Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil

Abstract

Viruses are critical for regulating microbial communities and biogeochemical processes affecting carbon/nutrient cycling. However, the role of soil phages in controlling microbial physiological traits and intrinsic dissolved organic matter (DOM) properties remains largely unknown. Herein, microcosm experiments with different soil phage concentrates (including no-added phages, inactive phages, and three dilutions of active phages) at two temperatures (15 °C and 25 °C) were conducted to disclose the nutrient and DOM dynamics associated with viral lysing. Results demonstrated three different phases of viral impacts on CO2 emission at both temperatures, and phages played a role in maintaining Q10 within bounds. At both temperatures, microbial nutrient limitations (especially P limitation) were alleviated by viral lysing as determined by extracellular enzyme activity (decreased Vangle with active phages). Additionally, the re-utilization of lysate-derived DOM by surviving microbes stimulated an increase of microbial metabolic efficiency and recalcitrant DOM components (e.g., SUV254, SUV260 and HIX). This research provides direct experimental evidence that the “viral shuttle” exists in soils, whereby soil phages increase recalcitrant DOM components. Our findings advance the understanding of viral controls on soil biogeochemical processes, and provide a new perspective for assessing whether soil phages provide a net “carbon sink” vs. “carbon source” in soils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamics of CO2 emission rate (mean ± std dev) with added viruses incubated over 98 days.
Fig. 2: Carbon use efficiency (CUE) (mean ± std dev).
Fig. 3: Microbial resource acquisition strategies.
Fig. 4: Changes of recalcitrant DOM components (mean ± std dev) after incubation.
Fig. 5: Mean predictor importance (percent increased mean square error, MSE) for microbial metabolic indexes, besed on Random Forest analysis.
Fig. 6: Correlation networks between measured variables (e.g., Vangle, SUV254, SUV260 and HIX) and associated bacterial taxa.

Similar content being viewed by others

Data availability

The original sequence data were deposited into the National Center for Biotechnology Information Sequence Read Archive database under project ID PRJNA974558. Experimental data have been included as a supplement to this publication.

References

  1. Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Glob Change Biol. 2021;27:2039–48.

    CAS  Google Scholar 

  2. Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:1–6.

    Google Scholar 

  3. Ni H, Jing X, Xiao X, Zhang N, Wang X, Sui Y, et al. Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates. ISME J. 2021;15:2561–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hursh A, Ballantyne A, Cooper L, Maneta M, Kimball J, Watts J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob Change Biol. 2017;23:2090–103.

    Google Scholar 

  5. Lei J, Guo X, Zeng Y, Zhou J, Gao Q, Yang Y. Temporal changes in global soil respiration since 1987. Nat Commun. 2021;12:403.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu H, Xu H, Wu Y, Ai Z, Zhang J, Liu G, et al. Effects of natural vegetation restoration on dissolved organic matter (DOM) biodegradability and its temperature sensitivity. Water Res. 2021;191:116792.

    CAS  PubMed  Google Scholar 

  7. Geisen S, Hu S, dela Cruz TEE, Veen GF. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME J. 2021;15:618–21.

    CAS  PubMed  Google Scholar 

  8. Kuzyakov Y, Mason-Jones K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol Biochem. 2018;127:305–17.

    CAS  Google Scholar 

  9. Roossinck MJ. Plants, viruses and the environment: ecology and mutualism. Virology. 2015;479:271–77.

    PubMed  Google Scholar 

  10. Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol. 2022;20:49–62.

    CAS  PubMed  Google Scholar 

  11. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.

    CAS  PubMed  Google Scholar 

  12. Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.

    CAS  PubMed  Google Scholar 

  13. Takahashi R, Bowatte S, Taki K, Ohashi Y, Asakawa S, Kimura M. High frequency of phage-infected bacterial cells in a rice field soil in Japan. Soil Sci Plant Nutr. 2011;57:35–39.

    Google Scholar 

  14. Guemes AGC, Youle M, Cantu VA, Felts B, Nulton J, Rohwer F. Viruses as Winners in the Game of Life. In: Enquist LW, editor. Annual Review of Virology, Vol 3. Annual Review of Virology. 32016. p. 197–214.

  15. Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in Soil Ecosystems: An Unknown Quantity Within an Unexplored Territory. In: Enquist L, editor. Annual Review of Virology, Vol 4. Annual Review of Virology. 42017. p. 201–19.

  16. Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.

    CAS  PubMed  Google Scholar 

  17. Wang S, Yu S, Zhao X, Zhao X, Mason-Jones K, Zhu Z, et al. Experimental evidence for the impact of phages on mineralization of soil-derived dissolved organic matter under different temperature regimes. Sci Total Environ. 2022;846:157517.

    CAS  PubMed  Google Scholar 

  18. Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–48.

    CAS  PubMed  Google Scholar 

  19. Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature. 2008;454:1084–27.

    CAS  PubMed  Google Scholar 

  20. Lara E, Vaque D, Sa EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.

    PubMed  PubMed Central  Google Scholar 

  21. Li Y, Watanabe T, Murase J, Asakawa S, Kimura M. Identification of the major capsid gene (g23) of T4-type bacteriophages that assimilate substrates from root cap cells under aerobic and anaerobic soil conditions using a DNA-SIP approach. Soil Biol Biochem. 2013;63:97–105.

    CAS  Google Scholar 

  22. Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.

    CAS  PubMed  Google Scholar 

  23. Chen X, Weinbauer MG, Jiao N, Zhang R. Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-Winner and Piggyback-the-Winner. Sci Bull. 2021;66:871–74.

    CAS  Google Scholar 

  24. Dou C, Xiong J, Gu Y, Yin K, Wang J, Hu Y, et al. Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities. Nat Microbiol. 2018;3:1285–94.

    CAS  PubMed  Google Scholar 

  25. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.

    PubMed  PubMed Central  Google Scholar 

  26. Kronheim S, Daniel-Ivad M, Duan Z, Hwang S, Wong AI, Mantel I, et al. A chemical defence against phage infection. Nature. 2018;564:283–86.

    CAS  PubMed  Google Scholar 

  27. Silveira CB, Rohwer FL. Piggyback-the-Winner in host-associated microbial communities. Npj Biofilms Microbiomes. 2016;2:16010.

    PubMed  PubMed Central  Google Scholar 

  28. Huang D, Yu P, Ye M, Schwarz C, Jiang X, Alvarez PJJ. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress. Microbiome. 2021;9:150.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Demory D, Arsenieff L, Simon N, Six C, Rigaut-Jalabert F, Marie D, et al. Temperature is a key factor in Micromonas-virus interactions. ISME J. 2017;11:601–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Padfield D, Castledine M, Buckling A. Temperature-dependent changes to host-parasite interactions alter the thermal performance of a bacterial host. ISME J. 2020;14:389–98.

    PubMed  Google Scholar 

  31. Li H, Yang S, Semenov MV, Yao F, Ye J, Bu R, et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Glob Change Biol. 2021;27:2763–79.

    CAS  Google Scholar 

  32. Tong D, Li Z, Xiao H, Nie X, Liu C, Zhou M. How do soil microbes exert impact on soil respiration and its temperature sensitivity? Environ Microbiol. 2021;23:3048–58.

    CAS  PubMed  Google Scholar 

  33. Xiao HB, Li ZW, Chang XF, Huang JQ, Nie XD, Liu C, et al. Soil erosion-related dynamics of soil bacterial communities and microbial respiration. Appl Soil Ecol. 2017;119:205–13.

    Google Scholar 

  34. Ling L, Luo Y, Jiang B, Lv J, Meng C, Liao Y, et al. Biochar induces mineralization of soil recalcitrant components by activation of biochar responsive bacteria groups. Soil Biol Biochem. 2022;172:108778.

    CAS  Google Scholar 

  35. Cui Y, Moorhead DL, Wang X, Xu M, Wang X, Wei X, et al. Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma. 2022;419:104463.

    Google Scholar 

  36. Mojica KDA, Huisman J, Wilhelm SW, Brussaard CPD. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 2016;10:500–13.

    CAS  PubMed  Google Scholar 

  37. Braga LPP, Spor A, Kot W, Breuil M-C, Hansen LH, Setubal JC, et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome. 2020;8:52.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Albright MBN, Gallegos-Graves LV, Feeser KL, Montoya K, Emerson JB. Dunbar MSaJ. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME Commun. 2022;2:24.

    PubMed Central  Google Scholar 

  39. Wei X, Ge T, Wu C, Wang S, Mason-Jones K, Li Y, et al. T4-like phages reveal the potential role of viruses in soil organic matter mineralization. Environ Sci Technol. 2021;55:6440–48.

    CAS  PubMed  Google Scholar 

  40. Ma Y, Li Z, Deng C, Yang J, Tang C, Duan J, et al. Effects of tillage-induced soil surface roughness on the generation of surface-subsurface flow and soil loss in the red soil sloping farmland of southern China. Catena. 2022;213:106230.

    Google Scholar 

  41. Liang X, Wagner RE, Zhuang J, DeBruyn JM, Wilhelm SW, Liu F, et al. Viral abundance and diversity vary with depth in a southeastern United States agricultural Ultisol. Soil Biol Biochem. 2019;137:107546.

    CAS  Google Scholar 

  42. Narr A, Nawaz A, Wick LY, Harms H, Chatzinotas A. Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front Microbiol. 2017;8:1975.

    PubMed  PubMed Central  Google Scholar 

  43. Murphy J, Riley JP. A modified single solution mthoed for determination of phosphate in natural waters. Anal Chim Acta. 1962;26:31–36.

    Google Scholar 

  44. Huang Y, Dai Z, Lin J, Li D, Ye H, Dahlgren RA, et al. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays. Soil Biol Biochem. 2021;163:108465.

    CAS  Google Scholar 

  45. Spohn M, Klaus K, Wanek W, Richter A. Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling. Soil Biol Biochem. 2016;96:74–81.

    CAS  Google Scholar 

  46. Brookes PC, Powlson DS, Jenkinson DS. Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem. 1982;14:319–29.

    CAS  Google Scholar 

  47. Bray RH, Kurtz LT. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 1945;59:39–45.

    CAS  Google Scholar 

  48. Feng J, Zeng X-M, Zhang Q, Zhou X-Q, Liu Y-R, Huang Q. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 2021;1:71.

    PubMed  PubMed Central  Google Scholar 

  49. Yang X, Huang X, Cheng J, Cheng Z, Yang Q, Hu L, et al. Diversity-triggered bottom-up trophic interactions impair key soil functions under lindane pollution stress. Environ Pollut. 2022;314:120293–93.

    CAS  PubMed  Google Scholar 

  50. Zhao HC, Lin JH, Wang XH, Shi JC, Dahlgren RA, Xu JM. Dynamics of soil microbial N-cycling strategies in response to cadmium stress. Environ Sci Technol. 2021;55:14305–15.

    CAS  PubMed  Google Scholar 

  51. Jiao PP, Li ZW, Yang L, He JJ, Chang XF, Xiao HB, et al. Bacteria are more sensitive than fungi to moisture in eroded soil by natural grass vegetation restoration on the Loess Plateau. Sci Total Environ. 2021;756:143899.

    CAS  PubMed  Google Scholar 

  52. Zhang L, Song L, Wang B, Shao H, Zhang L, Qin X. Co-effects of salinity and moisture on CO2 and N2O emissions of laboratory-incubated salt-affected soils from different vegetation types. Geoderma. 2018;332:109–20.

    CAS  Google Scholar 

  53. Huang M, Li Z, Luo N, Yang R, Wen J, Huang B, et al. Application potential of biochar in environment: insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. Sci Total Environ. 2019;646:220–28.

    CAS  PubMed  Google Scholar 

  54. Shi W, Zhuang W-E, Hur J, Yang L. Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry. Water Res. 2021;188:116406.

    CAS  PubMed  Google Scholar 

  55. Chen X, Wei W, Xiao X, Wallace D, Hu C, Zhang L, et al. Heterogeneous viral contribution to dissolved organic matter processing in a long-term macrocosm experiment. Environ Int. 2022;158:106950.

    CAS  PubMed  Google Scholar 

  56. Ding X, Xu W, Li Z, Huang M, Wen J, Jin C, et al. Phosphate hinders the complexation of dissolved organic matter with copper in lake waters. Environ Pollut. 2021;276:116739.

    CAS  PubMed  Google Scholar 

  57. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr. 2008;53:955–69.

    Google Scholar 

  58. Huang M, Zhou M, Li Z, Ding X, Wen J, Jin C, et al. How do drying-wetting cycles influence availability of heavy metals in sediment? A perspective from DOM molecular composition. Water Res. 2022;220:118671.

    CAS  PubMed  Google Scholar 

  59. Wu J, Zhang H, Yao Q-S, Shao L-M, He P-J. Toward understanding the role of individual fluorescent components in DOM-metal binding. J Hazard Mater. 2012;215:294–301.

    PubMed  Google Scholar 

  60. Wang L, Lin Y, Ye L, Qian Y, Shi Y, Xu K, et al. Microbial roles in dissolved organic matter transformation in full-scale wastewater treatment processes revealed by reactomics and comparative genomics. Environ Sci Technol. 2021;55:11294–307.

    CAS  PubMed  Google Scholar 

  61. Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol. 2002;36:742–46.

    CAS  PubMed  Google Scholar 

  62. Zhao K, Yu H, Xue R, Stirling E, Wang Y, Xu J, et al. The only constant is change: endogenous circadian rhythms of soil microbial activities. Soil Biol Biochem. 2022;173:108805.

    CAS  Google Scholar 

  63. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–96.

    Google Scholar 

  64. Jiao S, Chen W, Wang J, Du N, Li Q, Wei G. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 2018;6:146.

    PubMed  PubMed Central  Google Scholar 

  65. Li Z, Tong D, Nie X, Xiao H, Jiao P, Jiang J, et al. New insight into soil carbon fixation rate: the intensive co-occurrence network of autotrophic bacteria increases the carbon fixation rate in depositional sites. Agric Ecosyst Environ. 2021;320:107579.

    CAS  Google Scholar 

  66. Zhou H, Gao Y, Jia XH, Wang MM, Ding JJ, Cheng L, et al. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China. Soil Biol Biochem. 2020;144:107782.

    CAS  Google Scholar 

  67. Liang X, Zhuang J, Loffler FE, Zhang Y, DeBruyn JM, Wilhelm SW, et al. Viral and bacterial community responses to stimulated Fe(III)-bioreduction during simulated subsurface bioremediation. Environ Microbiol. 2019;21:2043–55.

    CAS  PubMed  Google Scholar 

  68. Wang C, Morrissey EM, Mau RL, Hayer M, Pineiro J, Mack MC, et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 2021;15:2738–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nottingham AT, Scott JJ, Saltonstall K, Broders K, Montero-Sanchez M, Puspok J, et al. Microbial diversity declines in warmed tropical soil and respiration rise exceed predictions as communities adapt. Nat Microbiol. 2022;7:1650–60.

    CAS  PubMed  Google Scholar 

  70. Yang J, Jia X, Ma H, Chen X, Liu J, Shangguan Z, et al. Effects of warming and precipitation changes on soil GHG fluxes: a meta-analysis. Sci Total Environ. 2022;827:154351.

    CAS  PubMed  Google Scholar 

  71. Li JQ, Pei JM, Pendall E, Fang CM, Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol Biochem. 2020;141:107675.

    CAS  Google Scholar 

  72. Haaber J, Middelboe M. Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling. ISME J. 2009;3:430–41.

    CAS  PubMed  Google Scholar 

  73. Heinrichs ME, Tebbe DA, Wemheuer B, Niggemann J, Engelen B. Impact of viral lysis on the composition of bacterial communities and dissolved organic matter in deep-sea sediments. Viruses-Basel. 2020;12:922.

    CAS  Google Scholar 

  74. Sebastian M, Auguet J-C, Restrepo-Ortiz CX, Sala MM, Marrase C, Gasol JM. Deep ocean prokaryotic communities are remarkably malleable when facing long-term starvation. Environ Microbiol. 2018;20:713–23.

    CAS  PubMed  Google Scholar 

  75. Zhang L, Chen M, Chen X, Wang J, Zhang Y, Xiao X, et al. Nitrifiers drive successions of particulate organic matter and microbial community composition in a starved macrocosm. Environ Int. 2021;157:106776.

    CAS  PubMed  Google Scholar 

  76. Aristegui J, Gasol JM, Duarte CM, Herndl GJ. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr. 2009;54:1501–29.

    CAS  Google Scholar 

  77. Zhao Z, Gonsior M, Schmitt-Kopplin P, Zhan Y, Zhang R, Jiao N, et al. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J. 2019;13:2551–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Du E, Terrer C, Pellegrini AFA, Ahlstrom A, van Lissa CJ, Zhao X, et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat Geosci. 2020;13:221–26.

    CAS  Google Scholar 

  79. Hou E, Wen D, Jiang L, Luo X, Kuang Y, Lu X, et al. Latitudinal patterns of terrestrial phosphorus limitation over the globe. Ecol Lett. 2021;24:1420–31.

    PubMed  Google Scholar 

  80. Li Y, Niu S, Yu G. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Glob Change Biol. 2016;22:934–43.

    Google Scholar 

  81. Exbrayat JF, Pitman AJ, Zhang Q, Abramowitz G, Wang YP. Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation. Biogeosciences. 2013;10:7095–108.

    CAS  Google Scholar 

  82. Ma B, Stirling E, Liu Y, Zhao K, Zhou J, Singh BK, et al. Soil biogeochemical cycle couplings inferred from a function-taxon network. Research. 2021;2021:7102769.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Feng J, Tang M, Zhu B. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. Glob Change Biol. 2021;27:2793–806.

    CAS  Google Scholar 

  84. Fang Y, Nazaries L, Singh BK, Singh BP. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Glob Change Biol. 2018;24:2775–90.

    Google Scholar 

  85. Cui Y, Zhang Y, Duan C, Wang X, Zhang X, Ju W, et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Tillage Res. 2020;197:104463.

    Google Scholar 

  86. Cui Y, Wang X, Zhang X, Ju W, Duan C, Guo X, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol Biochem. 2020;147:107814.

    CAS  Google Scholar 

  87. Zhu Z, Ge T, Luo Y, Liu S, Xu X, Tong C, et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol Biochem. 2018;121:67–76.

    CAS  Google Scholar 

  88. Ochoa-Hueso R, Borer ET, Seabloom EW, Hobbie SE, Risch AC, Collins SL, et al. Microbial processing of plant remains is co-limited by multiple nutrients in global grasslands. Glob Change Biol. 2020;26:4572–82.

    Google Scholar 

  89. Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol. 2010;8:593–99.

    CAS  PubMed  Google Scholar 

  90. Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.

    CAS  PubMed  Google Scholar 

  91. Lonborg C, Middelboe M, Brussaard CPD. Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 2013;116:231–40.

    Google Scholar 

  92. Xiao X, Guo W, Li X, Wang C, Chen X, Lin X, et al. Viral lysis alters the optical properties and biological availability of dissolved organic matter derived from Prochlorococcus Picocyanobacteria. Appl Environ Microbiol. 2021;87:e02271–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao Z, Gonsior M, Luek J, Timko S, Ianiri H, Hertkorn N, et al. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nat Commun. 2017;8:15284.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kinsey JD, Corradino G, Ziervogel K, Schnetzer A, Osburn CL. Formation of chromophoric dissolved organic matter by bacterial degradation of phytoplankton-derived aggregates. Front Mar Sci. 2018;4:430.

    Google Scholar 

  95. Hu SK, Herrera EL, Smith AR, Pachiadaki MG, Edgcomb VP, Sylva SP, et al. Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Proc Natl Acad Sci USA. 2021;118:e2102674118.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dittmar T, Lennartz ST, Buck-Wiese H, Hansel DA, Santinelli C, Vanni C, et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat Rev Earth Env. 2021;2:570–83.

    CAS  Google Scholar 

  97. Rastelli E, Corinaldesi C, Dell’Anno A, Tangherlini M, Martorelli E, Ingrassia M, et al. High potential for temperate viruses to drive carbon cycling in chemoautotrophy-dominated shallow-water hydrothermal vents. Environ Microbiol. 2017;19:4432–46.

    CAS  PubMed  Google Scholar 

  98. Ma X, Coleman ML, Waldbauer JR. Distinct molecular signatures in dissolved organic matter produced by viral lysis of marine cyanobacteria. Environ Microbiol. 2018;20:3001–11.

    CAS  PubMed  Google Scholar 

  99. Chen X, Ma R, Yang Y, Jiao N, Zhang R. Viral regulation on bacterial community impacted by lysis-lysogeny switch: a microcosm experiment in eutrophic coastal waters. Front Microbiol. 2019;10:1763.

    PubMed  PubMed Central  Google Scholar 

  100. Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang H, et al. Phage-specific metabolic reprogramming of virocells. ISME J. 2020;14:881–95.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41721001, 41991334), the Science and Technology Program of Zhejiang Province (2022C02046), the 111 Project (B17039), and China Agriculture Research System (CARS-01).

Author information

Authors and Affiliations

Authors

Contributions

Design of experiment: JX; soil sampling and microcosm incubation: DT, YW and HY; measurement of soil properties: DT and HS; statistical analysis: DT; visualization: DT; writing—original draft: DT and JX; writing—review and editing: JX, RA. Dahlgren and DT.

Corresponding author

Correspondence to Jianming Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Wang, Y., Yu, H. et al. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. ISME J 17, 1247–1256 (2023). https://doi.org/10.1038/s41396-023-01438-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01438-5

This article is cited by

Search

Quick links