Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens

Abstract

Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.e., mosquitoes and their resident microbiota) and the pathogens transmitted by these mosquitoes to humans and animals could help in developing new disease control strategies. Different microorganisms found in the mosquito’s microbiota affect traits related to mosquito survival, development, and reproduction. Here, we review the physiological effects of essential microbes on their mosquito hosts; the interactions between the mosquito holobiont and mosquito-borne pathogen (MBP) infections, including microbiota-induced host immune activation and Wolbachia-mediated pathogen blocking (PB); and the effects of environmental factors and host regulation on the composition of the microbiota. Finally, we briefly overview future directions in holobiont studies, and how these may lead to new effective control strategies against mosquitoes and their transmitted diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mosquito holobiont: the chimera of the mosquito, its microbiota, and interactions between them.
Fig. 2: Schematic diagram of the microbiota-mosquito-pathogen interactions.
Fig. 3: Schematic representation of the acquisition and composition of mosquito microbiota.
Fig. 4: Strategies of holobiont manipulation for mosquito control and pathogen transmission.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Guan-Hong Wang, upon reasonable request.

References

  1. Manzoor KN, Javed F. The global emergence of Chikungunya infection: an integrated view. Rev Med Virol. 2021;32:e2287.

    PubMed  Google Scholar 

  2. Kolimenakis A, Heinz S, Wilson ML, Winkler V. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit-A systematic review. PLoS Negl Trop Dis. 2021;15:e0009631.

    PubMed  PubMed Central  Google Scholar 

  3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–07.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Organization WH. World Malaria Day 2022: Harness innovation to reduce the malaria disease burden and save lives 2022.

  5. Demok S, Endersby-Harshman N, Vinit R, Timinao L, Robinson LJ, Susapu M, et al. Insecticide resistance status of Aedes aegypti and Aedes albopictus mosquitoes in papua new guinea. Parasit Vectors. 2019;12:333.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Altinli M, Schnettler E, Sicard M. Symbiotic interactions between mosquitoes and mosquito viruses. Front Cell Infect Microbiol. 2021;11:694020.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. The coral probiotic hypothesis. Environ Microbiol. 2006;8:2068–73.

    CAS  PubMed  Google Scholar 

  8. Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome. 2018;6:49.

    PubMed  PubMed Central  Google Scholar 

  9. Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S. Mosquito microbiota and implications for disease control. Trends Parasitol. 2020;36:98–111.

    PubMed  Google Scholar 

  10. Caragata EP, Short SM. Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. Curr Opin Insect Sci. 2022;50:100875.

    PubMed  Google Scholar 

  11. Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008;4:e1000098.

    PubMed  PubMed Central  Google Scholar 

  12. Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA. 2009;106:17841–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ, et al. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol. 2014;16:2980–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses. Front Microbiol. 2019;10:1580.

    PubMed  PubMed Central  Google Scholar 

  15. Gao H, Bai L, Jiang Y, Huang W, Wang L, Li S, et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase. Nat Microbiol. 2021;6:806–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cappelli A, Damiani C, Mancini MV, Valzano M, Rossi P, Serrao A, et al. Asaia activates immune genes in mosquito eliciting an anti-Plasmodium response: Implications in malaria control. Front Genet. 2019;10:836.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu S, Wang J, Luo X, Zheng H, Wang L, Yang X, et al. Transmission-blocking strategies against malaria parasites during their mosquito stages. Front Cell Infect Microbiol. 2022;12:820650.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, et al. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol. 2021;12:630438.

    PubMed  PubMed Central  Google Scholar 

  19. Djihinto OY, Medjigbodo AA, Gangbadja ARA, Saizonou HM, Lagnika HO, Nanmede D, et al. Malaria-transmitting vectors microbiota: Overview and interactions with anopheles mosquito biology. Front Microbiol. 2022;13:891573.

    PubMed  PubMed Central  Google Scholar 

  20. Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-specific virus discovery: significance for the arbovirus community. Viruses-Basel. 2015;7:4911–28.

    CAS  Google Scholar 

  21. Halbach R, Junglen S, van Rij RP. Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense. Curr Opin Insect Sci. 2017;22:16–27.

    PubMed  Google Scholar 

  22. Stollar V, Thomas VL. An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology. 1975;64:367–77.

    CAS  PubMed  Google Scholar 

  23. White AV, Fan M, Mazzara JM, Roper RL, Richards SL. Mosquito-infecting virus Espirito Santo virus inhibits replication and spread of dengue virus. J Med Virol. 2021;93:3362–73.

    CAS  PubMed  Google Scholar 

  24. Feng Y, Gou Q-Y, Yang W-H, Wu W-C, Wang J, Holmes EC, et al. A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. Virus Evolut. 2022;8:veac006.

    Google Scholar 

  25. Du J, Li F, Han Y, Fu S, Liu B, Shao N, et al. Characterization of viromes within mosquito species in China. Sci China-Life Sci. 2020;63:1089–92.

    PubMed  Google Scholar 

  26. Coatsworth H, Bozic J, Carrillo J, Buckner EA, Rivers AR, Dinglasan RR, et al. Intrinsic variation in the vertically transmitted core virome of the mosquito Aedes aegypti. Mol Ecol. 2022;31:2545–61.

    CAS  PubMed  Google Scholar 

  27. Wang L, Rosas ALR, De Coninck L, Shi C, Bouckaert J, Matthijnssens J, et al. Establishment of Culex modestus in Belgium and a Glance into the Virome of Belgian Mosquito Species. Msphere. 2021;6:e01229–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Saraiva RG, Fang J, Kang S, Angleró-Rodríguez YI, Dong Y, Dimopoulos G. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl Trop Dis. 2018;12:e0006443.

    PubMed  PubMed Central  Google Scholar 

  29. Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe. 2019;25:101–12.e5.

    CAS  PubMed  Google Scholar 

  30. Apte-Deshpande AD, Paingankar MS, Gokhale MD, Deobagkar DN. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus. Indian J Med Res. 2014;139:762–68.

    PubMed  PubMed Central  Google Scholar 

  31. Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, et al. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun. 2016;7:11772.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6:741–51.

    CAS  PubMed  Google Scholar 

  33. O’Neill EBSL, Hoffmann AA, Werren JH Influential Passengers: Microorganisms and Invertebrate Reproduction. Oxford University Press: Oxford 1997.

  34. Lau MJ, Ross PA, Hoffmann AA. Infertility and fecundity loss of Wolbachia-infected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics. PLoS Negl Trop Dis. 2021;15:e0009179.

    PubMed  PubMed Central  Google Scholar 

  35. Ant TH, Herd C, Louis F, Failloux AB, Sinkins SP. Wolbachia transinfections in Culex quinquefasciatus generate cytoplasmic incompatibility. Insect Mol Biol. 2020;29:1–8.

    CAS  PubMed  Google Scholar 

  36. Walker T, Quek S, Jeffries CL, Bandibabone J, Dhokiya V, Bamou R, et al. Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes. Curr Biol. 2021;31:2310–20.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476:454–57.

    CAS  PubMed  Google Scholar 

  38. Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2012;109:E23–31.

    PubMed  Google Scholar 

  39. Martins M, Ramos LFC, Murillo JR, Torres A, de Carvalho SS, Domont GB, et al. Comprehensive quantitative proteome analysis of Aedes aegypti identifies proteins and pathways involved in Wolbachia pipientis and Zika virus interference phenomenon. Front Physiol. 2021;12:642237.

    PubMed  PubMed Central  Google Scholar 

  40. Mao W, Zeng Q, She L, Yuan H, Luo Y, Wang R, et al. Wolbachia utilizes lncRNAs to activate the anti-dengue Toll pathway and balance Reactive Oxygen Species stress in Aedes aegypti through a competitive endogenous RNA network. Front Cell Infect Microbiol. 2021;11:823403.

    CAS  PubMed  Google Scholar 

  41. Wong ZS, Brownlie JC, Johnson KN. Oxidative stress correlates with Wolbachia-mediated antiviral protection in Wolbachia-Drosophila associations. Appl Environ Microbiol. 2015;81:3001–05.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Audsley MD, Seleznev A, Joubert DA, Woolfit M, O’Neill SL, McGraw EA. Wolbachia infection alters the relative abundance of resident bacteria in adult Aedes aegypti mosquitoes, but not larvae. Mol Ecol. 2018;27:297–309.

    CAS  PubMed  Google Scholar 

  43. Zhang G, Hussain M, O’Neill SL, Asgari S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proc Natl Acad Sci USA. 2013;110:10276–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McFarlane M, Almire F, Kean J, Donald CL, McDonald A, Wee B, et al. The Aedes aegypti domino ortholog p400 regulates antiviral exogenous small interfering RNA pathway activity and ago-2 expression. mSphere. 2020;5:e00081–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sucupira PHFFÁ, Leite THJF, de Mendonça SF, Ferreira FV, Rezende FO, Marques JT, et al. The RNAi pathway is important to control mayaro virus infection in Aedes aegypti but not for Wolbachia-mediated protection. Viruses. 2020;12:871.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Terradas G, McGraw EA. Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. Curr Opin Insect Sci. 2017;22:37–44.

    PubMed  Google Scholar 

  47. Lindsey ARI. BT, Newton ILG, Hardy RW. Conflict in the intracellular lives of endosymbionts and viruses: A mechanistic look at Wolbachia-mediated pathogen-blocking. Viruses. 2018;10:141.

    PubMed  PubMed Central  Google Scholar 

  48. Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature. 2019;572:56–61.

    CAS  PubMed  Google Scholar 

  49. Caputo B, Moretti R, Manica M, Serini P, Lampazzi E, Bonanni M, et al. A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area. Pest Manag Sci. 2020;76:1324–32.

    CAS  PubMed  Google Scholar 

  50. Indriani C, Tantowijoyo W, Rancès E, Andari B, Prabowo E, Yusdi D, et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Res. 2020;4:50.

    PubMed  PubMed Central  Google Scholar 

  51. Garcia GA, Sylvestre G, Aguiar R, da Costa GB, Martins AJ, Lima JBP, et al. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Negl Trop Dis. 2019;13:e0007023.

    PubMed  PubMed Central  Google Scholar 

  52. Pinto SB, Riback TIS, Sylvestre G, Costa G, Peixoto J, Dias FBS, et al. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study. PLoS Negl Trop Dis. 2021;15:e0009556.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K, Brown-Kenyon J, et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 2019;3:1547.

    PubMed  Google Scholar 

  54. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al. Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control. Curr Biol. 2019;29:4241–8.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao L, Wang H, Liu Z, Liu S, Zhao G, Xu B, et al. The initial analysis of a serine proteinase gene (AccSp10) from Apis cerana cerana: Possible involvement in pupal development, innate immunity and abiotic stress responses. Cell Stress Chaperones. 2017;22:867–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bongio NJ, Lampe DJ. Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. Bacteria using a novel native secretion signal. PloS One. 2015;10:e0143541.

    PubMed  PubMed Central  Google Scholar 

  57. Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 2011;331:1074–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ren X, Hoiczyk E, Rasgon JL. Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog. 2008;4:e1000135.

    PubMed  PubMed Central  Google Scholar 

  59. Huang W, Cha SJ, Jacobs-Lorena M. New weapons to fight malaria transmission: A historical view. Entomol Res. 2022;52:235–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Coon KL, Valzania L, McKinney DA, Vogel KJ, Brown MR. Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc Natl Acad Sci USA. 2017;114:E5362–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Y, Gilbreath TM 3rd, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One. 2011;6:e24767.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Buck M, Nilsson LK, Brunius C, Dabiré RK, Hopkins R, Terenius O. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes. Sci Rep. 2016;6:22806.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Saab SA, Dohna HZ, Nilsson LKJ, Onorati P, Nakhleh J, Terenius O. The environment and species affect gut bacteria composition in laboratory co-cultured Anopheles gambiae and Aedes albopictus mosquitoes. Sci Rep. 2020;10:3352.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6:146.

    PubMed  PubMed Central  Google Scholar 

  65. MacLeod HJ, Dimopoulos G, Short SM. Larval diet abundance influences size and composition of the midgut microbiota of Aedes aegypti mosquitoes. Front Microbiol. 2021;12:645362.

    PubMed  PubMed Central  Google Scholar 

  66. Lin D, Zheng X, Sanogo B, Ding T, Sun X, Wu Z. Bacterial composition of midgut and entire body of laboratory colonies of Aedes aegypti and Aedes albopictus from Southern China. Parasit Vectors. 2021;14:586.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332:855–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Muturi EJ, Njoroge TM, Dunlap C, Cáceres CE. Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti. Parasit Vectors. 2021;14:83.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Telang A, Skinner J. Effects of host blood meal source on reproductive output, nutrient reserves and gut microbiome of West Nile virus vector Culex quinquefasciatus. J Insect Physiol. 2019;114:15–22.

    CAS  PubMed  Google Scholar 

  70. Alfano N, Tagliapietra V, Rosso F, Manica M, Arnoldi D, Pindo M, et al. Changes in microbiota across developmental stages of Aedes koreicus, an invasive mosquito vector in Europe: Indications for microbiota-based control strategies. Front Microbiol. 2019;10:2832.

    PubMed  PubMed Central  Google Scholar 

  71. Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol. 2001;38:29–32.

    CAS  PubMed  Google Scholar 

  72. Romoli O, Schönbeck JC, Hapfelmeier S, Gendrin M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host-microbiota interactions. Nat Commun. 2021;12:942.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bottino-Rojas V, Talyuli OA, Jupatanakul N, Sim S, Dimopoulos G, Venancio TM, et al. Heme signaling impacts global gene expression, immunity and dengue virus infectivity in Aedes aegypti. PLoS One. 2015;10:e0135985.

    PubMed  PubMed Central  Google Scholar 

  74. Kakani P, Gupta L, Kumar S. Heme-peroxidase 2, a peroxinectin-like gene, regulates bacterial homeostasis in Anopheles stephensi midgut. Front Physiol. 2020;11:572340.

    PubMed  PubMed Central  Google Scholar 

  75. Kajla M, Choudhury TP, Kakani P, Gupta K, Dhawan R, Gupta L, et al. Silencing of Anopheles stephensi heme peroxidase HPX15 activates diverse immune pathways to regulate the growth of midgut bacteria. Front Microbiol. 2016;7:1351.

    PubMed  PubMed Central  Google Scholar 

  76. Ross PA, Ritchie SA, Axford JK, Hoffmann AA. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl Trop Dis. 2019;13:e0007357.

    PubMed  PubMed Central  Google Scholar 

  77. Hixson B, Bing XL, Yang X, Bonfini A, Nagy P, Buchon N. A transcriptomic atlas of Aedes aegypti reveals detailed functional organization of major body parts and gut regional specializations in sugar-fed and blood-fed adult females. Elife. 2022;11:e76132.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J. 2018;12:277–88.

    CAS  PubMed  Google Scholar 

  79. Stathopoulos S, Neafsey DE, Lawniczak MK, Muskavitch MA, Christophides GK. Genetic dissection of Anopheles gambiae gut epithelial responses to Serratia marcescens. PLoS Pathog. 2014;10:e1003897.

    PubMed  PubMed Central  Google Scholar 

  80. Xiao X, Yang L, Pang X, Zhang R, Zhu Y, Wang P, et al. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nat Microbiol. 2017;2:17020.

    PubMed  PubMed Central  Google Scholar 

  81. Williams M, Contet A, Hou CD, Levashina EA, Baxter R. Anopheles gambiae TEP1 forms a complex with the coiled-coil domain of LRIM1/APL1C following a conformational change in the thioester domain. PloS One. 2019;14:e0218203.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Short SM, Mongodin EF, MacLeod HJ, Talyuli OAC, Dimopoulos G. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability. PLoS Negl Trop Dis. 2017;11:e0005677.

    PubMed  PubMed Central  Google Scholar 

  83. Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, et al. Combating mosquito-borne diseases using genetic control technologies. Nat Commun. 2021;12:4388.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Murray JV, Jansen CC, De Barro P. Risk associated with the release of Wolbachia-infected Aedes aegypti mosquitoes into the environment in an effort to control dengue. Front Public Health. 2016;4:43.

    PubMed  PubMed Central  Google Scholar 

  85. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 2009;139:1268–78.

    PubMed  Google Scholar 

  86. Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science. 2009;326:134–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kozlova EV, Hegde S, Roundy CM, Golovko G. Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME J. 2021;15:93–108.

    CAS  PubMed  Google Scholar 

  88. Dong Y, Morton JC Jr., Ramirez JL, Souza-Neto JA, Dimopoulos G. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochem Mol Biol. 2012;42:126–32.

    CAS  PubMed  Google Scholar 

  89. Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, Kang S, Demby C, Shields A, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife. 2017;6:e28844.

    PubMed  PubMed Central  Google Scholar 

  90. Coon KL, Brown MR, Strand MR. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors. 2016;9:375.

    PubMed  PubMed Central  Google Scholar 

  91. Ant TH, Sinkins SPA. Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission instability in Aedes aegypti. Parasit Vectors. 2018;11:295.

    PubMed  PubMed Central  Google Scholar 

  92. Mancini MV, Damiani C, Short SM, Cappelli A, Ulissi U, Capone A, et al. Inhibition of Asaia in adult mosquitoes causes male-specific mortality and diverse transcriptome changes. Pathogens. 2020;9:380.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pelloquin B, Kristan M, Edi C, Meiwald A, Clark E, Jeffries CL, et al. Overabundance of Asaia and Serratia bacteria is associated with deltamethrin insecticide susceptibility in Anopheles coluzzii from Agboville, Côte d’Ivoire. Microbiol Spectr. 2021;9:e0015721.

    PubMed  Google Scholar 

  94. Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA. 2012;109:12734–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM, et al. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep. 2016;6:34084.

    PubMed  PubMed Central  Google Scholar 

  96. Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep. 2013;3:1641.

    PubMed  PubMed Central  Google Scholar 

  97. Wei G, Lai Y, Wang G, Chen H, Li F, Wang S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci USA. 2017;114:5994–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Valzano M, Cecarini V, Cappelli A, Capone A, Bozic J, Cuccioloni M, et al. A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar J. 2016;15:21.

    PubMed  PubMed Central  Google Scholar 

  99. Bian GW, Joshi D, Dong YM, Lu P, Zhou GL, Pan XL, et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 2013;340:748–51.

    CAS  PubMed  Google Scholar 

  100. Gnambani EJBE, Sanou A, Dabiré RK, Diabaté A. Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity. Malar J. 2020;19:352.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Díaz-Nieto LM, C DA, Perotti MA, Berón CM. Culex pipiens development is greatly influenced by native bacteria and exogenous yeast. PLoS One. 2016;11:e0153133.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the CAS strategic funding via CAS-CSIRO funding scheme (152111KYSB20210011), the National Key R&D Program of China (2022YFF0710603), the National Science Foundation of China (32270538), and the Natural Science Foundation of Beijing (6222046) awarded to G.H.W. The work was also supported by CSIRO strategic funding via CAS-CSIRO funding scheme to PNP. We thank Lei Jiang and Wenxin Ma for their helpful edits on earlier versions of Figs. 2 and 3.

Author information

Authors and Affiliations

Authors

Contributions

All authors critically reviewed the manuscript and approved the final version for submission.

Corresponding author

Correspondence to Guan-Hong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, R., Wang, Q., Wu, R. et al. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. ISME J 17, 1143–1152 (2023). https://doi.org/10.1038/s41396-023-01436-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01436-7

This article is cited by

Search

Quick links