess

whether this selection was consistent across different experi-
mental conditions. First we observed this general trend in
different species of the same plant genus (Arabidopsis), in modern
and wild accessions of a same species (P. vulgaris), and in different
plant hosts (A. thaliana, P. vulgaris, S. bicolor, and Z. mays)
(Supplementary Figs. 1–3), showing that although plant hosts
induce specific compositional shifts in the rhizosphere micro-
biomes [11], faster growth rates to colonize rhizosphere seems to
be a common factor. Second, although the host’s circadian rhythm
induces changes in the rhizosphere microbiome and the soil

organic matter composition [43], it does not affect the
rhizosphere-enrichment of fast-growing bacteria (Supplementary
Fig. 2). Third, different soil conditions, such as crop rotations and
drought stress do not modify this general trend either, as shown
here in Z. mays and S. bicolor ([45, 46], Supplementary Fig. 1,3).
Fourth, in a study where a gradient from bulk soil to the
rhizoplane was experimentally dissected and analyzed separately
[47], we observed that copiotrophs increased gradually as samples
were taken closer to the root (Supplementary Fig. 4). Thus, we
observed that the trend for fast-growing bacteria to colonize the
rhizosphere was consistent and independent of the plant species
or ecotype, soil type, or experimental condition.
When we observed exceptions to this pattern of fast growers

enriched in the rhizosphere, i.e., copiotroph bacteria that were
enriched in soils, these were mostly among genera affiliated with
Firmicutes (Supplementary Figs. 1–3). Most bacteria affiliated with

Fig. 1 Median predicted minimum doubling times (mPMDT) of bacteria enriched in rhizospheres are lower than those in associated bulk
soils. DESeq2 log2 fold-change was used to categorize bacteria as being enriched in the rhizosphere (L2FC <−1) or soil (L2FC > 1). Soil-
enriched bacteria tend to have a higher mPMDT. A Density distribution of bacteria enriched in the rhizosphere or soil. B A positive correlation
exists between soil enrichment and mPMDT, i.e. the rhizosphere contains faster growers than the bulk soil.
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Firmicutes are among the fastest growers in the bacterial tree
[23, 49], thus it may be harder to prove this trend in the narrower
mPMDT distributions present in this particular phylum.
When analyzing the correlations between the L2FC enrichment

scores and the mPMDT by the four most abundant phyla in our
16S rRNA data (Actinobacteria, Bacteroidetes, Firmicutes, and
Proteobacteria), we found a significant correlation between
mPMDT and rhizosphere enrichment in taxa affiliated with
Proteobacteria in all projects (Supplementary Table 1). When
merging all samples from different projects, enrichment of the
copiotrophs was significant for genera affiliated with Proteobac-
teria, Actinobacteria, Bacteroidetes, Acidobacteria, and Verrucomi-
crobia, but not with Firmicutes (Supplementary Fig. 5). Thus, 16S
rRNA gene data shows that fast-growing genera are preferentially
enriched in rhizospheres compared to bulk soils in members of
these main bacterial phyla.

Bacterial genomes confirm copiotrophs are predominant in
the rhizosphere
To further analyze changes in growth rate potential distributions
using genome sequences of isolated bacteria, we estimated
PMDTs in genomes from cultured bacteria isolated from plant,
non-plant, root/rhizosphere, and soil biomes reported in Levy et
al. [14], including 3270 genomes classified into taxonomic groups
Actinobacteria groups 1 and 2 as defined by the authors,
Alphaproteobacteria, Bacillales, Bacteroidetes, Burkholderiales, Pseu-
domonas, and Xanthomonadaceae [14]. In Alphaproteobacteria and
Bacteroidetes, bacteria affiliated with these phyla isolated from
rhizoplane and endophytic compartments (root associated, RA)
have lower PMDT than those isolated from soils (Supplementary
Fig. 6). A similar observation extended to Actinobacteria_2,
Alphaproteobacteria, Bacillales, and Bacteroidetes, when comparing
bacterial genomes isolated from plant niches, including rhizo-
spheres (plant associated, PA) and from non-plant environments
(NPA, which includes both soils and other environments like

marine or clinical). Thus, although isolation protocols tend to
select for copiotrophs [23], we still observed lower PMDTs in
cultured isolates from plant environments compared to those
obtained from soil.
To avoid any possible biases associated with bacterial cultiva-

tion, we extended our genomic analyses to MAGs. We down-
loaded 501 whole-metagenome rhizospheric samples from
different plants and 620 whole-metagenome soil samples from
different biomes. We then recovered 3679 high-quality and
medium-quality (HQ/MQ) bacterial MAGs from rhizospheres and
2784 HQ/MQ bacterial MAGs from soils (see Fig. 2, Materials and
Methods, Supplementary Table 4). PMDT could be predicted for
6355 of these MAGs, of which 2629 were copiotrophs, 3726 were
oligotrophs, while 3652 were obtained from rhizosphere samples
and 2703 were obtained from soils. A chi-squared test shows that
PMDT and the isolation niche are significantly associated
(Pearson’s Chi-squared, p < 2.2e-16). For a MAG, being copiotroph
is significantly associated with colonizing the rhizosphere
(PhyloGLM, estimate: 1.47, p value: 2e-16).
The analysis of MAGs allowed us to compare predicted growth

rates of unculturable bacteria across a wide range of taxonomic
groups (Supplementary Table 5). As shown in Weissman et al. [23],
collections of isolates fail to capture the most slowly growing
members of the communities, when compared to MAGs or SAGs
from the same environments. Despite being obtained from
diverse metagenomes and belonging to different plants and soils,
our predictions of PMDT revealed that MAGs obtained from
rhizosphere metagenomes have significantly lower PMDT than
MAGs obtained from soils across all major taxonomic groups
except for MAGs affiliated with Firmicutes, which have an
extremely low and narrow PMDT distribution (Fig. 3). These
results also support the use of finer taxonomic levels (e.g., genus
instead of phylum) to classify microbes based on their life history
strategies, as reported by other authors [28, 49]. Furthermore, the
rhizosphere niche appears to preferentially select fast-growing

Fig. 2 MAGs taxonomy, niche, and growth rate status. A Unrooted maximum-likelihood phylogenetic tree inferred from multiple sequence
alignments of GTDB bacterial marker genes from MAGs. The tree was generated with GTDB-Tk and displayed using iTol [80]. B MAGs are
classified according to their isolation biome and growth rate status (copiotroph or oligotroph) for each of the main GTDB taxa. MAGs included
members affiliated with the Actinobacteriota (1453), Proteobacteria (including 1063 MAGs from Gammaproteobacteria and 869 MAGs from
Alphaproteobacteria), Acidobacteriota (850), Bacteroidetes (440), Patescibacteria (322), Verrucomicrobiota (248), Gemmatimonadota (200),
Myxococcota (187), Planctomycetota (133), Chloroflexota (127), Nitrospirota (76), Eisenbacteria (56), Methylomirabilota (51), Desulfobacterota (47),
Desulfobacterota_B (45), and Firmicutes (36), among others (Supplementary Table 4).

J.L. López et al.

1399

The ISME Journal (2023) 17:1396 – 1405



microbes capable of taking advantage of the higher nutrient
concentrations from root exudates. We suggest that the presence
of fast-growing bacteria in the rhizosphere may indicate a
copiotrophic lifestyle, with the enrichment likely explained by
the higher nutrient concentrations in the rhizosphere compared
to soil. We acknowledge the need for more detailed analyses of
resource use, growth yield, and growth rates for a more
comprehensive ecological understanding [28, 49–52].
We then set out to investigate the relative enrichment of fast-

growing MAGs in the rhizosphere. Although obtaining a reason-
able number of HQ/MQ MAGs from paired rhizosphere and their
corresponding bulk soils samples is challenging due to the
overwhelming diversity of these biomes, we devised a strategy to
quantify the relative enrichment using whole metagenome data,
which further extends the results observed with amplicon data.
We mapped reads belonging to paired rhizosphere-bulk soil
samples from three plant species (Arabidopsis thaliana [53],
Cucumis sativus [54], and Triticum aestivum [55]) to the collection
of MAGs presented above. This approach assumes that the paired
samples contain sequences from related MAGs to those in our
collection and succeeds in revealing the same pattern observed
throughout this work. At a horizontal coverage cutoff of >20%, we
identified between 100–400 MAGs per sample, allowing us to
carry out a differential enrichment analysis. The analysis revealed
that PMDTs in rhizosphere-enriched MAGs were significantly lower
than those from MAGs associated with the paired bulk soil
samples (Supplementary Fig. 7).

MAGs provide a catalog of functions associated with
rhizosphere colonization and growth rate potential
To analyze which functions are significantly enriched when
comparing MAGs from rhizospheres or soils and with growth rate
status, we employed a phylogenetic-aware approach (PhyloGLM)

to compare genome functional content (KEGG orthology, KO). We
observed that in MAGs affiliated with Actinobacteria, Alphaproteo-
bacteria, Bacteroidota, and Gammaproteobacteria, most functional
categories were enriched in copiotrophs, i.e. 12 out of 25
categories in these four phyla, and 17 in at least 3 of these phyla.
In contrast, significantly enriched functional categories in Acid-
obacteria were mostly associated with oligotrophs (Fig. 4A). This
highlights the differences in functional categories present in the
genomes of fast- and slow-growing bacteria in these taxa. We
then compared the genome size between the groups (estimated
as gene counts per genome, Fig. 4B) and found significantly larger
genomes in copiotroph MAGs affiliated with Actinobacteria,
Bacteroidetes, and Gammaproteobacteria, and in oligotrophic
MAGs affiliated with Acidobacteria, while no difference in genome
sizes was found in MAGs affiliated with Alphaproteobacteria,
consistent with the enrichment of different functions in copio-
trophs and in oligotrophs (Fig. 4A). Despite this difference in
genome content, oligotrophs showed consistent enrichment in
metabolism of terpenoids and polyketides, and metabolism of
other amino acids, which include functions that are potentially
relevant to the oligotrophic lifestyle. A similar pattern of genome
content variation can be observed when comparing enriched
processes in rhizosphere or soils in MAGs affiliated with
Acidobacteria and Gammaproteobacteria, although no significant
differences in genome content were found in MAGs affiliated with
Bacteroidetes and Actinobacteria, and smaller genomes were found
in MAGs affiliated with Alphaproteobacteria in rhizospheres,
compared to those from soils. These patterns were also consistent
with the enrichment of the different metabolisms in MAGs from
rhizospheres or soils. Investigating why these differences in
genome size exist in each taxonomic group and which functions
are frequently missing in the smaller genomes could improve our
understanding of copiotrophic and oligotrophic lifestyles.

Fig. 3 PMDT in MAGs from rhizosphere and soil metagenomes. Distributions of predicted minimal doubling times in MAGs from
rhizosphere and soils were compared with Mann–Whitney test (ns: p > 0.05, *p <=0.05, **p <=0.01, ***p <=0.001, ****p <=0.0001).
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When testing the enrichment of individual KO, COG, and Pfam
functions, we observed that many enriched functions overlap
between rhizosphere-enriched bacteria and copiotrophs, and
between soil-enriched bacteria and oligotrophs (Fig. 4C, Supple-
mentary Figs. 8–11, Supplementary Table 6). A higher number of
significantly enriched functions were obtained in most repre-
sented taxa, especially in MAGs affiliated with Alphaproteobacteria,
Gammaproteobacteria, Acidobacteria, and Actinobacteria.

Growth rate potential is the main predictor of rhizosphere
enrichment
To assess which functional features were important for copio-
trophs or oligotrophs, we trained Random Forest (RF) and
Gradient Boosting Classifier (GBC) models to predict the rhizo-
sphere- or soil-association of a MAG based on a binary matrix
including the presence or absence of KOs, COGs, and Pfams, as
well as its status as a copiotroph or oligotroph. We used Grid

Search with Stratified Cross-Validation to evaluate how changing
different parameters affected the RF and GBC models (Supple-
mentary Fig. 13–15, Supplementary Table 7). Using optimal
parameters, we obtained F1-scores of 93.1, 92.5, and 92.6% (RF)
and 93.8, 93.8, and 93.5% (GBC) for KO, COG, and Pfam-based
models, respectively.
We used the classifiers to identify which features were

associated with the rhizosphere or soil MAGs. All six models (i.e.
RF/GBC models based on KO, COG, and Pfam) identified PMDT as
the most important feature, suggesting that growth rate potential
is highly relevant for rhizosphere colonization (Supplementary
Fig. 16–17). We selected 5 h as a threshold to binarize based on a
sensitivity analysis for this binarized variable using different
thresholds (PMDT using 0.5,1,1.5,2,3,4,5,6, and 7 h, see Supple-
mentary Table 8). We show that PMDT is the most important
feature in both COG-, KO-, and Pfam-based RF models when using
5 h as threshold, coinciding with the threshold suggested

Fig. 4 Comparison of metagenome-assembled genomes (MAGs) from rhizosphere/soils and fast-/slow-growers. A Enrichment of KEGG
functional categories in MAGs from 5 most representative taxa. Differences in KO categories between rhizosphere and soil MAGs (left), and
between copiotroph and oligotroph MAGs (right). Heatmaps indicate the level of enrichment based on the PhyloGLM test (adjusted p < 0.05,
Benjamini-Hochberg FDR method). B Gene Counts in MAGs from rhizosphere or soil (left), and copiotroph or oligotroph (right). Number of
MAGs in each category is indicated, distributions of predicted minimal doubling times in MAGs from rhizosphere and soils were compared
with Mann–Whitney test (ns: p > 0.05, *p <=0.05, **p <=0.01, ***p <=0.001, ****p <=0.0001). C Euler plots with significantly enriched KO
functions in MAGs. Plots show the number of enriched functions in the rhizosphere or soil, and copiotroph or oligotroph. Many more enriched
functions were shared between rhizosphere-copiotroph and soil-oligotroph than between rhizosphere-oligotroph and soil-copiotroph.
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previously [23]. The predictive importance of PMDT decreases
when using other cutoffs values, although it always ranks within
the top-10 (Supplementary Table 8). Growth rate potential is a
complex microbial trait, estimated here from codon usage
patterns. It may be associated with some of the functional
features that are also used as predictors in the models. However,
our results clearly show that this trait is more important than any
other individual function, highlighting the high predictive
potential of this complex microbial trait that is readily inferred
from the genome sequence.
We further compared growth rate potential with other complex

genomic traits, such as different metabolic modules composed of
many individual functions. Thus, we used PhyloGLM models based
on the presence or absence of 445 functional modules, as well as
the PMDT to identify which individual modules are associated
with rhizosphere colonization (Supplementary Table 9, Supple-
mentary Fig. 12). We also calculated RF models using binary
matrices composed of these composite features, revealing that
even when compared with aggregated features of collective
functions that may also be important for rhizosphere competence,
such as flagellar assembly, PMDT is the most important feature for
differentiating soil- and rhizosphere-associated bacteria (Supple-
mentary Fig. 18). However, the overall performance of these
models is lower than those using individual functions as features.
Thus, despite being a complex trait based on codon usage bias,
PMDT is more relevant for predicting rhizosphere colonization
than any of the other composite traits tested here, including
relevant metabolic pathways, hydrolytic enzymes, or motility.

Niche and growth rate potential associated functional traits
Besides growth rate potential, the machine learning models
trained above also enabled us to rank the functional features by
their importance in classifying rhizosphere or soil bacteria
(Supplementary Table 10). To visualize the functions that are
associated with fast-growing bacteria in the rhizosphere, we
selected the most important COGs that were exclusively
associated with rhizosphere and copiotrophs based on the
PhyloGLM results (Supplementary Table 6). We observed that
many of these COGs were functionally connected in the STRING
database [42] (Fig. 5A). One cluster comprises functions related to
flagellar motility, which has been identified as an important trait
for rhizosphere colonization in previous studies [55, 56], as it
allows fast-growing bacteria to reach valuable exudate-derived
carbon faster than the non-motile oligotrophs, and thus out-
compete them in the rhizosphere. Linked to this cluster, we found
an inter-membrane structural component of the type VI protein
secretion system (T6SS, COG3521), which has been associated
with modulating microbial interactions and promoting rhizo-
sphere colonization by plant-beneficial bacteria [57, 58]. Other
COGs belonging to T6SS were also associated with either the
rhizosphere or copiotrophs, especially in MAGs affiliated with
Gammaproteobacteria (Supplementary Table 6). Another con-
nected cluster of COGs consists of proteins related to sugar
catabolism, such as beta-galactosidase (COG3250), alpha-L-
fucosidase (COG3669), alpha-L-arabinofuranosidase (COG3534),
beta-xylosidase (COG3507), a Na+ /melibiose symporter
(COG2211), a DNA-binding transcriptional regulator of sugar

Fig. 5 Analysis of strongly rhizosphere and growth-rate associated functions. A A STRING search of the COGs that were most important for
predicting rhizosphere-association in the RF models, and were enriched only in the rhizosphere and in fast growing MAGs in at least one
phylum according to the PhyloGLM analysis. Top 200 most important COGs in the RF models were sorted decreasingly by feature importance,
and only COGs that were associated with both rhizosphere and fast-growing MAGs and never with soil or slow growing MAGs in the
PhyloGLM models were selected, resulting in 71 COGs uniquely associated with the rhizosphere and fast-growing MAGs. Edge weights
represent the level of evidence for functional interaction according to STRING. Some relevant functions are colored according to legend.
Common COGs among the top 50 important features in RF models to predict niche and growth rate status were labeled as “Top50 RS&CO
models”. B Top 50 most important modules in DRAM-based RF models to predict niche and growth rate status were selected and only
common features are represented in a barplot. Black circles represent modules that are also uniquely associated with rhizosphere and
copiotrophs, while squares represent those only associated with oligotrophs and soil in the PhyloGLM results.
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metabolism of DeoR/GlpR family (COG1349), and a fructose/
tagatose bisphosphate aldolase (COG0191), whose functions are
implicated in mucilage polysaccharide degradation [59]. In a
recent study in which the adaptation to plant colonization was
tested in Bacillus thuringiensis, the authors found that metabolic
pathways related to plant polysaccharides were upregulated in
the adapted strain, including metabolism of various carbohy-
drates, such as cellobiose and galactose [60]. Supporting this
observation, transporters of different sugar or sugar-derived
molecules such as melibiose (K10117, K10118, K10119), glucarate
(K03535), inositol (K06610, K06609), hexuronate (K08191),
D-galactonate (K08194), maltose (K16211), gluconate (K06155)
and other (K03291, K03328, K08139, K10111, K10546, K10547,
K19270) were also exclusively enriched in rhizosphere and fast
growers (Supplementary Table 6). Another cluster is related to iron
uptake and may indicate the importance of rhizospheric fast-
growing bacteria in maintaining iron homeostasis. This trait has
recently been shown in the rhizosphere under drought conditions
[61]. Moreover, we analyzed which of these features were also
among the most important features in an RF to predict growth
rate status using COGs (Supplementary Table 11, Fig. 5A). Among
the top most important common features in both models, we
found a tRNA U34 5’-hydroxylase (COG1054) and a tRNA A37
threonylcarbamoyladenosine dehydratase (COG1179), which
expand decoding capabilities by modifying tRNA molecules in
bacteria [62, 63]. We hypothesize that these modifications
facilitate growth by improving codon-anticodon recognition in
highly expressed and highly conserved genes [64]. We also found
an uracil-DNA glycosylase (COG0692), which initiates the base-
excision repair pathway and may indicate different uracil repair
strategies in copiotrophs and oligotrophs [65, 66], a putative
translation regulator (COG1179), an iron-regulated membrane
protein (COG3182), and an enzyme involved in purine biosynth-
esis (COG0026), among other less-characterized COGs (COG2824,
COG2962, COG2509; Fig. 5A). All these functions probably
facilitate high growth rates which also allows a successful
rhizosphere colonization.
To gain a broader insight, we analyzed the common functional

modules that were most important in predicting the niche and
growth rate status in separate DRAM-based RF models (Fig. 5B,
Supplementary Table 11). We only found propanoyl-CoA meta-
bolism (M00741), and cofactor F420 biosynthesis (M00378) to be
uniquely associated with soil and slow-growers in PhyloGLM
results (Supplementary Table 9). These functions are probably
involved in utilizing recalcitrant carbon sources present in the soil
[67, 68]. On the other hand, we found more modules associated
with rhizosphere and fast-growing MAGs, notably CAZy enzymes
related to the utilization of arabinan and xyloglucan. Arabinan has
been shown to be upregulated in Escherichia coli O157:H7
colonizing different plants [69], and xyloglucans are recalcitrant
polysaccharides that compose plant cell walls and are depolymer-
ized by fast growing plant pathogens and gut commensals [70].
In fact, we found other CAZy enzymes to degrade mixed-
linkage glucans, polyphenolics, sulfated polysaccharides, and
amorphous cellulose associated both with rhizospheric and fast-
growing bacteria, but we did not find any CAZy enzymes
significantly associated with soil or slow-growing bacteria
(Supplementary Table 9). We also observed the flagellar assembly
module to be only associated with the rhizospheric and fast-
growing bacteria. Other modules associated with rhizosphere
and fast-growing MAGs included D-galactonate degradation
(M00552), which was recently described as a rhizosphere-specific
determinant in Pseudomonas putida populations [71], nitrate
assimilation (M00615), arsenate reduction, a trait frequently
explored in rhizosphere bacteria with bioremediation purposes
[72], cobalamin biosynthesis, a trait present in a small proportion
of soil bacteria [73], and different biotin biosynthesis pathways
(Fig. 5B).

Ecological insight
Overall, we hypothesize that rhizosphere-associated bacteria
might profit from nutrients coming from root exudates, using
expensive flagellar motility and a huge diversity of transporters
and enzymes to reach, internalize, and catabolize these com-
pounds, altogether allowing them to achieve faster growth rates.
To grow faster, these bacteria have optimized the codon usage of
their ribosomal proteins, and improved their decoding capabilities
and protection of their DNA from mutagenesis. Our work
complements recent evidence showing generalized effects on
rhizosphere microbiomes. A recent study analyzed 557 paired bulk
soil/rhizosphere datasets using a network approach to identify
rhizosphere-associated signatures [74]. They found sporulation
enriched in bulk soils, while carbon and nitrogen transformation,
methanol oxidation, and methylotrophy were enriched in the
rhizosphere. The authors also showed that rhizospheric bacteria
had 6.6% more rRNA operons than soil bacteria. Because
copiotrophs (r-strategists) are assumed to have more rRNA
operons than oligotrophs (K-strategists) [75], this analysis also
indicated that fast-growing bacteria preferentially colonize the
rhizosphere. Another recent study used stable isotope probing,
quantitative PCR, marker gene sequencing, and shotgun metage-
nomic sequencing to examine rhizosphere taxa that incorporated
plant-derived 13 C [76]. While the bacteria that consumed plant-
derived carbon were not necessarily the most abundant in the
rhizosphere, they had higher estimated growth rates and encoded
genes associated with carbon metabolism, resource uptake, and
the potential for promoting plant growth.
We found more rhizosphere- and soil-associated functions than

a previous study by Levy et al. [14], probably because we included
a larger set of genomes including both culturable and uncultur-
able bacteria, but also spanning a broader taxonomic range.
Approximately 66% of Levy’s significant COGs overlapped with
COGs associated with rhizosphere and soil in our analysis
(Supplementary Fig. 19). Our STRING analysis further revealed
that the COGs identified herein were functionally similar,
suggesting that our analysis both complements and expands on
the previous study by identifying hundreds of new COGs involved
in rhizosphere colonization.

CONCLUSIONS
Understanding which factors drive the rhizosphere effect is
important for designing strategies to harness plant microbiomes
and develop more resilient bio-inoculants. We demonstrated that
rhizosphere-enriched bacteria have higher growth rate potential
than those in soils. This observation holds in eleven of the most
abundant phyla independently of host plant genotype, stress
condition, soil type, light cycle, or life stage. We used machine
learning to accurately classify MAGs from rhizospheres or soils,
finding PMDT to be the most important feature for classification,
even compared to other broad functional modules. Our analysis
identified important features known to be associated with
rhizosphere colonization or copiotrophic lifestyle, including
flagella, sugar and polysaccharide degradation, transporters, tRNA
modifying enzymes, as well as novel proteins that may be further
explored. The fact that growth rate potential is the most important
predictor explaining rhizosphere association is consistent with the
notion that the nutritional gradients generated by plant root
exudates provide a selective environment for a subset of
copiotrophic bacteria from the vast microbial diversity present
in soils. Moving forward, determining how much of the growth
rate potential reflects realized growth rates in nature, and
establishing whether copiotrophic lifestyle necessarily implies
high maximal growth rates will require more careful experimenta-
tion. As we have shown here, bacterial growth rate potential is the
most important genomic predictor to our knowledge for
determining the ability to colonize the rhizosphere.
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