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The gut microbiota exist within a dynamic ecosystem shaped by various factors that includes exposure to xenobiotics such as
pesticides. It is widely regarded that the gut microbiota plays an essential role in maintaining host health, including a major
influence on the brain and behaviour. Given the widespread use of pesticides in modern agriculture practices, it is important to
assess the long-term collateral effects these xenobiotic exposures have on gut microbiota composition and function. Indeed,
exposure studies using animal models have shown that pesticides can induce negative impacts on the host gut microbiota,
physiology and health. In tandem, there is a growing body of literature showing that the effects of pesticide exposure can be
extended to the manifestation of behavioural impairments in the host. With the increasing appreciation of the microbiota-gut-brain
axis, in this review we assess whether pesticide-induced changes in gut microbiota composition profiles and functions could be
driving these behavioural alterations. Currently, the diversity of pesticide type, exposure dose and variation in experimental designs
hinders direct comparisons of studies presented. Although many insights presented, the mechanistic connection between the gut
microbiota and behavioural changes remains insufficiently explored. Future experiments should therefore focus on causal
mechanisms to examine the gut microbiota as the mediator of the behavioural impairments observed in the host following
pesticide exposure.
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INTRODUCTION
The diverse consortia of microorganisms that reside in the gut,
known as the gut microbiota, is fundamental to host metabolism,
intestinal homeostasis as well as brain health and behaviour [1–4].
The gut microbiome is a dynamic ecosystem in which complex
relationships and sensitivities exist, which ultimately determine
the overall health of the host [5, 6]. Like any ecosystem, the
gut microbiota are shaped by numerous factors namely host
genetics, diet, drug exposure, physiology and environment. In
particular, environmental perturbations that the gut microbiota
experience are important in shaping community structure and
functional outcomes. Hence, it is essential to understand the
effects of specific chemicals, such as pesticides and other
environmental pollutants, which are considered xenobiotics to
the human body (i.e., chemical substances that are foreign to
animal life) [7, 8].

Microbiota-gut-brain axis
The mutualistic relationship between the brain and the gut
microbiota is essential for maintaining the healthy mental state of
the host, including brain function [1, 4, 9]. Indeed, the gut
microbiota and central nervous system (CNS) communicate bi-
directionally via the microbiota-gut-brain axis [1]. Out of 11
classified phyla, the human gut microbiota are dominated by four
phyla: Actinomycetota (formerly known as Actinobacteria), Bacter-
oidota (formerly known as Bacteroidetes), Bacillota (formerly
known as Firmicutes) and Pseudomonadota (formerly known as

Proteobacteria) [10, 11]. The composition and diversity of the gut
microbiota influence its various functional outcomes such as
metabolism, barrier integrity and trophic functions [12]. There are
several routes proposed as the main active communication
pathways between the gut and the brain, including the
neuroendocrine system, the vagus nerve and hypothalamic–
pituitary–adrenal (HPA) axis routes. While some xenobiotics may
influence the host directly by de/activating the chemical(s), others
may impact the host via indirect routes. For instance, microbially
produced neuromodulators in the gut, such as short chain fatty
acids (SCFA’s) and neurotransmitters (e.g., serotonin, gamma-
aminobutyric acid (GABA)), can alter the signals to the brain by
disrupting the communication via the enteric nervous system [7].
Another key contributor to this crosstalk is the immune system,
which plays a key role in maintaining the integrity of the intestinal
barrier [1].
Given that xenobiotics can influence the microbiota-gut-brain

axis [7], it is timely to consider that the mode of action of some
pesticides includes disrupting this communication by modifying
microbial viability or function. In fact, exposure to pesticides have
been shown to disrupt gut microbiota composition [13, 14] while
also found to have negative impacts on cognitive processes in
humans [15, 16]. It remains to be resolved however, if changes in
gut microbiota composition and function from microbe-pesticide
interactions are the driving factor for the negative behavioural
changes. Therefore, in this review, we evaluate the emerging
evidence that there is a causal relationship between pesticide
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exposure and behavioural alterations via the microbiota-gut-brain
axis. We propose the gut-brain axis as a potential avenue for
further understanding the overall effects of pesticides on gut and
brain health.

Pesticides
Herbicides, insecticides and fungicides are three main classes of
pesticides most widely used in agricultural and domestic
situations leading to greatest human and environmental expo-
sures. Each group can be categorised in numerous ways, such as
the target organism(s), toxicity, chemical composition, mode of
entry and mode of action (Table 1) [17, 18]. Commercial
formulations are made up of active compounds and inert
ingredients, such as emulsifiers, solvents and fragrances. However,
differences in these formulations as well as chemical structure
complicates our ability to measure impacts accurately and
consistently on animal physiology and gut microbial ecosystem.
For instance, different effects on the gut microbiota in animals
have been recorded with the herbicide glyphosate on its own, in
the commercial product Roundup (Bayer) and its metabolite
aminomethylphosphonic acid (AMPA) (Supplementary Table 1)
[19–21]. Additional factors such as dosage, administration dura-
tion and host profile (e.g., age, sex and exposure history) can also
explain the different impacts on the gut microbiota profile [22].
Nevertheless, there is a large body of evidence to suggest a role of
pesticides present in food, water and environment (e.g., air) in
shaping the gut microbiota with a potential link to behaviour.

Pesticide exposure on the host
The impact of pesticides on the gut microbiota are only now
beginning to be resolved, considering that up until recently many
widely used chemical pesticides were deemed to be safe for
domestic and agricultural applications. The extensive, dependent
usage of pesticides has resulted in very high concentrations
reaching far beyond their intended target levels in our soil and
water (Fig. 1). For instance, a large-scale study investigating >300
agricultural topsoil samples from across the European Union
found that 80% of the tested soils contained pesticide residues
[23]. Strikingly, residues of numerous pesticide mixtures that
include glyphosate and its metabolites have also been detected in
vegetables and fruits [24, 25]. These residual chemicals can enter
the body via inhalation, ingestion or dermal absorption, which
significantly increases the risk to the host [26].
Conveniently, the body is equipped with mechanisms to

metabolise xenobiotics. For example, the biotransformation of
pesticides by the microbiota has long been studied [27, 28]. The
ability of microbiota to degrade and/or detoxify pesticides directly
affects its bioavailability in the environment and within the exposed
individual. However, when it comes to knowledge on the effects of
the gut microbiota on the bioavailability of pesticides, while the topic
is understudied, some findings do indicate a role for gut microbiota
in pesticide release and metabolism [29]. Additionally, the liver is the
prime organ for xenobiotic metabolism in vertebrates, using enzymes
such as cytochrome P450 [30]. However, the gut microbiota can still be
directly exposed to many ingested xenobiotics before and after they
reach the liver, causing unwanted health consequences depending
on its status of biological availability [31]. These xenobiotics then
could induce a wide variety of direct effects (e.g., shifts in microbial
structure and function) and indirect effects (altered gut microbial
metabolites shifting the expression and function of key gut and liver
enzymes) [7, 32]. As such, gut-microbiota-mediated effects from
exposure to pesticides may be an overlooked pathway impacting
host health and behaviour [7, 14].

Potential mechanisms for gut microbiota mediated effects on
host upon pesticide exposure
Generally, the principles underpinning the postulated mechan-
isms can be divided into three broad categories (Fig. 1). The first

being the direct effects of pesticides on microbial metabolism/
physiology. Evidently, pesticides can cause direct toxic effects on
microbial communities such as inhibition of microbially pro-
duced compounds (e.g., glyphosate mediated inhibition activity
of EPSPS enzyme in shikimate pathway [33]) and inhibition of
membrane synthesis (e.g., triazine mediated cell membrane
disruption in photosynthetic microorganisms, conazoles
mediated ergosterol synthesis disruption in fungal cell mem-
brane [34]). This disruption in this microbe-host mutual relation-
ship via the changes in the microbially produced compounds
interferes with biosynthetic pathways for vitamins and aromatic
amino acids in nutrition-based mutualism, which is crucial for
host health [35]. Another important consideration is the
antimicrobial resistance that could result from prolonged
pesticide exposure. Indeed, the persistence of pesticides in the
environment can promote pesticide-degrading gut microbiota
to enhance their antimicrobial resistant characteristic to build a
tolerance against it [36]. However, much of this understanding
has been driven by studies in environmental systems like water
and soil, with information on gut microbiota communities
comparatively lacking.
The second avenue for the mechanistic explanation is indirect

effects of pesticides on the gut microbial ecosystem. Indeed,
pesticides can shift the physical and biochemical characteristics of
the gut environment, which may suppress some microbial species
while stimulating growth and survival of others, for example
opportunistic pathogens in bees [37]. The imbalance of gut
microbiota community structure due to individual or community-
level changes can lead to irregular intestinal motility or gut/brain
barrier perturbations, which are crucial factors for a healthy gut
environment [38, 39].
The third category is indirect effects on outcomes of host-

microbe interactions. An important facet of this is the implications
of pesticides on host barrier function. Indeed, the gastrointestinal
tract is a fundamental physical and biological barrier and is a
primary site of exposure to toxic agents like pesticides, with the
gut microbiota responsible for the development, maturation and
regulation of the gastrointestinal tract [40]. The blood brain
barrier, which protects and lines the inner surfaces of the blood
vessels inside your brain, is also vulnerable to single or repeated
exposure of certain pesticides [41]. Whether this is primarily
mediated through alterations in gut microbiota structure and
function is still yet to be understood. Other indirect effects
on host-microbe interactions includes disrupted endocrine func-
tion. Indeed, organochlorine pesticides with endocrine
disrupting capacity have also been related to alterations in gut
microbiota [42].
The aim of this review is to first summarise currently known

impacts of common pesticides on behaviour and gut microbiota
in various animal models. Next, we will discuss the current
research and future avenues for identifying causes and mechan-
isms underpinning negative implications of pesticide exposure
from the microbiota-gut-brain axis perspective.

PESTICIDE EXPOSURE AND THE GUT-BRAIN AXIS: THE
CURRENT PARADIGM
Behavioural readouts in animal studies are one of the under-
exploited outcome measures when assessing the impact of
pesticides, especially when consideringthe impact on the gut
microbiota (Supplementary Tables 1-3). Despite the limited
number of studies conducted, pesticide exposure has been shown
to impact host behaviours such as anxiety [43], memory [44] and
social interaction [45] (Fig. 2). The mechanisms underpinning
these pesticide-associated behavioural alterations remain to be
conclusively verified, although a range of targets have been
evaluated. It remains to be fully determined whether these
changes are due to physiological, chemical, genetic, a
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Table 1. Overview of active ingredients used for pesticides with its characteristics.

Active ingredients Category Chemical classes Chemical structure Mode of action and potential consequences

Aldicarb Insecticide Carbamates AChE inhibitors; neuromuscular interference

Atrazine Herbicide Triazines Photosystem II Inhibitors; endocrine system
disruption

Chlorpyrifos Insecticide Organophosphates AChE inhibitors; neuromuscular interference

Cypermethrin Insecticide Pyrethroids/Pyrethrins Sodium channel modulators; nervous system
signalling interference

Glufosinate
Ammonium

Herbicide Phosphinic acids Glutamine synthetase inhibitors; glutamate-
glutamine homeostasis interference

Glyphosate Herbicide Glycine Enolpyruvyl shikimate-3-Phosphate (EPSP)
synthase inhibitors; aromatic amino acid
nutrition disruption
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Table 1. continued

Active ingredients Category Chemical classes Chemical structure Mode of action and potential consequences

Imazalil Fungicide Imidazoles Ergo/sterol biosynthesis demethylation
inhibitors; membrane integrity and fluidity
interference

Imidacloprid Insecticide Neonicotinoids nAChR competitive modulators;
neuromuscular interference

Lindane Insecticide Organochlorines GABA-gated chloride channel antagonists;
nervous system signalling interference

Nitenpyram Insecticide Neonicotinoids nAChR competitive modulators;
neuromuscular interference

Penconazole Fungicide Triazoles Ergo/sterol biosynthesis demethylation
inhibitors; membrane integrity and fluidity
interference

Permethrin Insecticide Pyrethroids/Pyrethrins Sodium channel modulators; nervous system
signalling interference

Propamocarb Fungicide Carbamates Lipid synthesis inhibitor; cell membrane
permeability and fatty acids disruption

Quinalphos Insecticide Organophosphates AChE inhibitors; neuromuscular interference
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combination of these and/or some other reasons. Thus, an
interesting question for microbiologists is: can changes in gut
bacteria structure and function drive these adverse effects on host
behaviour? Changes in brain development and function are
plausible consequences of disrupted signalling along the
microbiota-gut-brain axis, considering the potential communica-
tional alterations caused by the gut microbiota compositional and
functional alterations. It has been previously proposed that gut
microbial changes can induce behavioural impairments in the
host by several mechanisms including disruptions in endocrine
(e.g., HPA axis), neuronal and immune pathways [46]. Although
hypothetical, it is worth exploring whether pesticide-driven
activation of the HPA axis can trigger the immune system,
resulting in a modification of microbial diversity, which would
likely be detrimental to gut function. This change in the intestinal
microbial composition and structure could result in altered
production of various metabolic biproducts, which can in turn
stimulate both the enteric nervous system and the vagal afferent
nerves and contribute to additional activation of the HPA axis.
However, this would require more evidence prior to elucidating
facts.

Glyphosate—the prototypical herbicide
N-(phosphonomethyl) glycine, commonly known as glyphosate, is
the active compound in several widely used formulations referred
to as glyphosate-based herbicides, for example, Roundup and it
has been licensed for use in the EU since 2002 with its approval
set to expire in December 2023 (European Food Safety Authority).
These formulations function as an herbicide primarily by inhibiting
the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)
involved in the shikimate pathway, which takes part in the
production of aromatic amino acids [33]. These aromatic amino
acids, phenylalanine, tyrosine and tryptophan, assist protein
synthesis in plants. The glyphosate-based herbicides have been
claimed to be low risk for human health due to a lack of the
shikimate pathway in mammals [33]. However, this idea is being
unravelled as faulty as more research is recording negative
impacts of glyphosate on non-target organisms that possess the
shikimate pathway, such as microbial communities residing in the
gut [47] (Fig. 2). It is worth noting that the aforementioned amino
acids produced by this pathway are precursors for neurotransmit-
ters, which are known to play an important role in mood,
behaviour and cognition. Indeed, dose-dependent reduction of

Table 1. continued

Active ingredients Category Chemical classes Chemical structure Mode of action and potential consequences

Thymol Fungicide Phenols Multiple modes of action proposed including
cell membrane disruptors

AChE acetylcholinesterase, nAChR nicotinic acetylcholine receptor.
Data on mode of action derived from - Herbicide Resistance Action Committee (HRAC; https://www.hracglobal.com), Weed Science Society of America (WSSA;
Weed Science Society of America (WSSA; https://wssa.net), Insecticide Resistance Action Committee (IRAC; https://irac-online.org), Fungicide Resistance
Action Committee (FRAC; https://www.frac.info) Chemical structures were drawn using BIOVIA, Dassault Systèmes, BIOVIA Draw 2022, San Diego: Dassault
Systèmes, 2023.

Fig. 1 Proposed mechanisms of environmental pesticides impacting the microbiota-gut-brain axis. The residue of pesticides in the
environment (air, soil, water and food) can enter the body of the host leading to disrupted communication between the gut and the brain.
While the mechanisms are still being uncovered, some of the potential routes include, solely or in combination of, direct effects on microbial
metabolism, indirect effects of pesticides on microbial communities in the gut and indirect effects on host-microbe interactions, which may
explain the disrupted communication as seen from behavioural impairments. The icons used in this figure were designed by adriansyah, Flat
icons, Freepik and Kalashnyk on https://www.flaticon.com/ and the chemical structure was drawn using BIOVIA, Dassault Systèmes, BIOVIA
Draw 2022, San Diego: Dassault Systèmes, 2023.
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serotonin, dopamine and norepinephrine, was confirmed in the
brain of rats exposed to glyphosate [48].
Several studies have confirmed that exposure to glyphosate,

either in its pure chemical form or in an herbicide mixture, has
been shown to induce changes in host behaviour (Supplementary
Table 1). For example, 250 and 500mg/kg/day of glyphosate
exposure via Roundup to mice led to a reduction in locomotor
activity [49], which is linked to complex human activities including
motivation and learning. More relevantly, the exposure to
glyphosate was found to increase anxiety and depressive-like
behaviour while decreasing social interaction [49–51]. This could
be due to a reduction in serotonin immunoreactive neurons in the
dorsal raphe nucleus, basolateral amygdala and ventral medial
prefrontal cortex upon pesticide exposure, which further indi-
cates a disruption in mood-regulating neurotransmitters (e.g.
serotonin) in mice [49]. Alternatively, hyperactivation recorded in
medial prefrontal cortex and amygdala regions [52], which are
known to be involved in emotional processes including fear
circuits [53] and may also explain the behavioural impairments.
However, the impact on anxiety and depressive-like behaviour
was diminished when the exposure was reduced to an
environmentally relevant dosage [54]. While this discrepancy
could be due to differences in behavioural tests applied, it
highlights the need for replication of the study with a lower dose.
In rats, maternal licking behaviour was increased upon Roundup

exposure, but not glyphosate [20]. This change in maternal
behaviour could extend to emotional dysregulation in the offspring,
though the measurement was not included in the study. Moreover,
only licking behaviour and not the other maternal behaviours tested
were affected, making it difficult to conclude the consequences of
exposure to the pesticide. Currently, the explanation for glyphosate
exposure and behavioural changes are based on exposure studies,
which restricts our elucidation of any underlying causational
mechanisms. These behavioural changes observed may also be

explained by changes in the central nervous system, such as altered
level of phagocytic cells in the cortical brain tissue [54], genetic
expression of tight-junction genes [55] as well as the maturation
level of doublecortin-immunoreactive neurones in the dorsal
dentate gyrus of the hippocampus [20]. More recently, it was found
that glyphosate enters the brain and elevates pro-inflammatory
cytokines [56]. Increased levels of pro-inflammatory cytokines are
commonly observed after traumatic brain injury, inducing both
beneficial and detrimental effects. For example, tumour necrosis
factor (TNF) has been shown to both increase neuronal cell death
and promote neuroprotection in a receptor-type dependent manner
[57]. Notably, increased TNF is a known characteristic of Alzheimer’s
disease [58]. Thus, increased TNF in brain plasma, hippocampus and
cortex may be indicating neurotoxic effects from glyphosate
exposure [56].
Incidentally, an increase in Bacteroidota and decrease in

Bacillota phyla within the gut were generally consistent
observations in rats exposed to glyphosate (Supplementary
Table 1). This trend was consistent despite the variation in the
experimental design (e.g., ways of administration, exposure
duration, microbiome analysis technique) [20, 21, 59, 60]. Over-
all, together with behavioural changes upon glyphosate
exposure, significant changes in the proportion of some
bacterial taxa within the gut microbiota were observed. Both
affected phyla can produce neuromodulators including neuro-
transmitters, the metabolites of their precursors, SCFAs and bile
acids [61], which could be linked with the behavioural
impairments observed. Pre- and postnatal maternal glyphosate
exposure in mice increased level of acetic acid in the offspring’s
faecal samples according to metabolomic analysis [51]. Indeed, it
has been shown that the profile of amino acid biosynthesis can
be predicted from the host gut microbiome status [62], which
suggests that biologically available neuromodulators are altered
due to microbiome alterations from pesticide exposure. All of

Fig. 2 Effects of pesticides on animal behaviour via the microbiota-gut-brain axis. For example, for glyphosate, the mode of action is the
inhibition of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase involved in the shikimate pathway. This may, in turn, alter the levels of final
products of the pathway such as phenylalanine, tryptophan and tyrosine in bacteria. These aromatic amino acids are precursors for
neurotransmitters used for brain communication, which could explain the behavioural impacts found upon exposure to glyphosate and other
pesticides. Listed on the right are behavioural changes, such as anxiety, depression, memory and locomotor activity, found upon pesticide
exposure in rodents, fish and frogs. The icons used in this figure were designed by Flat icons and Freepik on https://www.flaticon.com/ and
the chemical structure was drawn using BIOVIA, Dassault Systèmes, BIOVIA Draw 2022, San Diego: Dassault Systèmes, 2023.

R. Matsuzaki et al.

1158

The ISME Journal (2023) 17:1153 – 1166

https://www.flaticon.com/


these findings point to the chemical impact on the microbiota-
gut-brain axis having multiple underlying mechanisms.

Pesticides altering physical and biochemical characteristics of
the gut microbiota environment
Studies using other pesticides further strengthen the point that
altered signalling to the brain by modified gut-microbiota-
produced neuromodulators could explain behavioural impair-
ments. Thymol is a plant extract based fungicide, which is
suggested to have beneficial impacts such as immunomodulatory
and anti-inflammatory functions [63]. While several modes of
action are being proposed, with a primary target being cell
membrane disruption, the whole picture has yet to be resolved. It
has also been shown that thymol may bind to GABA receptors,
which may interfere with signalling within the nervous system
[64]. In fact, when zebrafish larvae were exposed to thymol, for
96 hours, fear and anxiety-like behaviours were disrupted as
measured by reduced response to threat and increased distance
moved during the dark phase. However, no change in exploratory
behaviour was observed [65]. It should be noted that this study
had a low sample size (n= 5/treatment), thus requiring a further
replication to confirm this finding. While this study did not include
microbiota analysis per se, when thymol-mixture exposed micro-
biota were introduced to germ-free zebrafish, their immune
response was altered indicating a causational impact of pesticide
exposure mediated by microbial changes [66]. Future studies
focusing on the effect of pure thymol exposure will allow us to
understand the direct effect of the given pesticide. In addition,
exposure to the fungicide propamocarb, which similarly to thymol
targets disruption of the cell membrane, increased propionate,
isobutyrate and bile acids in faeces of exposed mice according to
a faecal metabolomics analysis. This could partially be explained
by a change in levels of SCFA producing bacteria such as
Ruminococcus, Bacteroides and Oscillospira [67]. However, the low
explained variation in the principal coordinates analysis, demands
stronger evidence, which could confirm this treatment dependent
microbiota changes. Taken together, it may be speculated that
thymol exposure led to changes in the gut-microbiota-derived
neuromodulators impacting the host behaviours. Other studies
observed that exposure to the herbicide glufosinate ammonium
led to behavioural impairments in locomotor activity, social and
memory tests in mice (Supplementary Table 1). Glufosinate
ammonium interferes with glutamate-glutamine homeostasis,
which are main excitatory and inhibitory neurotransmitters,
essential for neuronal activity. One of the studies also confirmed
changes in the gut microbiota, including a decrease in the
proportion of Bacillota. In this semi-longitudinal study (4, 6 and
8 weeks), microbiome analysis (16 S gene amplicon sequencing)
and metabolomics (pathway enrichment) analysis on faecal
samples highlighted retinol metabolism and fatty acid biosynth-
esis as one of the pathways altered by glufosinate ammonium
exposure [68].This again illustrates that changes in amino acid and
vitamin production can further harm the symbiotic relationship
between the microbes in the gut and host by altering the gut
microbiome community [69, 70]. They have further presented
strong evidence of the causal relationship between gut microbiota
and some social behavioural impairments by conducting faecal
microbiota transplantation (FMT) [68]. Altogether, it further
strengthens that glufosinate ammonium induced shifts in micro-
biota community structure, which can alter the biochemical
environment (e.g., retinol), in the gut.
In another study in mice, chronic exposure (10 weeks) of

glufosinate ammonium increased hippocampal glutamine synthe-
tase activity [71], which may be due to the pesticides mode of
action of competitive and irreversible inhibitor of the given
enzyme. As glutamine synthetase assists in glutamate home-
ostasis, this disruption in the hippocampal activity level could
explain the memory impairments also recorded in the same study.

Coincidentally, rats exposed to an insecticide permethrin, which
also interferes with nervous system signalling by modulating
sodium channels, showed disturbed memory consolidation as well
as altered hippocampal morphology. Morphological changes
included reduction in the number of synapses, synaptic surface
densities and ratio of perforated synapses in hippocampal areas,
such as stratum moleculare of CA1, mossy fibres and inner
molecular layer of the dentate gyrus [72].
Changes in the brain were also observed when rats were

exposed to penconazole, a fungicide which functions by inhibiting
the demethylation of sterol biosynthesis. A study showed changes
in cerebrum, such as neuronal degeneration, neurophagias and
cerebellum, including cell necrosis. While these biological
consequences in animals are understudied, the exposed rats also
presented increased depressive- and anxiety-like behaviours and
decreased spatial memory after 10 days of exposure. However,
unlike glufosinate ammonium, no histopathological changes were
observed in the hippocampus despite its importance for memory
[43]. It will be interesting to see if replication of this study verifies
and extends the original observations towards a more detailed
mechanistic understanding. While this study did not analyse gut
microbiota changes, it has been shown that penconazole alters its
composition in mice exposed to the chemical for four weeks [73].
Although the authors did not draw any direct conclusions on the
mechanism, the Pearson correlation analysis of gut microbiota and
metabolic profile highlighted that the perturbations in the gut
microbiome may impact lipid and glucose metabolism through
numerous pathways including an interference with bile acid
secretion.
Brain changes by pesticides are not limited to its morphology

but also to its metabolism. For instance, gut microbiome, brain
and faecal metabolome were impacted when mice were exposed
to aldicarb, an insecticide which works by inhibiting acetylcholi-
nesterase activity, for 13 weeks. Accumulating evidence supports
the microbiome being the key player in brain metabolism, by
analysing the faeces, as seen from metagenomic analysis showing
increase in bacterial enzymes involved in protein degradation as
well as metabolomic analysis presenting critical brain metabolites
including glucose, malic acid and free fatty acids being reduced,
while a ketone body was increased. These changes together
support that brain energy metabolism is being negatively affected
by pesticide exposure [74]. Overall, these findings suggest gut
microbiota metabolites altered by pesticide exposure may induce
general behavioural impairments on the host via the microbiota-
gut-brain axis, while some impacts may be by pesticide-specific
processes. However, causational studies are strongly warranted to
understand the specific involvement of gut microbiota in the
process.

Pesticides impacting on gut and brain barriers of the
microbiota-gut-brain axis
Another mechanism to explain the behavioural impairments
observed upon pesticide exposure could be due to disruption in
barrier function, thus altering the permeability of gut and brain.
The gut microbiota is known to have a key role in preventing
damage to the intestinal barrier [75]. Therefore, it is possible that
gut microbiota change via pesticide exposure is having a
downstream effect by impacting barrier function. Belonging to
neonicotinoids group, imidacloprid is an insecticide that targets
nicotinic acetylcholine receptors. Studies have shown that
exposure to imidacloprid can lead to impaired behaviour in
rodents. Indeed, a decrease in locomotor activity and an increase
in stress-like behaviours were recorded in adult mice exposed to
imidacloprid for 60 days. This stress response was also confirmed
via biochemical changes of related hormones [76]. On the
contrary, there is strong evidence of an increase in locomotor
activity and a reduction in depressive-like behaviours in rats
exposed to the same chemical for 25 days [77]. This divergence
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may be explained by the difference in animal models, exposure
duration or exposure time window (directly in adulthood vs
indirectly via the mother during early life). However, it requires
additional studies to draw firmer conclusions.
While these behavioural studies did not assess the gut microbiota,

separate mice studies found that imidacloprid affects the proportion
of Bacillota and Verrucomicrobiota within the gut microbiota [78, 79].
It was also observed that imidacloprid exposure disrupted bile acid
metabolism and colon barrier function, which was confirmed by
changes in expression of related genes such as cyp7a1, fgf15, zo-1
and claudin-1. This reduction in gram-negative bacteria (e.g.,
Akkermansia), an increase in gram-positive bacteria (e.g., Allobacu-
lum) and disruption in colon barrier function was also confirmed by
gene expression analysis [79]. Furthermore, the exposure to
insecticide chlorpyrifos in rats, another pesticide targeting the
acetylcholine cycle by inhibiting acetylcholinesterase activity, led to
changes in the gut microbiota profile (both by traditional culture
method and gene expression analysis) and increased intestinal
permeability (via fluorescein isothiocyanate (FITC)–dextran trans-
epithelial permeability assay) as well as bacterial translocation to the
spleen [80, 81]. However, behavioural analysis is currently lacking for
hosts exposed to chlorpyrifos, thus requiring further experimental
evidence.
In contrast to the gut, the brain is protected by the highly

selective blood brain barrier (BBB) in order to closely regulate
what enters the central nervous system [82]. Microbially derived
SCFAs are crucial in microbiota-gut-brain axis signalling, including
in the maintenance of BBB integrity [83, 84]. Furthermore,
administration of various insecticides to rats (cypermethrin,
lindane and quinalphos) have been shown to impair BBB
permeability, especially in early life [41]. All of these insecticides
interfere with neuronal signalling while having different targets:
sodium channel, GABA-gated chloride channel and acetylcholi-
nesterase, respectively. Coincidentally, neonatal exposure to
another pyrethroid pesticide, permethrin, has been shown to
increase locomotor activity and reduce memory in adulthood
compared to vehicle treated rats across replicated cages.
Permethrin exposure also reduced synapse and surface densities
in brain regions such as dentate gyrus and hippocampus,
potentially explaining the behavioural impairments observed
[72]. The research group continued to analyse the faecal
microbiota with the same experimental setup and found that
the proportion of Bacteroides, Prevotella and Porphyromonas were
reduced, while Enterobacteriaceae and Lactobacillus were
increased. However, it is important to note that changes in some
bacterial groups may have been overlooked, due to the reliance
on the Real-Time quantitative PCR based analysis. Additionally,
changes in bacterial faecal metabolites such as acetic and
propionic but not butyric acid, were detected upon permethrin
exposure [85]. These observations together strengthen the
argument that pesticide exposure and altered microbially derived
SCFA levels leading to behavioural changes, potentially by
disturbing integrity and the function of the physical barriers of
the brain and the gut.

Pesticides influencing the immune system
The status of the immune system can have an impact on host
behaviours, which can be influenced by changes within the gut
microbiota. For example, impacts on microglia cells, the most
dominant immune cells in the brain, can lead to disruption in
synaptic pruning, myelination regulation, and neurogenesis [86].
Microglial immune cells are activated by an infection by microbial
pathogens with signalling from lipopolysaccharide, a pro-
inflammatory molecule which reside in outer membrane compo-
nent of gram-negative bacteria [87]. Indeed, when mice were
exposed to chlorpyrifos, levels of lipopolysaccharide increased [88]
indicating that the pesticide induced an immune response. This
immune activation of microglia can cause a signalling cascade to

molecules such as the transcription factor, NF-κB, which amplifies
the immune and inflammatory response [89]. In the brain, NF-κB
also interfere with glial and neuronal cell function, potentially
worsening diseases such as Alzheimer’s [90, 91]. These pro-
inflammatory cytokines produced as an immune response are
known to be related to symptoms such as anxiety and depression
both in animals and humans [92, 93].
The potential of pesticides to exert an impact via the immune

system is also supported, for example, in studies using atrazine.
Atrazine is an herbicide which interferes with photosynthesis in
plants, but is also known to disrupt the endocrine system in
amphibians and mammals. When frogs were exposed to atrazine,
it led to a reduction in gut microbiota diversity as well as a
significant increase in the proportion of Lactobacillus and Weisella
for the highest dosage tested (500 μg/L). In addition to changes in
gut microbiota, there were altered behaviours of increased
jumping distance and time [94]. Unfortunately, this study did
not analyse its impact on immunity. However, transcriptomics and
proteomics revealed the downregulation of gene expression and
proteins related to immunity when wasps were exposed to the
same pesticide [95]. Gene expression via both qualitative
polymerase chain reaction and RNA-sequencing give further
insights into the potential impacts of pesticide exposure on
immune-related functions regardless of pesticide or animal model
studied (Supplementary Tables 1-2) [96–98]. Taken together, these
studies suggest that gut bacteria compositional changes exert
immunomodulatory effects that could plausibly impact host
behaviour. However, there is yet to be a study which included
both immune functions and behavioural readouts. It is strongly
suggested that including behaviour with gut microbiota studies
are required to understand the significance of disrupted
microbiota-gut-brain axis signalling upon pesticide exposure.
Not all pesticide exposure studies have found behavioural

impairments on the animals, suggesting that these effects may
not simply be solely pesticide dependent. For example, several
studies using glufosinate ammonium failed to observe a
significant impact on anxiety levels [45, 68, 71]. These conflicting
findings warrant the need to uncover the mechanistic processes
involved. While several mechanisms can be speculated, more
studies including both gut microbiota and behavioural changes
are required to assess whether recorded behavioural changes are
happening via gut bacterial interactions with neuromodulators,
neural pathways and immune system, in combination, or by other
means. When interpreting behavioural readouts in preclinical
models, consideration of the associated limitations should not be
neglected [4]. In order to validate the results from preclinical
models, studies incorporating other measures to assess CNS and
cognitive processes, such as neuroimaging warrant further
investigation. Animal models have been widely utilised for
studying microbiota-brain interactions and its mechanisms [99].
By taking a holistic approach across species, this preclinical step
will facilitate future translational studies for applying to human
health [9].

Pesticide induced changes to gut microbiota composition is
dependent on host species
The implications of pesticide exposure on the gut microbiota have
been explored more thoroughly and differently, compared to
behavioural outcomes. This can be seen from the number of
studies aimed at understanding this relationship using various
animal models including mammals (mice, rats), insects (flies,
beetles) amphibians (frogs), fish (carp, zebrafish) and other aquatic
species (e.g., oyster) (Supplementary Tables 1-3). The general
consensus suggests that pesticide exposure alters the gut
microbiota, albeit the differences in the affected microbial groups
and its directionality. This variation may partially be explained by
the difference in experimental design such as chemical type and
dosage/duration (Supplementary Tables 1-3). However, it seems
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that experimental design is not the only reason for this divergence
in microbial signatures post pesticide exposure. Despite this
dissimilarity of findings, several patterns are worth noting.
Foremost, for all chemical types, the majority of the impacted
bacterial groups belong to either Actinomycetota, Bacillota,
Bacteroidota and Pseudomonadota phylum (Supplementary
Tables 1-3). In addition to this, there were some species-
dependent trends in gut microbiota profile alterations, specifically
in honeybees and mammals.

Key microbial taxa impacted by pesticide exposure in
honeybees
The blight of honeybee populations has been widely documented
and reported. Although direct physiological impacts to the host
are undoubtedly relevant, alterations to key microbial taxa
through pesticide exposure have been shown with the specialised
nature of the bee gut microbiota making them more susceptible
to subsequent infection. Two key microbial groups belonging to
the Pseudomonadota phylum, Snodgrassella alvi and Gilliamella
apicola have been shown to generally decrease when honeybees
were exposed to glyphosate [19, 100–102]. Gilliamella sp. were
also found to be negatively affected by exposure to the insecticide
nitenpyram, an insecticide which acts as a competitive modulator
of nicotinic acetylcholine receptor, interfering with neuromascular
functions [98]. It is known that S. alvi plays a key role in bee health
by regulating the hosts immune response [103]. This decrease in
immune levels via glyphosate exposure was confirmed where bee
populations were found to be more susceptible to infection by
opportunistic bacterial pathogens, for example by Serratia
marcescens [100, 101], with this bacterial group also being found
to increase after atrazine exposure in wasps [95]. The fact that
these bacterial groups were not found to be changed in any other
animal models may indicate that there could be species-pesticide
specific interactions. Moreover, alterations in bee gut microbiota
have also been recorded in larvae and immature bees. For
example, a high dose of glyphosate (20 mg/L) has been shown to
result in a distinctive midgut bacterial profile compared to lower
dose (0.8 and 4mg/L) and control [104]. However, results from an
environmentally relevant dosage are yet to be fully understood.

Key microbial taxa impacted by pesticide exposure in
mammals
The reduction in the abundance of bacterial groups within
Bacillota is a general trend found in animal studies using
mammalian models, particularly mice and rats, when exposed to
herbicides including but not limited to glyphosate (Supplemen-
tary Tables 1-3) [20, 21, 50, 60, 68, 105], fungicides [73, 106, 107] as
well as insecticides [108–110]. The overall reduction in Bacillota
phylum could be explained by a significant reduction of
Lactobacillaceae/Lactobacillus. Lactobacillus is a known beneficial
bacterial genus with many members associated with functions
such as enhancing intestinal barrier, for example, by increasing
gene expression related to tight junction signalling [111]. The
probiotic characteristics of some Lactobacillus strains also extend
to involvement in modification of immune signalling between
dendritic cell and T cells [112] as well as production of SCFAs and
neurotransmitters [113]. Some Lactobacillus sp. can also protect
intestinal barrier functions and help maintain the mucus layer,
which were both found to be compromised after the fungicide
imazalil was exposed in C57Bl/6 mice [114]. Imazalil works as a
fungicide by inhibiting demethylation required for ergo/sterol
biosynthesis. Concurrently, 16 S RNA gene amplicon sequencing
showed that Lactobacillus was also negatively impacted by this
exposure, suggesting a role here in intestinal homeostasis.
Conversely, an increase in some genus of Bacillota was shown in
mice upon exposure to propamocarb, which indicates a distinct
pesticide-bacteria interaction for certain chemicals [67, 115, 116].
In relation to behaviour, administering L. rhamnosus has resulted

in reduced anxiety- and depression- related behaviour in mice
[117, 118], together with altered mRNA expression of GABA
receptors in several brain regions [118]. Therefore, reduction in
this beneficial bacterial group from pesticide exposure may be
one potential factor of its detrimental impact on host behaviour. A
major environmental concern is that this type of impact may be
translated to humans.
On the contrary, Lactobacillus has been shown to generally

increase in relative abundance when insects (honeybee, fly and
drosophila) were exposed to pesticides (Supplementary Tables 1-
2) [19, 119–121]. These results highlight once again that pesticide
exposure can differentially impact specific genera of the gut
microbiota in a host-species specific manner. However, the
potential that these taxa-specific changes are achieved through
the direct action of the pesticide on the microbes or through
modulation of host metabolism remains unclear.

Pesticides and the microbiome: need for functional analysis
Few studies have examined the direct functional implications of
microbiome changes via relevant molecular approaches. This is
surprising given the insights that functional-based molecular
approaches can provide. Indeed, faecal and caecal metabolomics
have revealed pesticide-mediated impacts on various functions
including detoxification [119], amino acid metabolism [122],
intestinal barrier function [123] and inflammation [124]. However,
it is important to note that amplicon and shotgun sequencing
based pathway analysis is not sufficient to conclude that the
pesticide is the direct driver of these changes. This is why
incorporating functional analysis is crucial as it allows us to clarify
the implications of the gut microbiome community-wide altera-
tions and examine direct impact(s), which may contradict the
known function of a specific bacterial group. The tolerance and
susceptibility of the gut ecosystem against pesticides was hinted
to be also linked to life stages [125], sex [60, 105, 126], diet [127]
and presence of pesticide-degrading strains [95]. Microbial
ecosystems are complex and exhibit fascinating characteristics,
such as functional redundancy, indicating that despite differences
in composition, the overall function may not be impacted. Due to
evolutionary conservation of functional microbial metabolite
classes, a cross-species approach to investigate pesticide effects
on microbiota-brain axis, may also shed new mechanistic insightst
[99]. Therefore, future studies should incorporate 1) studies
targeting the mechanistic and biological interactions between
the pesticides and bacterial groups and 2) the functional
implications of the microbiome ecosystem-wide changes.

FUTURE DIRECTIONS AND CONCLUSIONS
Due to the ecological nature of functional redundancy, the
impacts of change in the gut microbial ecosystem as a whole
becomes extremely important. One limitation of the current
paradigms in pesticide exposure and the gut-brain axis is the lack
of definitive studies that established causational relationships. One
way to causally examine this is by conducting FMT: a powerful
method in rodent and other animal models, which can assess
whether the behavioural changes observed was induced by host-
microbiota interactions, by administering the faeces from a host to
donor to reproduce the host microbiota in the donor’s gut
[128, 129]. FMT studies have been applied in a range of studies and
have shown that gut microbiota profile plays an important role in
determining the host’s resistance towards pesticides as seen in
cockroaches and suggested for rodents [130, 131]. An exciting
study also showed that some of the behavioural impairments
observed by glufosinate ammonium exposure were transferrable
by transplanting the gut ecosystem [68]. More studies incorporat-
ing pesticide-altered gut microbiota transplantation will allow
us to investigate the impacts of gut ecosystem changes in driving
behavioural impairments.
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It is evident that numerous studies have been conducted to
assess the impact of pesticides on the gut microbiota and/or
behaviour (Supplementary Tables 1-3). Moving forward, it is crucial
to learn and extend from the experimental designs and data
already presentated in this field. When designing preclinical
studies using animal models, replicating the dosage, duration and
ways of administration from previous studies will provide firmer
evidence on the findings. Especially for the dosage, as from a
microbiota-gut-brain axis point of view, the interest lies in the
environmentally relevant dosage, which is not a common dosage
tested as toxicology-geared studies but will provide significantly
higher societal value. Moreover, some of the studies masked its
quality of support for interpretation as they did not incorporate, or
mention, independent cage replication. Housing conditions, such
as whether an animal was individually housed or group housed,
can have consequential effects on animal behaviours [132]. It is
also important to pay careful consideration to the statistical
approach used to analyse microbiome data. As the ways to
approach microbiome data are always evolving, establishing a
standard microbiome analysis protocol is challenging. Therefore,
the responsibility lies on the researchers to provide precise details
on how the analysis was conducted to accommodate reproduci-
bility of findings [133]. When considering the relative abundance
of a given taxa, the analysis applied should be finely tuned

depending on the research question [134]. All this information is
crucial to be included in the manuscript for future studies to be
replicated accordingly.
Another crucial direction within this field is to have a clearer

understanding of the direct interaction between pesticides and the
microbiota. It is not understood whether the tolerance/susceptibility
against pesticides are due to the ecosystem as a whole or due to a
bacterial taxa group level difference [95], while the answer to this is
being revealed by using systemic approaches [135] and in vitro
models, such as Simulator of the Human Intestinal Microbial
Ecosystem (SHIME) [108, 136]. More research needs to be targeted
to understand what is driving the divergent impacts on gut
microbiota upon pesticide exposure. It would also be important to
incorporate confounding factors and to examine the relevance of
changes in the functional context. While studies suggest a role of
microbiota-gut-brain axis as the underlying mechanism for driving
adverse effects on behaviours, further studies are required to assess
other potential reasons such as genetic and physiological influences.
By adding the understanding of microbiota-driven impact of
pesticides, to its already known direct impact on host biology
[124], we will be able to understand the full picture of the complex
interaction between the pesticide and host.
While growing attention rests on the potential risk of pesticide

usage, the impact on the microbiota-gut-brain axis seems to be a

Fig. 3 Potential mediators between pesticides influencing animal behaviour. The mechanism(s) recruited following pesticide exposure that
lead to impaired behaviours remains to be defined. It is possible that behavioural impairments are being caused by changes in
endocrinology/physiology, brain activity/structure, genetics, gut/brain permeability, immunity or gut bacteria and their metabolites. Further
investigations are warranted to clarify whether one of these components, or combinations thereof, are influencing the microbiota-gut-brain
axis. The icons used in this figure were designed by Flat icons, Freepik and surang on https://www.flaticon.com/ and the chemical structure
was drawn using BIOVIA, Dassault Systèmes, BIOVIA Draw 2022, San Diego: Dassault Systèmes, 2023.
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neglected aspect of research in the field. The negative impact
pesticides have on the host behaviour may be exerted through an
altered gut ecosystem, which may potentially be a crucial
biomarker reservoir for examining chemical toxicity. As presented
in this review, a substantial number of findings collectively
indicate that pesticide exposure during the lifetime and before
birth leads to alterations in gut microbiota profiles and host
behaviours, such as anxiety/depressive-like behaviours and
memory. However, studies that have directly investigated whether
the behavioural impairments are being mediated by the gut
microbiota are limited (Fig. 3). It is also worth noting that this
review did not focus on other notable factors such as 1) all the
other active ingredients available on the market, 2) synergistic
effects of pesticide mixtures, 3) morphological/histological differ-
ences and 4) other environmental factors that could also pose a
threat to gut microbiota, such as heavy metals and industrial by-
products. Most importantly, unravelling the relationship between
pesticides, microbiota and brain (behaviour), will lead to essential
discussions on sustainable ways to cohabitate with “safe”
pesticides to conserve the ecosystem and health of existing
organisms.
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