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Multi-omics analysis is a powerful tool for the detection and study of inter-kingdom interactions, such as those between bacterial
and archaeal members of complex biogas-producing microbial communities. In the present study, the microbiomes of three
industrial-scale biogas digesters, each fed with different substrates, were analysed using a machine-learning guided genome-
centric metagenomics framework complemented with metatranscriptome data. This data permitted us to elucidate the relationship
between abundant core methanogenic communities and their syntrophic bacterial partners. In total, we detected 297 high-quality,
non-redundant metagenome-assembled genomes (nrMAGs). Moreover, the assembled 16 S rRNA gene profiles of these nrMAGs
showed that the phylum Firmicutes possessed the highest copy number, while the representatives of the archaeal domain had the
lowest. Further investigation of the three anaerobic microbial communities showed characteristic alterations over time but
remained specific to each industrial-scale biogas plant. The relative abundance of various microorganisms as revealed by
metagenome data was independent from corresponding metatranscriptome activity data. Archaea showed considerably higher
activity than was expected from their abundance. We detected 51 nrMAGs that were present in all three biogas plant microbiomes
with different abundances. The core microbiome correlated with the main chemical fermentation parameters, and no individual
parameter emerged as a predominant shaper of community composition. Various interspecies H2/electron transfer mechanisms
were assigned to hydrogenotrophic methanogens in the biogas plants that ran on agricultural biomass and wastewater. Analysis of
metatranscriptome data revealed that methanogenesis pathways were the most active of all main metabolic pathways.
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INTRODUCTION
In engineered anaerobic digestion systems (AD), the decomposi-
tion of organic matter and biogas production are based on
efficient nutrient recycling [1, 2]. This process involves a diverse
microbial community, with each microbe having a specific role.
The composition and function of the microbial community
involved in the stages of AD play an important role in the
efficiency of the overall process, which is also influenced by
numerous factors, such as microbe-microbe interactions, substrate
composition, physicochemical parameters, and operating condi-
tions [3–6].
Unravelling microbial interactions and their underlying mechan-

isms is an intricate task since many microbes cannot survive
without specific microbial partners [7]. Innovative methods for
microbial isolation and cultivation have been developed, with
some proving successful in bringing novel microorganisms into
culture [8]. However, further development and advancement of
these technologies are needed to unlock the full potential of
microbial diversity [9, 10]. Since there are strong syntrophic
interactions between the microbes in AD microbial consortia, in-
depth research is required to understand their diversity, metabolic

role, and distribution. These studies have been initially hindered
by limitations inherent to culture-dependent microbiological
methods, which require the isolation of microorganisms and can
be challenging when syntrophic relationships are ubiquitous
[11–13]. High-throughput sequencing and bioinformatics tools
permit bulk analysis of genomic material and thereby provide
insight into the taxonomy and functions of entire microbial
communities [14–16].
The identification and genome characterization of commonly

found microbes in AD microbiomes can reveal crucial pathways
and ecological characteristics involved in the microbial food chain
[17, 18]. Previous studies using 16 S rRNA gene amplicon
sequencing showed that core microorganisms create a stable
community capable of resisting various perturbations (i.e., AD
parameter changes) [19–21]. However, amplicon sequencing and
read-based metagenomics approaches may be unable to identify
unknown species by core microbiome analysis due to their
dependence on reference databases [22, 23]. Additionally, biogas-
producing communities represent a large and diverse contingent
of uncharacterised microorganisms that have previously been
described as a “microbial dark matter” [19, 24, 25]. To address this
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issue, increasingly sophisticated bioinformatic algorithms can be
used to reconstruct the genomes of individual species (or MAGs:
metagenome-assembled genomes) from these complex commu-
nities [26–28].
Several recent studies employing genome-resolved metage-

nomics have recovered characteristic MAGs from lab- and
industrial-scale biogas reactors [23, 29–31]. These studies revealed
that Bacteroides and Firmicutes have versatile interactions with
hydrogenotrophic methanogens through their H2, CO2, and
formate-producing abilities [17, 32]. Moreover, ammonia concen-
tration is the main parameter shaping the methanogen commu-
nity [29]. It is necessary to reconstruct genome fragments from the
metagenome in an efficient and accurate manner to explore these
interactions in silico [33, 34]. Recently published studies demon-
strated that semi-supervised machine learning could significantly
improve binning performance [35, 36], which – combined with
metatranscriptomics approach – may enable more in-depth
examination of microbial interactions in different environments.
The present study investigated the structure and function of

microbiomes in three industrial-sized biogas reactors, each
fed with a distinct, characteristic substrate. Each reactor was
monitored at seasonal intervals over a one-year period. Shotgun
sequencing followed by machine learning-guided genome-centric
metagenomic and metatranscriptomic analysis framework were
used to identify microbial composition and ongoing metabolic
activities. The shared portion of the microbial community involved
in digesting heterogeneous substrates was investigated using
an occurrence-based core community concept [37]. The main
objective of this research was to uncover the relationship between
the abundant core methanogenic population and particular
syntrophic bacteria. More specifically, we focus on key networks
of interspecies syntrophy and find an intriguing correlation
between chemical fermentation parameters and the core anae-
robic microbiota present in the reactors.

MATERIALS AND METHODS
AD samples
Samples were taken from three state-of-the-art anaerobic digesters in
Hungary. Two of the digesters are in Szeged (MWBP, and SZBP), and the
other is in Kecskemét (KBP). Key characteristics of each biogas plant
studied here are summarised in Suppl. Table 1. These biogas plants were
selected using the following criteria: (i) the digesters have been operating
without issue for more than five years; and (ii) the digesters use distinct
biopolymers as the main substrate of decomposition for biogas produc-
tion. Sampling was performed for a one-year period at the following
(seasonal) intervals: October 2020, January 2021, April 2021, and July 2021.
Samples were directly transported to the laboratory and were processed
immediately on upon arrival. AD parameter measurements, and DNA/RNA
purification were performed on fresh biogas plant (BP) samples in triplicate
(i.e., biological triplicates: n= 3).

Determination of AD chemical parameters
For each BP, we measured: sludge pH, carbon to nitrogen ratio (C/N), total
solid (TS) content, volatile solid (VS) content, total ammonia nitrogen (TAN;
i.e., ammonium ions and dissolved ammonia), volatile organic acid (VOA)
content, and total inorganic carbon (TIC). Measurements were taken as
previously published [38].
Biochemical methane potential (BMP) batch tests were performed in

160mL reactor vessels (Wheaton glass serum bottle, Z114014 Sigma-
Aldrich) containing 60mL of liquid phase. The inoculum (BP content
filtered to remove particles larger than 2mm) to substrate (α-cellulose:
C8002 Sigma-Aldrich) ratio was set according to the VDI 4630 standard
(Vereins Deutscher Ingenieure 4630, 2006) at the inoculum to substrate VS
ratio= 2:1. A detailed description of the gas sampling and measurement
procedures can be found in a previous publication [39].

Total DNA and RNA purification
Aliquots of 2 mL were obtained from the samples of each BP for total
community DNA and RNA isolation. Purification was performed in

triplicate, and the resulting extractions were pooled together. All
extractions were carried out using ZymoBIOMICS DNA/RNA miniprep kits
(R2002, Zymo Research, Irvine, USA). After lysis (bead homogenisation was
performed using a Vortex Genie 2 with a bead size of 0.1 mm, a
homogenisation time of 15min, and at max speed), the Zymo Research kit
parallel DNA and RNA purification protocol was followed. DNA and RNA
quantities were estimated using an Agilent 2200 TapeStation (Agilent
Technologies, Santa Clara, USA).

Metagenome, and metatranscriptome sequencing
We closely followed all manufacturer recommendations for the Illumina
sequencing platform (Illumina Inc., San Diego, USA). Pooled genomic DNA
samples were used to sequence libraries constructed using the NEBNext
Ultra II Library Prep Kit (NEB, Ipswich, USA). Paired-end metagenomics
sequencing was performed on an NextSeq 550 (Illumina) sequencer using
the NextSeq High Output Kit v2 sequencing reagent kit. Metatranscrip-
tome sequencing from pooled RNA samples was performed as follows:
libraries were first prepared using a Zymo-Seq RiboFree Total RNA Library
Kit, which includes a universal rRNA depletion step. Paired-end mRNA
sequencing was then performed on a NextSeq 550 (Illumina) sequencer
using the NextSeq High Output Kit v2 sequencing reagent kit. Primary data
analysis (i.e., base-calling) was performed using “bcl2fastq” software
(version 2.17.1.14, Illumina). Characteristic fragment parameters are
summarised in Supplimentary Table 2.

Metagenome assembly and binning
Raw sequences were filtered by fastp (version 0.23.2, length required:
150 bp) and checked with FastQC (version 0.11.8). The filtered sequences
produced by fastp were then co-assembled separately by Megahit (version
1.2.9, 4 samples per BP= 3 co-assemblies). The settings used were as
follows: min contig length= 1500; min k-mer size= 21; max k-mer
size= 141 [40]. The metagenomics binning procedure was performed
separately for each AD metagenomics dataset until the dereplication step.
We used Anvi’o (version 7: “hope”) to create the contig database for the
following metagenomics workflow [41].
Genome reconstruction was performed using Semibin (version 1.1.1), a

machine-learning-guided software package that combines a semi-
supervised approach with deep Siamese neural networks by using an
advanced co-assembly binning workflow with a semi-supervised mode
[35]. For dereplication and quality filtration of metagenome-assembled
genomes (MAGs), we used dRep (version 2.2.3) and CheckM2 (version
1.0.1) with the following parameters: dereplicate: comp 10, con 5,
S_algorithm fastANI, sa 0.95, and predict function in case of CheckM2
[42, 43]. It is worth noting that dRep uses CheckM1, so the contamination
of nrMAGs may differ from the dRep filtering settings (Supplimentary
Table 3). MarkerMAG was used in default mode to detect, assemble, and
link 16 S rRNA genes to MAGs and calculate the corresponding copy
number (matam_16s: pct 5,10,25,50,75,100 –i 0.99, and link function on
default parameters) [44].
Open reading frames (ORFs) were identified by Prodigal (version 2.6.3).

InterProScan version 5.31–70 was used to functionally annotate gene
coding sequences using the Pfam database [45]. Functional profiles were
supplemented using data from the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) function modules by Anvi’o (anvi-run-kegg-kofams) [46].
The enzymes involved in carbohydrate utilisation were identified using a
combination of Pfam functional profiles and data from the carbohydrate-
active enzyme database (CAZy) [47]. We then used the Genome
Taxonomic Database (GTDB: Release 207) with GTDB-Tk (version 2.1.1)
for taxonomic assignment [48]. Reconstructed non-redundant MAGs
(nrMAGs) that showed greater than 90% completeness were also
compared with entries in the Biogas Microbiome database [29] using
fastANI (version 1.33) [49]. nrMAG statistics are summarised in Suppli-
mentary Table 3.
The abundance values of nrMAGs’ in each sample were calculated with

MetaWRAP (version: 1.3.2) quant_bin module (using Salmon), similar to the
TPM (transcript per million) calculation process, which here refers to
“copies per million reads” (CPM; Supplimentary Table 4) [50]. Reads are
aligned to contigs of nrMAGs, and the resulted coverage values were
standardised by sample size (for every 1 million metagenomic reads) and
by contig length (in nucleotides). Phylogenomic trees were generated
using a set of 120 bacterial and 53 archaeal single-copy core genes (SCGs)
via GTDB-Tk (version 2.1.1; classify_wf) and IQTree2 (version 2.2.0.3) using
the following parameters: number of bootstraps: 1000; maximum iteration:
1000; stopping rule: 100 [51, 52]. The interactive Tree of Life (iTOL: version
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6.7.3; https://itol.embl.de/) tool was employed to visualise the phyloge-
nomic tree as well as some binning results.

Metatranscriptome mapping and analysis
We first extracted ORFs from MAGs using bedtools: getfasta (version:
2.27.1) to obtain MAG-specific gene calls. We then combined these to
create a Salmon index (using the parameter keepDuplicates; https://
github.com/COMBINE-lab/salmon). Read counts were calculated with
Salmon (version 1.8.0) in quasi-mapping mode with GC bias correction
(gcBias). The main output file (quants.sf) contains the quantified number of
reads (numReads) and its quantity in TPM values (Supplimentary Table 5).
The TPM calculation process (used as an activity metric in the present
study) was done similarly as mentioned before, taking the effective length-
weighted gene (GC bias) and mapped transcriptomic reads per sample
corrections.

Statistical analysis
BMP test results were visualised by ggplot2 (version 4.1.3), and significant
differences between maximum biogas potentials (i.e., from batch tests
using α-cellulose) were calculated using the ggsignif (version 0.6.4)
package (i.e., using a between-pairs Wilcoxon-test, with one-way ANOVAs
used to compare multiple groups) [53]. Multidimensional scaling of
samples (i.e., MDS plots to display Bray-Curtis dissimilarities), MAG
abundance, and activity values were visualised by microViz (version 0.9.0)
[54]. Eucledian distances and differences among samples were calculated
(using permutational multivariate analysis of variance; PERMANOVA:
n_perms: 1000) and visualised by the microeco R package (version
0.14.1) [55]. To assess the significance of differences between MAGs, we
used lefser (the R package for linear discriminant analysis effect size
calculator; version 4.3) inside microeco, with a significance threshold of
p ≤ 0.05 (trans_diff: alpha= 0.05, p_adjust_method= fdr, lefse_min_sub-
sam= 10, lefse_norm= 1e+ 06, boots= 30) [56].
We then analysed the occurrence data to identify the core microbiome.

A taxon observed in 83.3% of samples (i.e., in 10 out of 12) with an
abundance greater than 1 (~10x genome coverage) was considered to be
a member of the core microbiome [37]. The ggvenn and ggtern packages
(versions 0.1.10 and 3.4.1) were used to visualise the core microbiome’s (at
species and phylum level) distribution between the BPs [53]. Co-
occurrence analysis and correlations between AD parameters and
taxonomic IDs of core microbiome members (at the species level or
otherwise at the highest taxonomic level) were calculated by microeco [55].
NetComi (network construction and comparison for microbiome data;
version 1.1.0) was utilised for calculating and normalising the association
matrix (trans_network: cor_method= pearson, use_NetCoMi_pearson_-
spearman= TRUE, filter_thres= 0.001, then cal_network: COR_p_thres=
0.01, COR_cut= 0.7) [57, 58]. The ggraph package (version 2.1.0) was used
to visualise the correlations. To reveal correlations between microorgan-
isms and chemical parameters, the trans_env function was employed
(use_data= species, cor_method= pearson, p_adjust_method: fdr).
The results of the metagenomics and metatranscriptomics analyses of

carbohydrate-active enzymes were visualised by Circos online (http://
circos.ca/) and ggplot2. Differential gene expression and enrichment
analysis were done by the DESeq2 package (1.34.0) implemented in R [59].
Salmon quant files (quants.sf) were imported in R with tximport (version
1.22.0; settings: type= salmon, txOut= TRUE) (https://github.com/
mikelove/tximport). We filtered the counts to retain genes with a minimum
of 5 reads across 4 samples obtained from Salmon alignments (numReads)
and normalised by DESeq2 (with default parameters; Supplimentary
Table 5). Finally, to visualise significantly different genes, we used the
ggplot2 package (using the following settings: log2 FC: ≥2.0, p ≤ 0.05).

RESULTS AND DISCUSSION
Different substrates but similar methane yields
Samples were collected from the anaerobic digesters of three
industrial-scale BPs (“AD samples” and Supplimentary Table 1).
KBP was mainly fed with chicken manure and pre-treated wheat
straw; SZBP was fed with pig slurry and maize silage; and MWBP
treated municipal wastewater sludge containing diverse materials.
All digesters were operated at mesophilic (i.e., 36 °C to 38 °C)
temperatures in continuously stirred tank reactors. During the
seasonal monitoring period (i.e., four sampling points per BP), all
reactors operated stably, and no failures were reported.

Standard BMP tests were performed (see details in “Determina-
tion of AD chemical parameters”) to measure the maximum
biogas potential of the different AD communities. Methane yields
varied from 340mL (Standard Deviation: 2.6 mL) to 376 mL g VS−1

(SD: 14.6 mL). Although the inoculum for BMP tests originated
from digesters fed with distinct substrates, the methane yields
were highly similar (Fig. 1A). Moreover, tests from the Oct, Jan,
Apr, and Jul time points all showed similar methane yields among
the three biogas plants (Fig. 1B; for April: KBP= 362 ± 14.6;
MWBP= 356 ± 2.4; and SZBP= 365 ± 7.6 mL methane g VS−1). In
earlier investigations, similar methane potential ranges were
observed in BPs digesting diverse types of biomass of agricultural
or municipal origin [60–62].
Although the main chemical process parameters were within

optimum ranges [63–65], they showed clear differences among
the three BP reactors (Supplimentary Table 1). The fallowing
parameters were measured: volatile organic acids (VOAs), total
inorganic carbon (TIC), total ammonia nitrogen (TAN), carbon-to-
nitrogen ratio (C/N), total solids (TS), and volatile solids (VS). Of
these, the C/N, VOAs, and TAN concentrations showed the highest
variability among the BPs (ANOVA: p < 0.05) (Fig. 1C). These values
were typically lower in MWBP (p < 0.01) compared to those in KBP
and SZBP [66].

High-quality MAGs from the AD microbiomes
Semi-supervised binning complemented with machine learning
(ML) is a recently developed approach that has proven to be
highly beneficial for extending knowledge of microbial genomics.
Earlier research has shown that an ML-based habitat-specific
model enhances the metagenome binning process for complex
microbiomes, outperforming existing unsupervised nucleotide
composition and abundance-based methods (i.e., Metabat2) [35,
36]. However, due to unusual read depth and atypical nucleotide
composition, ribosomal RNA genes are frequently absent from
MAGs recovered from short-read sequencing data [34, 44]. These
genes are essential for studying the genomics and phylogeny of
uncultivated microorganisms and permit analyses connecting
MAG data with 16 S rRNA gene databases.
In the present study, more than 296 million metagenomic

sequence reads passed the filtering step (with an average of 24.6
million reads per sample). Filtered reads were co-assembled by
Megahit (three independent assemblies per BP), resulting in a
total of 283,491 contigs (KBP: 107,920; MWBP: 98,415; SZBP: 77,156
contigs; for details, see: Suppl. Table 2). A genome-centric
metagenomics strategy was followed for each co-assembled
contig set. The dereplicated and quality-filtered set of MAGs was
then used for further analysis. Semibin produced 297 nrMAGs
(nr= non-redundant), of which 107 (36%) had more than 90%
completeness. It is noteworthy that 6% of nrMAGs were identified
as containing 0% contamination and a further 90% containing
>5% contamination by CheckM2 analysis (Fig. 2A and B).
Furthermore, 24% of nrMAGs (n= 70) were identified at a quality
level that was higher than their representatives in the Genome
Taxonomy Database (Supplimentary Table 3). These observations
confirm the effectiveness of Semibin as a binning procedure for
complex anaerobic biogas-producing communities [35]. In addi-
tion, the larger number of unique nrMAGs binned by Semibin may
also lead to better mapping of metatranscriptome data.
The MarkerMAG program was then used to detect, assemble,

and link 16 S rRNA genes from metagenomes to MAGs and to
estimate copy numbers (see: Materials and Methods “Metagen-
ome assembly and binning” and Supplimentary Table 3) [44]. In
the present study, 16 S rRNA genes (min length: 1200 nucleotides)
were detected in 82 nrMAGs distributed across 22 phyla
(representing 28% of all nrMAGs). Representatives of the
Firmicutes possessed the highest estimated mean copy number
of this gene (3.6 copies), while members of the Halobacteriota and
Methanobacteriota showed the lowest copy numbers, with an
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Fig. 1 Parameter measurements of the AD chemical process. Different colours represent the three BPs. The Kecskemét biogas plant (KBP)
is shown in red, the biogas plant digesting municipal wastewater sludge (MWBP) is shown in blue, and the Szeged biogas plant (SZBP) is
shown in green. A Results of the standard BMP test measurements of three BPs (see: “AD samples”). B BMP methane yields over the tested
periods. C Anaerobic digestion chemical parameters of the sludge from individual BP digesters (C/N carbon to nitrogen ratio, TAN total
ammonia nitrogen, VOAs volatile organic acids, TIC total inorganic carbon, TS total solids, VS volatile solids). Mean differences were analysed
via ANOVA and considered statistically significant as follows: p < 0.05 (*), p < 0.001 (**), ns no significant difference.
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average of 1.3 copies each (Fig. 2C). Along with previous scientific
reports, our data suggested that amplicon sequencing of 16 S
rRNA genes underestimated the abundance of the archaeal
community in AD [67, 68]. One method to better estimate
microbial abundance derived from 16 S rRNA gene sequencing is
to normalise results via copy number per detected genome [69].
However, the actual 16 S rRNA gene copy number is unknown for
many prokaryotes [34]. Current bioinformatic solutions for
normalising amplicon sequencing data rely on the apparent
phylogenetic conservation of individual gene copies, and this
assumption may only be valid for short phylogenetic distances
[70]. Genome-resolved metagenomics combined with 16 S rRNA
gene detection may help bridge this knowledge gap.

BPs showed dissimilar microbiome compositions
Overall, we found that the three AD reactors harboured distinct
microbial communities. Multidimensional scaling (MDS; imple-
mented using the Bray-Curtis dissimilarity measure) revealed that
the variance in microbiome composition across the three biogas
plants was significantly larger (PERMANOVA: p= 0.001) than the
variance in microbiome structure across different sampling points
of each individual biogas plant. The microbiomes of the different
BPs showed characteristic changes over time, but in each case,
these changes were distinctive for that plant (Fig. 3A). This finding
was confirmed by Euclidean distance calculations, which indicated
that the microbiomes of KBP and SZBP were more similar to each
other than to MWBP (Fig. 3B). In accordance with past research,
our analyses confirmed that the KBP and SZBP microbiomes
predominantly contained Bacteroidia, Clostridia, and Limnochordia,

whereas the MWBP microbiome contained Bacteroidia, Anaeroli-
neae, and Actinomycetia (Fig. 3D) [29, 31, 71]. We can therefore
conclude that there is a common microbial community landscape
that includes the main taxa found in the biogas digesters studied
here [3, 4].
Examination of microbial abundance and activity using

metagenome and metatranscriptome data distributions revealed
distinct patterns. Based on relative abundance (CPM %), the top
three classes found were Bacteroidia, Clostridia, and Limnochordia,
although the activity (TPM%) of Methanosarcina outperformed
members of these classes. Moreover, we also found striking
differences in rank and taxonomic composition among the top 15
most active nrMAGs compared to the most abundant microbial
classes (Fig. 3D and G). Thus, the relative abundance of
microorganisms is divergent from relative metatranscriptomic
activity. Overall, the representatives of the domain Archaea
showed higher activities than abundance, as evidenced by
comparing TPM% to CPM% values (Fig. 3C and F; Supplimentary
Tables 4 and 5). This phenomenon was also observed in an
anaerobic biogas-producing community [72].
The methanogenic archaea identified through metatranscrip-

tomics exhibited no significant differences in overall activity across
all three industrial-scale biogas plants (Fig. 3E). This observation
indicates that the methanogenic archaea exhibit comparable
functionality, notwithstanding variations in the conditions and
parameters across the different biogas facilities. This resilience
may be due to the diversity of methanogenic archaea in
the digesters, which can provide redundancy to the methane
producing community [19, 73–75].

Fig. 2 Binning performance and 16 S rRNA gene copy number estimation as deduced from metagenome data. A Comparison of the
completeness and contamination of the non-redundant metagenome-assembled genomes (nrMAGs) produced by Semibin and analysed by
CheckM2 using the default set of SCGs. B Distribution of nrMAGs reconstructed by Semibin based on completeness and contamination.
Considering dRep employs CheckM1, the contamination of nrMAGs may differ from the dRep filtering settings. C Estimated 16 S rRNA gene
copy number for 22 phyla (i.e., two Archaea and 20 Bacteria taxa). For some phyla, it was possible to determine the copy number of one
representative: Methanobacteriota, Firmicutes F, Firmicutes D, Planctomycetota, Proteobacteria, and Thermotogota.
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Biogas-producing communities and the microbial dark matter
Based on known lineage-specific marker gene sets (SCGs) and on
MIMAG data, we detected 36% high-, 34% medium-, and 30% low-
quality nrMAGs [76]. The Genome Taxonomy Database (GTDB) was
then employed for the taxonomic assignment of reconstructed
nrMAGs. These results showed that nrMAGs could be categorised
into 33 phyla, of which three belonged to the Archaea and 30 to
the Bacteria (Fig. 4 and Supplimentary Table 3).
The nrMAGs were compared against the Biogas Microbiome

database, utilising the fastANI tool to calculate average nucleotide
identity (ANI) [29]. This database contains a comprehensive set of
microbial genomes previously found in biogas digesters. We
found that 83% of the reconstructed high-quality nrMAGs
(completeness >90%; n= 107) were present in the Biogas
Microbiome database (ANI cutoff: 95%). It is worth noting that
seven high-quality nrMAGs, which accounted for 7% of the total
high-quality nrMAGs (n= 107) and 2% of all nrMAGs (n= 297),

could not be associated with a nearest representative in either
database. These nrMAGs were deemed novel because they did
not meet the following criteria: species-level identification with
95% reference radius for GTDB and ≥95% ANI for Biogas
Microbiome (Fig. 4 and Suppl. Table 3). Three high-quality nrMAGs
were found to contain 16 S rRNA gene sequences as well
(Supplimentary Table 3). In addition, the seven putative novel
nrMAGs demonstrated high abundance and activity, accounting
for 3% of the total count per million (CPM) and 5% of the total
transcripts per million (TPM), respectively, in the examined
microbiome. These nrMAGs may be members of the hypothesised
microbial dark matter that can now be released into the realm of
known participants in AD communities.

AD chemical parameters and the core community
Genome-centric metagenomics-based core microbiome analysis
was used to identify potentially relevant taxa that may play a role

Fig. 3 Biogas-producing microbiome abundance (in CPM %) and activity (in TPM %) were analysed using a genome-centric
metagenomics and metatranscriptomics framework. A Multidimensional scaling of samples. This measure indicates the Bray-Curtis
dissimilarities of the microbial community at the level of species annotation or higher. Each symbol is related to a specific BP sample. Oct, Jan,
Apr, and Jul, indicate the months in which the samples were collected. B Euclidian distance of BP samples. This measure represents the
dissimilarity of microbial communities at the level of species annotation or higher. C Taxonomic distribution of nrMAGs at the level of domain
for the three BPs (in CPM %). D Taxonomic distribution of nrMAGs. This shows the most abundant taxa in all twelve samples taken (i.e., each
BP-time point pair) resolved to the class taxonomic level (shown in CPM %). The red names indicate that they are not in the top 15 most active
classes. E The overall metatranscriptomic activity of archaeal microorganisms involved in different methanogenic pathways (mix: indicates
those nrMAGs that are capable of using all three methanogenic pathways). F Cumulative metatranscriptomic activity of nrMAGs at the domain
taxonomic level for the three BPs (shown in TPM %). G The metatranscriptomic activity of nrMAGs. Shown are the most active taxa present in
all twelve samples taken (i.e., each BP-time point pair) resolved to the class taxonomic level (shown in TPM %). The red names indicate that
they are not in the top 15 most abundant classes.

R. Wirth et al.

1331

The ISME Journal (2023) 17:1326 – 1339



in shaping the core microbial community. This macroecological
study was therefore supported by metatranscriptome data (Fig. 5
and Supplimentary Fig. 1) [37]. These analyses provide insight into
the relationship between nrMAGs and AD parameters, as well as
their roles in shaping the core microbiome.
The examination of the distribution of reconstructed nrMAGs in

specific biogas plants revealed that MWBP possessed the most
unique microbiome of the three investigated systems. KBP and
SZBP showed somewhat overlapping microbiomes, as evidenced
by the MDS and Euclidean distance calculations. Nonetheless, we
detected 51 nrMAGs in all three digesters (Fig. 5A). Most of the
core nrMAGs identified were representatives of well-known
hydrolysing bacteria (e.g., Firmicutes, Bacteriodota) and methano-
gens with versatile metabolic activities (e.g., Halobacteriota,
Methanobacteriota). These microorganisms play an important role
in maintaining biogas productivity and sustainable system
performance [14, 77]. Although some nrMAGs were present in
all digesters, their abundance varied considerably. Among core

bacteria, the phyla Firmicutes, Firmicutes A, and Bacteriodota were
found in both SZBP and KBP, while members of the Verrucomi-
crobiota, Armatimonadota, and Chloroflexota predominated in
MWBP [6, 29, 66] (Figs. 4 and 5B).
A co-occurrence analysis of nrMAGs was performed and their

correlations with AD chemical parameters were calculated
(“Statistical analysis”) (Fig. 6). The co-occurrence network analysis
demonstrated that the majority of methanogens exhibited a
positive correlation with the phyla Bacteroidota and Firmicutes. The
main parameters influencing the abundance of core microorgan-
isms were TAN, VOAs, and TIC (Pearson’s rho > 0.5). Based on this
observation, eight clusters showing characteristic correlations with
AD chemical parameters were plotted (Fig. 6B). The eight clusters
can be divided into two groups, with microorganisms from
clusters I–V correlating positively with the main influencing
parameters and microorganisms from clusters VI–VIII correlating
negatively with these parameters. We also found that top core
nrMAGs belonging to the phyla Firmicutes, Spirochaetota, and

Fig. 4 Phylogenetic tree of reconstructed nrMAGs based on bacterial and archaeal SCGs. The background colour of the inner phylogenetic
tree marks the phylum that they belong to the first ring shows the nrMAG number. In the next two rings, the symbols represent the presence
of specific nrMAGs in the Biogas Microbiome (green) and GTDB (orange) databases. The red symbols mark the seven nrMAGs that have high
completeness (>90%), low contamination (<5%) and have not been found in any available databases (Archaea: MAG_165_3; Bacteria:
MAG_114_1, _18_1, 29_1, 77_1, 87_1 and 95_2). Purple symbols represent the core nrMAGs. The outer ring represents bacteria that are
significantly more prevalent in the particular BP (using lefser, p < 0.05).
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Methanobacteriota were positively correlated with TAN, VOAs, and
TIC, while members of the phylum Bacteroidota were also
correlated with many of the measured parameters. Finally, the
C/N ratio showed a more pronounced impact on Bacteroidota than
Firmicutes among the top core nrMAGs (Fig. 6B).
The Methanoculleus genus (phylum Halobacteriota, represent-

ing hydrogenotroph methanogens) was found to be a diverse
community in the core microbiome. The representative species
of Methanoculleus that exhibited a positive correlation with TAN
and VOA concentrations were predominant in KBP and SZBP,
whereas those with a negative correlation were more prevalent
in MWBP. Additionally, they co-occurred with members of the
phyla Bacteroidota and Firmicutes. Microorganisms belonging to
the phyla Bacteroidota and Firmicutes can produce organic acids,
alcohols, hydrogen (H2), and carbon dioxide (CO2) via acidogen-
esis and acetogenesis, and many of these microorganisms exist
in syntrophy with acetotrophic and hydrogenotrophic methano-
gens. The hydrogenotrophic methanogens consume hydrogen
via interspecies hydrogen transfer (IHT) and use the energy
gained from the reduction of CO2 to methane [78]. The
hydrogen-consuming methanogenic microorganisms can rapidly
scavenge hydrogen and maintain the partial pressure of
hydrogen at a low level. This leads to a thermodynamically
favourable condition for the hydrogen-producing acetogenic
bacteria to break down organic compounds into acetate, H2, and
CO2 [14, 79, 80].
Two species of methanogenic archaea, Methanoculleus

sp002497965 and Methanospirillum sp0125200015 (designated
MAG_26_2 and MAG_103_2), were found in Cluster VI and
showed a negative correlation with Methanoculleus bourgensis
and Methanoculleus species 1 belonging to Cluster II and III.
MAG_26_2 and MAG_103_2 were commonly present in the MWBP
microbiome (Fig. 4). Methanoculleus sp002497965 and Methanos-
pirillum sp0125200015 were originally identified in AD micro-
biomes, but to the best of our knowledge, detailed information
about these microorganisms remains unavailable [81–84].
In the present study, MAG_26_2 and MAG_103_2 were

classified as strict hydrogenotrophic methanogens by metatran-
scriptomics data. Moreover, they exhibited a negative correlation
with TAN and VOA concentrations (Pearson’s rho >−0.7). Based
on genomic data, these archaea belong to the class of
methanogens capable of maintaining hydrogenotrophic

methanogenesis using formate as an electron donor. Typically,
formate is oxidised to CO2 by formate dehydrogenase, upon
which it is further reduced to methane [85]. Here, interspecies
formate transfer (IFT) was maintained by microbial partners,
namely SR-FBR-E99 sp002497965 and LD21 sp012519515 (from
the phylum Bacteroidota; MAG_72_3 and MAG_394_2), which
were positively correlated with MAG_26_2 and MAG_103_2
(Fig. 6A). These MAGs have been previously detected in biogas
digesters and were described for their versatile hydrolysing ability.
Aside from carbohydrate utilisation, they are protein- and amino-
acid degrading microorganisms capable of producing formate.
They were also consistently detected alongside formate-utilising
methanogens [86].
Among the abundant core nrMAGs present, we identified

Methanothrix sp016706325 (MAG_97_2), an archaeon that is
apparently capable of acetotrophic methanogenesis (Supplimen-
tary Fig. 1). Based on its MAG metatranscriptome profile, it
primarily performs acetotrophic methanogenesis and can take up
electrons via direct interspecies electron transfer (DIET) to drive
CO2-reducing methanogenesis. Our data indicate that it possesses
highly active acetyl-CoA and F420 biosynthesis pathways as well as
active, membrane-associated electron transfer (cytochrome C
transmembrane protein; Supplimentary Table 4). According to a
previous study, Methanothrix species exhibit greater activity when
deriving a portion of their energy from DIET as opposed to relying
solely on acetate. However, information about their natural
syntrophic partners is limited [87]. This archaeon (with Methanos-
pirillum sp0125200015), is closely associated with Methanoculleus
sp002497965. This archaeal network has been detected to co-
occur with the previously mentioned amino-acid degrading
microorganisms (Fig. 6A). These microorganisms also have active
C-type cytochromes and pili synthesis ability, both of which are
essential for DIET (MAG_72_3 and MAG_394_2; Supplimentary
Table. 5) [79, 88–90]. During metabolic processes, electrons can be
generated and carried by reducing equivalents such as reduced
ferredoxin. To re-oxidise these electron carriers, formate produc-
tion may allow the use of electron disposal routes to conserve
energy [86]. Thus, Methanothrix_sp016706325 (MAG_97_2) may
play an essential role in the biogas-producing community by
supporting electron disposal routes [91]. Based on data from
the scientific literature, as well as a comprehensive analysis
of anaerobic digesters in Danish wastewater treatment plants,

Fig. 5 Analysis of core microbiome distribution. A Venn diagram indicates the total number of nrMAGs and the number of shared nrMAGs
among the three BPs (percentages as indicated). B Ternary plot showing the distribution of bacterial and archaeal nrMAGs between BPs. The
dot colour represents the phylum that the nrMAGs belong to. The size of the dot is proportional to the total abundance (i.e., cumulative CPM
value in all BPs) of specific nrMAGs.
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representatives of Methanothrix showed a negative correlation
with both acetate and TAN concentrations [66, 92, 93].
Correlations between microbial communities and chemical

process parameters imply a distinct electron transfer mechanism
during the AD of agricultural biomass and wastewater. These
processes are negatively correlated with VOAs and TAN levels and
commonly occur when electron disposal routes are abundant. For
example, our data and previous studies suggest that protein
hydrolysing and amino-acid-degrading microorganisms – which
according to the GTDB taxonomy belong to the phylum
Bacteroidota and family VadinHA17 (Supplimentary Table 3) –
build syntrophic relationships with hydrogenotrophic methano-
gens to maintain formate production and dispose of electrons via
DIET [86].

Top hydrolysers
Carbohydrate-active enzymes (CAZymes) are responsible for the
decomposition of polymeric carbohydrates. To characterise this
rate-limiting step, the metatranscriptome dataset was queried for
various CAZymes and signs of CAZyme activity using a combined
dataset based on the Pfam and CAZy databases (Fig. 7). Identified
CAZymes were then linked to nrMAGs (see: “Metagenome
assembly and binning”).
Among the CAZymes identified, the glycoside hydrolases (GHs)

are a major enzyme family involved in the degradation of complex
carbohydrates (Fig. 7A) [94]. This diverse enzyme family includes
cellulases, hemicellulases, pectin, inulin, and various oligosacchar-
ide- and starch-degrading enzymes. According to the metatran-
scriptome data, cellulase, hemicellulose, and starch-degrading
enzymes showed elevated activity in KBP and SZBP (Fig. 7B, C).
Among several differences, the activities of cellulases (GH2 and

GH3), hemicellulases (GH43 and GH18), and starch degrading
enzymes (GH97 and GH31) were all significantly higher in KBP and
SZBP compared to those in MWBP (log2 FC: ≥2; p ≤ 0.05) (Fig. 7B
and Supplimentary Table 5). Taxonomically, members of the phyla
Bacteroidota (representing 46% TPM of GHs), Firmicutes G and
Firmicutes A (12% and 7% TPM of GHs, respectively) were the
dominant contributors of GH activity. These phyla have been
found to be the main polysaccharide degraders in many biogas-
producing communities [77, 95]. Nevertheless, our metatranscrip-
tomics data suggested that members of other phyla such as
Actinobacteriota (8% TPM of GHs), Chloroflexota (4% TPM of GHs),
and Spirochaetota (5% TPM of GHs) also expressed complex
carbohydrate-degrading enzymes (Fig. 7A) [29, 38]. A combined
quantitative assessment of carbohydrate-binding modules (CBM)
and GH activity revealed that the top 30 hydrolysing nrMAGs are
distributed across multiple phyla (Fig. 7C).
Eight core nrMAGs were detected among highly active hydro-

lysing nrMAGs. These eight represented about 35% of the total top
hydrolysers activity (Fig. 7C). We found that UBA1179_sp002340405
(MAG_187_1) and Fermentimonas sp019136875 (MAG_96_1)
belong to Cluster I, UBA1402 sp002305085 (MAG_105_3) and
Paludibacter sp012519425 (MAG_151_3) to Cluster IV, and SR-FBR-
E99 sp009881065 (MAG_72_3) and W0P28-013 sp012837685
(MAG_251_2) to Cluster VII. (Figs. 6B and 7C). Members of the
top core hydrolysers belonging to Cluster IV and I showed the most
widespread interactions (Fig. 6A). These clusters were directly or
indirectly involved via IHT and showed positive associations with
Methanoculleus bourgensis, Methanoculleus species 1, Methanobac-
terium sp012838205, and Methanoculleus sp012797575 (Pearson’s
rho 0.6–0.9). However, the cluster also showed a negative
correlation with Methanospirillum sp0125200015, Methanothrix

Fig. 6 Correlation analysis of core nrMAGs. A Pearson correlations between core nrMAGs. The robustness is calculated under the adjusted
significant p value is ≤0.05 and the correlation index (Pearson’s rho) is > 0.7 based on network. The blue lines represent positive correlations
(Pearson’s rho > 0.7), red lines represent negative correlations (Pearson’s rho <−0.7). A phylum marked with an asterisk is not present among
the correlating microorganisms. B Pearson correlations between core nrMAGs and measured AD chemical parameters. Asterisks represent the
significant correlations (considered statistically significant as follows: p < 0.05 (*), p < 0.001 (**), p < 0.0001 (***), ns (no significant difference)).
Using the cladogram shown on the left and data for TAN (total ammonia nitrogen), VOAs (volatile organic acids), TIC (total inorganic carbon),
TS (total solids) and C/N (carbon to nitrogen ratio), eight clusters were distinguished. These are shown here separated by colour as follows:
Cluster I: grey; Cluster II: brown; Cluster III: yellow; Cluster IV: green; Cluster V: purple; Cluster VI: blue; Cluster VII: orange; and Cluster VIII: dark
green. Coloured boxes represent the specific phyla to which the nrMAGs belong to. Red dots represent the top hydrolysing nrMAGs (n= 10).
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sp016706325, and Methanoculleus sp002497965. The latter hydro-
genotroph and acetotroph methanogens capable of IFT and DIET
co-occurred with Cluster VII (Pearson’s rho <−0.6). In general,
concentrations of TAN, VOAs, and TIC positively correlated with the
most active core hydrolysing nrMAGs in Clusters I and IV (Pearson’s
rho > 0.6). However, there were exceptions involving microorgan-
isms belonging to Cluster VII.

Methanogenesis is the most active pathway in the
transcriptome
To further characterise the methane-producing food chain, we
performed functional analysis of the nrMAGs by combining metatran-
scriptome data and data from the KEGG database (Fig. 8). The analysis
of KEGGmodules indicated that the methanogenesis pathway was the
most active among all main pathways (mean= 35% TPM of all KEGG
pathways). Previous metagenome studies have considered methano-
genesis to be a “rare module” in the biogas production community
[18, 29, 38] (Fig. 8A). It is important to note that while methanogenesis
was indeed a rare module based on the metagenome data, the
transcriptome data suggested the opposite [95–98]. Considering this,
metatranscriptome analyses, which quantify the biological activities of
microorganisms in complex environments, provide a more accurate
representation of microbial life and microbial activity occurring within
the community than metagenomics studies.
We identified pyruvate-oxidation, the Embden-Meyerhof path-

way, and the pentose-phosphate pathway as central carbohydrate
metabolism modules. These pathways have been referred to as
“core modules” in previous metagenomic investigations [29, 38].
Sugars, coming from hydrolysis, can be converted to pyruvate via
the Embden-Meyerhof and pentose-phosphate pathways to
produce CO2 and electrons. In addition, the acetyl-CoA pathway,
fatty acid biosynthesis, and beta-oxidation are active among the

top 30 pathways related to carbon fixation, as has been previously
observed in manure-supplemented reactors [29]. This finding was
supported by the identification of numerous active modules
associated with energy, amino acid, and cofactor production, all
of which are essential for a well-functioning biogas generation
ecosystem. Next, we discovered that KBP and SZBP shared a similar
microbial composition and functional profile, while those of MWBP
appeared (based on KEGG modules) to be clearly distinct (Fig. 8B).
To assess transcript-level expression patterns, differential

expression analysis was used (see: “Statistical analysis”). We
detected alterations in 11,383 genes among the three BPs using
this high-resolution analysis (log2 FC > 2.0, p ≤ 0.05) (Supplimen-
tary Table 5). KBP and SZBP were shown to contain fewer
differentially expressed genes (DEGs) than these compared to
MWBP (Fig. 8B and Supplimentary Fig. 2). A comprehensive
investigation of DEGs found 215 genes involved in methanogen-
esis. The activities of alpha, beta, and gamma subunits of methyl
coenzyme M reductase showed the most substantial changes
(log2 FC > 10, p < 0.0001). Additionally, the expression of genes
implicated in hydrogenotrophic methanogenesis, such as the ion-
sulphur subunit of F420-non-reducing hydrogenase and methyle-
netetrahydromethanopterin dehydrogenase, displayed substantial
differences (log2 FC > 5, p < 0.001). Acetyl-CoA synthetase demon-
strated variances in expression across genes involved in aceto-
trophic methanogenesis (log2 FC > 5, p < 0.001) [99]. The majority
of the different gene activities in KBP were related to Methanothrix
A harundinaceae D (MAG_5_1), while Methanothrix_sp016706325
(MAG_97_2) in MWBP and Methanobacterium sp012838205,
Methanoculleus sp12797575, and Methanosarcina species
(MAG_669_3, _57_1, and _165_3) in SZBP (Fig. 8C).
In a complex biogas-producing community, methanogenic

archaea utilise various metabolic pathways and gene sets to

Fig. 7 CAZymes identified in metatranscriptomic data and associated taxa. A Circos plot illustrating the identified CAZyme classes and
their activity distribution across bacterial phyla. The enzymes were grouped into five CAZyme classes. Glycosyltransferases (GTs) showed the
highest activity, followed by glycoside hydrolases (GHs), carbohydrate-binding modules (CBMs), carbohydrate esterases (CE), and
polysaccharide lyases (PL). Overall, GH and GT activity were detected in all observed microbial phyla. Most (51% TPM) CBM activity was
linked to the Firmicutes and Bacteroidota. B Heatmap of widely distributed and common glycoside hydrolase (GH) enzyme families. GH activity
is specified by coloured boxes. C Heatmap of the activities of the carbohydrate-binding module (CBM) and glycoside hydrolase (GH) enzyme
families for the top 30 microbial species (shown in log10 TPM values). Red dots indicate specific nrMAGs present in the core community
(n= 10).
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produce methane as a way of obtaining energy and compensating
for their abundance through their activity. According to earlier
research, under hydrogen-limited conditions, Methanococcus
maripaludis displayed elevated mRNA levels for genes encoding
enzymes including F420-non-reducing hydrogenase and methyle-
netetrahydromethanopterin dehydrogenase, which resulted in an
increase in its growth rate [100]. Similar results were observed in
our study with the abundant Methanoculleus sp12797575
(MAG_57_1) in SZBP. These enzymes demonstrated elevated
activity in this hydrogenotrophic methanogen belonging to
Cluster II, which co-occurred with JAAZLA01 sp012799545 and
UBA1361 sp002306335 hydrolyser nrMAGs (Fig. 6A). The elevated
expression of formate dehydrogenase indicates that MAG_57_1
utilises formate as an alternative hydrogen source (Fig. 8C) to
compensate for its methanogenic activity. This activity is
comparable to the mixotrophic Methanosarcina species commonly
found in SZBP (which are capable of conducting all methanogenic
pathways, however, no species-level representative was identified
in the GTDB and Biogas Microbiome databases; MAG_165_3). This
is in line with the findings of previous observations that the
metabolic diversity of the methanogenic community is critical for
efficient biogas production [74, 75].

CONCLUSIONS
In this study, we reconstructed high-quality nrMAGs (non-
redundant metagenome-assembled genomes) and conducted a
precise metatranscriptome analysis with the assistance of an
artificial neural network binning workflow on AD samples taken
from industrial-scale biogas reactors. Although the three
industrial-scale BPs operated with well-characterised and distinct
feedstocks, we observed no differences in their respective
methane yields over the observation period. The microbiome
composition and the functional repertoires of the KBP and SZBP
BPs were more similar to each other than either was to that of
MWBP. Multiple bacterial phyla were identified as major hydro-
lysing microorganisms. Significant correlation between the core
microbiome and fermentation parameters such as TAN, VOAs, and
TIC suggests that the interaction network in the AD core microbial
community is influenced by various chemical operational para-
meters. Hydrogenotrophic methanogens (Archaea: Halobacteriota,
Methanobacteriota) were dominant and positively correlated with
the presence of representatives of the bacterial phyla Firmicutes
and Bacteroidota, with whom they engage in versatile interspecies
transfers. Distinct electron transfer mechanisms used by hydro-
genotrophic methanogens in AD have also been found in

Fig. 8 Functional analysis of the three BPs. A Heatmap of the most active KEGG modules. Shown are the top 30 KEGG modules from all
twelve samples based on metatranscriptomic data (shown in TPM). B Principal component analysis of KEGG module functional data. Each
symbol is related to a specific BP-sample pair. C Significantly different methanogenic genes identified in the five most active methanogens.
Shown are differences considered to be statistically significant as calculated by DESeq2 (i.e., with log2 FC > 2.0, p < 0.05). The heat map depicts
the average gene activity of each methanogen in the various BPs. The blanks represent genes that were not significantly different in the
provided methanogen, or the indicated gene is absent in the given nrMAG.
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agricultural biomass and wastewater. A key archaeal species
(Methanothrix sp016706325; MAG_97_2) was detected in the core
methanogenic community and likely plays a key role in shaping
the methane-producing microbial strategy. Our study found that
the methanogenic archaea in three industrial-scale biogas plants
maintained similar overall activity despite differences in operating
conditions and parameters measured. The presence of a diverse
range of methanogenic archaea in digesters may enhance
community resilience by offering redundancy and functional
stability, emphasising the crucial role of metabolic diversity in
ensuring efficient biogas production. This finding was also
consistent with our BMP test measurements. However, the present
case study confirms that important knowledge gaps remain in our
understanding of the activities and interspecies relationships
between members of the biogas-producing communities. These
gaps can be addressed, at least in part, by a framework that
combines genome-resolved metagenome analysis with a parallel
metatranscriptomics approach that is guided by specific machine-
learning algorithms, such as habitat-specific models.
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