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Mesophilic and thermophilic viruses are associated with
nutrient cycling during hyperthermophilic composting
Hanpeng Liao1,2, Chen Liu1, Chaofan Ai1, Tian Gao1, Qiu-E Yang 1, Zhen Yu3, Shaoming Gao 4, Shungui Zhou 1,2✉ and
Ville-Petri Friman 5,6✉

© The Author(s) 2023

While decomposition of organic matter by bacteria plays a major role in nutrient cycling in terrestrial ecosystems, the significance
of viruses remains poorly understood. Here we combined metagenomics and metatranscriptomics with temporal sampling to study
the significance of mesophilic and thermophilic bacteria and their viruses on nutrient cycling during industrial-scale
hyperthermophilic composting (HTC). Our results show that virus-bacteria density dynamics and activity are tightly coupled, where
viruses specific to mesophilic and thermophilic bacteria track their host densities, triggering microbial community succession via
top-down control during HTC. Moreover, viruses specific to mesophilic bacteria encoded and expressed several auxiliary metabolic
genes (AMGs) linked to carbon cycling, impacting nutrient turnover alongside bacteria. Nutrient turnover correlated positively with
virus–host ratio, indicative of a positive relationship between ecosystem functioning, viral abundances, and viral activity. These
effects were predominantly driven by DNA viruses as most detected RNA viruses were associated with eukaryotes and not
associated with nutrient cycling during the thermophilic phase of composting. Our findings suggest that DNA viruses could drive
nutrient cycling during HTC by recycling bacterial biomass through cell lysis and by expressing key AMGs. Viruses could hence
potentially be used as indicators of microbial ecosystem functioning to optimize productivity of biotechnological and agricultural
systems.

The ISME Journal (2023) 17:916–930; https://doi.org/10.1038/s41396-023-01404-1

INTRODUCTION
The decomposition of organic matter is a key ecosystem process,
impacting nutrient cycling and productivity across terrestrial
ecosystems [1]. While it is known that both bacterial and fungal
communities play crucial roles in recycling nutrients via “the
microbial loop” [1], the role of bacterial viruses, i.e., bacterio-
phages (phages), is still poorly understood [2]. As the most
abundant biological entity on Earth, viruses play a critical role in
driving microbial mortality through cell lysis [3, 4], significantly
impacting element cycling via release of nutrients and affecting
microbial community composition, diversity and microbial necro-
mass [5–10]. While the importance of viruses for nutrient cycling in
the oceans is well established [11], we are only beginning to
understand how viruses modulate the turnover of nutrients and
mineralization of organic matter in soils [9, 10, 12]. Virus-encoded
auxiliary metabolic genes (AMGs) associated with glycoside
hydrolases and methane metabolism have been demonstrated
to contribute to carbon cycling in soil ecosystems [4, 6, 13]. For
example, 14 AMGs including 9 glycoside hydrolase families, such
as endomannanase with confirmed functional activity, indicate
that viruses have the potential capacity to participate in complex
carbon degradation [4]. In addition to driving nutrient cycling via
lysis of bacterial cells in soils, viruses have recently been shown to

improve the survival of their host bacteria under environmental
stress by encoding auxiliary metabolic genes (AMGs) that enhance
the metabolic capacity of bacterial hosts [14]. Despite these recent
advances, we still have a limited understanding on how viruses
and bacteria together drive nutrient cycling and decomposition of
organic matter across terrestrial ecosystems [15].
Here we used a hyperthermophilic composting (HTC) as a

model system to study the role of mesophilic and thermophilic
bacteria and their viruses in the decomposition of organic matter.
HTC is a waste treatment technology used in degradation of the
organic fraction of municipal or agricultural solid waste, attaining
extremely high temperatures (up to 90 °C) without exogenous
heating due to thermophilic bacterial community activity [16–18].
HTC contains three main temperature phases: hyperthermophilic
(>80 °C), thermophilic (>50 °C) and maturation phase (ambient
temperature). During the process, carbon and nitrogen-enriched
polymeric substances (lignocellulose, proteins, polysaccharides
and lipids) are degraded during thermophilic phases of compost-
ing, while slowly degrading humic-enriched compounds are
degraded during the maturation phase. The composition of
microbial communities that drive the degradation of organic
matter change dynamically following the composting tempera-
ture during HTC [19], and thermophilic, heat-resistant taxa
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(Firmicutes; Bacillus and Deinococcota; Thermus) are important for
the decomposition of organic matter during the thermophilic
phase [16]. While the effects of temperature, raw materials and
physicochemical composting properties have been extensively
studied in relation to microbial community assembly and
degradation of organic matter [20, 21], very little is known about
the role of viruses during HTC.
Viruses could mediate effects on bacteria during HTC in two

main ways. First, they could impose a strong top-down control on
bacterial abundances via lysis as has been shown in aquatic
systems [22]. Such viral predation could shape the nutrient cycling
from bacterial biomass [8, 9], drive the ecological succession of
mesophilic and thermophilic taxa during HTC and potentially
promote bacterial diversity over time by reducing dominance
effects via “Kill-the-Winner” model [23, 24]. Second, viruses could
drive nutrient cycling via provision of functional genes associated
with the decomposition. For example, it has been shown that viral
AMGs can potentially help host bacteria to acquire nutrients and
degrade toxic compounds, having positive effect on their survival
[14]. Given that viruses require host cell machinery for the
transcription of their genes, viral activity based on transcriptomics
can be used to indicate successful infection of hosts [25]. This
approach has recently been used to demonstrate that sub-
seafloor sediments show activity by both lytic and lysogenic
viruses [26], that the expression of AMGs are possibly involved in
modulating host methane and sulfur metabolism upon infection
in ocean ecosystem [22, 27] and that giant viruses are active in
coastal marine system [28]. Here, we chose microbe-rich HTC as
the model system to assess both bacterial and viral community
composition, diversity, and activity in relation to carbon and
nitrogen turnover [16]. Moreover, as HTC is typically characterized
by time-dependent microbial community succession, we specifi-
cally compared the role of mesophilic and thermophilic bacteria
and their DNA viruses in the dynamics of nutrient cycling.
In this study, we used an industrial-scale hyperthermophilic

composting experiment to create a replicated, temporal sampling
of bacteria-viral community assembly, their abundances, func-
tional gene contents, and activity based on metagenomics and
metatranscriptomics. We found that virus-bacteria density
dynamics and activity are coupled, where viruses specific to
mesophilic and thermophilic bacteria track their host densities,
indicative of strong viral top-down control during HTC. These
effects were predominantly driven by DNA viruses as the majority
of detected RNA viruses (82%) were associated with eukaryotes
and uncoupled from nutrient cycling during the thermophilic
phase of composting. Moreover, DNA viruses specific to meso-
philic bacteria encoded and expressed several AMGs linked to
carbon cycling, impacting the nutrient turnover alongside with
bacteria. As a result, viral abundance and activity were positively
correlated with nutrient cycling, highlighting the importance of
viruses for the degradation of organic matter during HTC.

MATERIALS AND METHODS
Hyperthermophilic composting and sampling
The composting experiment was carried out in a full-scale hyperthermo-
philic composting plant located in Shunyi district, Beijing, China (40°03′
10.48″N, 116°56′2.12″E). Sewage sludge and rice husk were used as the
main composting raw materials as described in a previous study [16].
Hyperthermophilic composting normally takes 45 days from start to
completion and includes four temperature phases: initial phase (day 1:
32 °C), hyperthermophilic phase (from day 2 to 9: >90 °C), thermophilic
phase (from day 10 to 26: >55 °C) and maturation phase (from day 27 to
45: <45 °C). To cover changes during the whole composting process, eight
samples from five compost piles were collected at different phases of
hyperthermophilic composting on days 0 (D0), 4 (D4), 7 (D7), 9 (D9), 15
(D15), 21 (D21), 27 (D27), 33 (D33) and 45 (D45). To obtain well-distributed
and homogenized samples, each pile was diagonally divided into five
domains, and each domain was sampled from the same location at a

depth of 40–50 cm at different sampling time points. Within each pile, five
subsamples (5000 g each) per domain were collected, and then mixed into
a single composite sample, which was further divided into two aliquots.
One replicate aliquot was stored in liquid nitrogen for biological analyses
and the other was kept at 4 °C for physicochemical analyses. An automatic
temperature controller was used to determine temperature changes
during the composting.

Determining changes in physicochemical properties during
composting
Changes in the compost’s physicochemical properties were measured
using previously described methods [16] unless otherwise specified. The
cycling of carbon was evaluated based on total carbon content (TC), water-
soluble carbon (WSC), total organic carbon content (TOC), and inorganic
carbon content (IC). The cycling of nitrogen was quantified based on total
nitrogen content (TN), water-soluble nitrogen (WSN), ammonium (NH4

+),
and nitrate (NO3

−) concentrations. The TOC and IC were quantified using an
automatic TOC analyzer for liquid samples (Shimadzu TOC-L CPH, Kyoto,
Japan), while TN and TC were determined with Elementar instrument (Vario
MAX cube, Hanau, Germany) by using dry combustion. Organic matter (OM)
content was measured by dry combustion at 550 °C for 8 h. The TN and TC
values were used to calculate the C/N ratio. Othermeasured physicochemical
properties included pH, water content (WC), electrical conductivity (EC). The
concentration of WSN was based on the sum of NH4

+ and NO3
− contents,

while WSC concentration was based on the sum of the TOC and IC.

Analyzing changes in bacterial community composition and
diversity using 16S rRNA gene amplicon sequencing
To determine changes in bacterial community composition and diversity
during composting all collected samples (each time point consisting of 5
replicates) were subjected to 16S rRNA gene amplicon sequencing using a
NovaSeq6000 platform (Illumina, PE250 mode, Guangdong Magigene
Biotechnology Co. Ltd, Guangzhou, China). Total genomic DNA for
amplicon sequencing was extracted using a DNeasy PowerSoil kit (Qiagen,
Hilden, Germany) following manufacturer’s instructions. The prokaryote
(bacteria and archaea) primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and
907R (5′-CCGTCAATTCMTTTRAGTTT-3′) targeting the V4-V5 region of the
16S rRNA gene were used. The raw 16S rRNA gene sequences were
processed using QIIME 2 (version 2019.7) [29] and quality filtered (i.e.,
filtered, dereplicated, denoised, merged, and assessed for chimaeras) to
produce amplicon sequence variants (ASVs) using the DADA2 pipeline in
QIIME2 [30]. The truncation and trimming parameters in DADA2 were set
to –p-trim-left-f 0, –p-trim-left-r 0; and –p-trunc-len -f 248, –p-trunc-len-r
230. The DADA2-generated feature table was filtered to remove ASVs at a
frequency less than two and the remaining ASVs were classified using the
QIIME2 naive Bayes classifier trained on 99% operational taxonomic units
available at the SILVA rRNA database (v 138) [31]. Microbial diversity was
estimated using alpha diversity (Shannon index and observed OTU) and
community composition using beta diversity (weighted UniFrac distance)
based on the q2-diversity pipeline within QIIME2. To quantify the
community assembly process, null model analysis was used to detect
the community assembly mechanism by calculating the standard deviation
between the observed ecological model and the randomly generated
ecological model [32, 33].

DNA and RNA shotgun sequencing
Three randomly selected compost replicate samples were selected for DNA
and RNA shotgun sequencing at days 0, 4, 15, and 27 of composting, which
represented heating, hyperthermophilic, thermophilic, and maturation
phases of composting, respectively (resulting in a total of 12 metatran-
scriptome and 12 metagenome samples). One subset of each replicate
sample was used for DNA extraction to improve the recovery of
Metagenome-Assembled Genomes (MAGs), while the other was used for
total RNA extraction to examine gene expression at the community level
using metatranscriptomics. Prior to RNA extraction, samples were
immediately stored in RNAlater (ThermoFisher Scientific) and liquid
nitrogen. Total genomic DNA and RNA were extracted from 0.5 g compost
samples using the DNeasy PowerSoil kit (Qiagen, Hilden, Germany) and the
RNeasy PowerSoil total RNA kit (Qiagen), respectively, following manu-
facturers’ protocols. The samples were not filtered before metagenomic
processing and hence contained both free-living viruses and intact
prophages. DNA quality was assessed with a 1% agarose gel and DNA
concentration was measured using Qubit dsDNA high-sensitivity assays
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(Thermo Fisher, Waltham, USA). RNA concentrations were measured using
the Qubit RNA HS assay kit and RNA integrity determined using an Agilent
2100 Bioanalyzer (Agilent Technologies) before and after rRNA removal
with Ribo-minus Transcriptome Isolation Kit (Thermo Fisher, Waltham,
USA). The resulting enriched mRNA was prepared for sequencing using the
TruSeq stranded mRNA library prep kit (Illumina, California, USA), following
manufacturer’s protocol. The extracted DNA and cDNA from each sample
were used to construct libraries (300 bp) at Guangdong Magigene
Biotechnology Co. Ltd. Libraries were prepared using DNA Library Prep
Kit V2 for Illumina (Illumina, California, USA) following manufacturer’s
protocol, which is compatible with all DNA including dsDNA. While this kit
removes most of the ssDNA viruses, a small fraction of ssDNA viruses
incorporated into bacterial genomes as dsDNA or dsDNA intermediates
from active replication likely remained in our libraries [34]. The sequencing
was conducted by NovaSeq6000 platform (Illumina, PE150 mode,
Guangdong Magigene Biotechnology Co. Ltd). The detailed information
about the DNA and RNA sequencing datasets is summarized in Table S7.

Metagenomic assembly and binning
All DNA sequences were trimmed to remove Illumina adapters and to
retain high-quality reads using Trimmomatic (v 0.39, score >30 and length
>36 bases) [35]. All high-quality sequences were co-assembled using
SPAdes v3.13.1 with the parameters “-k 33, 55, 77, 99, 111,127 --meta” [36].
We also assembled reads generated at each thermal phase of composting
separately (composting phase-specific assemblies) using SPAdes with the
same parameters. All assembled scaffolds longer than 2.0 kb were binned
using metawrap [37] based on MetaBAT2 [38], MaxBin2 [39], and Concoct
[40] with default parameters. Bins were further manually curated to obtain
high-quality genomes using Bin_refinement module in Metawrap [37]. The
completeness and contamination of genome bins were assessed using
CheckM v1.0.13 [41], and metagenome-assembled genomes (MAGs) with
more than 50% completeness and less than 10% contamination level were
retained for further analyses. Bins from different samples were derepli-
cated to produce medium to high quality genomes using dRep v.2.3.2 [42]
and assigned to taxonomic classifications based on the Genome Taxonomy
Database (GTDB; release 03-RS86) using the GTDB-Tk toolkit (v.0.3.2) with
the classify workflow [43]. To construct bacterial MAGs, genes were called
using Prodigal with parameters “-p meta” [44] and annotated against the
KEGG and Pfam databases using the Diamond tool [45]. The predicted
proteins were screened for candidate CAZymes using hmmscan module
from HMMER v3.2.1 and dbCAN database (cutoffs: coverage fraction: 0.40;
e-value:1e-18) [46]. Genes encoding proteases and peptidases were
identified using Diamond against the MEROPS database release 12.0
(cutoffs: e-value 1e-20 -accel 0.8). Ribosomal RNAs were predicted using
RNAmmer v1.2 [47]. The optimal growth temperature (OGT) of MAGs was
predicted by the machine learning method using the Tome v1.1 [48].
Thermophilic MAGs were defined as ones with OGT ≥ 50 °C, while MAGs
were assigned as mesophilic when their OGT < 50 °C. To build phylogenetic
MAG trees, the “classify” workflow in GTDB-Tk (v.0.3.2; default settings) was
used to identify 120 bacterial marker genes, which were used for tree
construction based on multiple sequence alignment. The resulting FASTA
files containing multiple sequence alignments of the submitted genomes
were used for maximum likelihood phylogenetic tree inference using
FastTree v.2.1.10 with the default parameters [49]. Newick tree output files
were visualized with iTOL v.5 [50].

Viral contig identification, taxonomic classification, and
functional annotation
To identify viruses with high confidence, viral contigs larger than 5 kb were
recovered from metagenome assemblies and analyzed using a combina-
tion of three tools with strict quality thresholds as previously suggested
[51]. First, DeepVirFinder v1.0 [52] was ran with a loose cutoff (score 0.7
and p < 0.05) for maximal sensitivity to detect viral sequences. Second,
VirSorter2 v2.2.1 [53] was used to identify the putative viral sequences with
scores ≥0.95 using DeepVirFinder-output sequences as input files. To
remove some non-viral sequences during the VirSorter2 analysis, CheckV
(v0.9.0)[54] was used to quality assessment. The final viral contig dataset
was manually curated and trimmed to remove potential host regions
according to previous protocol [55]. Predicted contigs were considered of
viral origin if they satisfied at least one of the three following criteria: (1)
contigs contained at least one virus-specific hallmark gene; (2) contigs had
VirSorter2 scores ≥0.95; (3) the total number of genes annotated as
“unknown” (egg-NOG v5.0.0 database) accounted for ≥80% of the total
number of genes on the scaffold. Finally, all potential viral contigs were

further checked using VIBRANT [56] (v1.2.1, virome mode) with default
settings. The identified viral contigs were clustered at 95% average
nucleotide identity with at least 85% coverage using CD-HIT v4.8.1 [57]
(parameters: -c 0.95 -aS 0.85), resulting in a total of 1297 viral OTUs (from
here on referred as “vOTUs”). The longest sequence from each cluster was
used as a representative sequence of a given viral group in subsequent
analyses. Completeness of viral genomes was estimated using the CheckV
pipeline. In order to determine the overlap between our representative
vOTUs and viruses included in the IMG/VR v3 dataset [58], we used rapid
genome clustering to identify our dataset vOTUs that shared 95% identity
and 85% coverage with IMG/VR v3 viruses based on the scripts (script
aniclust.py) provided in CheckV with the “--min_ani 95 --min_qcov 0
--min_tcov 85” parameters.
Taxonomic assignment of viral contigs was performed using PhaGCN2

based on the latest ICTV classification tables [59]. Reference viruses were
obtained from the RefSeq viral database (v216, released in Jan. 2023). In
case of unclassified viruses, CAT [60] was used for assigning viral
taxonomies using the Lowest Common Ancestor algorithm against NCBI
nr database. Only a very few compost vOTUs (7.7%) clustered with
taxonomically known viruses based on above two methods. The non-
redundant functional proteins in viral contigs were annotated (Table S8)
using VIBRANT based on Pfam, dbCAN, KEGG and eggNOG databases 5.0
with default parameters [4, 61]. The phage lifestyle was predicted using
three tools including VIBRANT [56], PhaTYP [62] and manually curated
BLAST [25] based on previously described methods [25, 63]. Briefly,
VIBRANT [56] and manual BLAST [25] were used to infer temperate lifestyle
by identifying viral contigs that contained proteins associated with
lysogeny (transposase, integrase, excisionase, resolvase, and recombinase)
[74]. Due to incompleteness of several viral contigs, a machine learning
method called PhaTYP [62] was also used to predict the phage lifestyle.
Virus was inferred as a temperate phage if it was predicted to be lysogenic
by any one of these tools. Additionally, vOTUs clustered with known
temperate phages during vConTACT2 clustering or representing proviral
sequences were assigned as temperate [25]. All other vOTUs were assigned
as lytic, even though the absence of temperate phage-associated proteins
could have also been due to incompleteness of viral genomes.

Determining the relative abundance of vOTUs and MAGs in
metagenomes
The relative abundances of vOTUs and MAGs in the 12 metagenome
datasets (four sampling time points with three replicates each) were
quantified using the CoverM pipeline [4] (v0.61, https://github.com/wwood/
CoverM). The relative abundances of vOTUs and MAGs were calculated
based on the coverage of mapped reads using “contig“ and “genome”mode
for vOTUs and MAGs, respectively. To calculate the relative abundance of
each vOTU and MAG, quality-controlled reads from each 12 compost
metagenomes were mapped to the set of 1297 dereplicated viral genomes
or 228 dereplicated MAGs with CoverM pipeline using “rpkm” calculation
method (reads per kilobase of exon per million reads mapped). RPKM [63] is
recommended for relative abundance comparisons with metagenomic
datasets, because RPKM normalizes the data based on both sequence depth
(per million reads) and sequence length (in kilobases). For viruses, reads after
quality control were first mapped to viral contigs using “make” command in
CoverM v0.6.1, to make BAM files, after “filter” command was used to remove
low-quality alignments with read identity ≤95% and aligned percent ≤75%
(parameters: --percentage_id 0.95 --percentage_aln 0.75). Filtered bam files
were used as input in CoverM to generate coverage profiles across samples
(parameters: --trim-min 0.10 --trim-max 0.90 --min-read-percent-identity 0.95
--min-read-aligned-percent 0.75 -m mean). For MAGs, the same calculation
protocol was used as with vOTUs, except for using the “genome” command
instead of “contig” at the last step. The coverage of each vOTU and MAG
were merged as the bacterial and viral abundance matrices, which were
directly used for abundance and alpha- and beta-diversity analyses (log-
transformed matrices were used for Mantel correlations).

Virus-host linkage analysis
The 1,297 vOTUs were putatively linked to 228 bacterial host MAGs using
three in silico methods [4, 64] where virus-host linkages were predicted
based on: (1) shared genomic content between viral and bacterial host
scaffolds (bitscore ≥ 50, e-value < 10−3, identity ≥ 70% and matching
length ≥ 2500 bp [4, 65]); (2) sequence similarity between CRISPR spacers
between bacterial and viral scaffolds; (3) matching of vOTU-derived tRNA
sequences in MAGs with tRNAscan (v 2.0.9, using the general and bacterial/
archeal models, respectively) and BLAST (95% coverage and 90% sequence
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identity, e-value <1e-05) after deleting self-hits and duplicates [65]. CRISPR
spacers were recovered from bacterial MAGs metagenomic contigs with
CRT (v 1.2) with default parameters [66]. Extracted spacer sequences were
matched with vOTUs using BLASTn (100% nucleotide identity, mismatch
≤1, and e-value ≤ 10−5). As OGT values of viruses could not be determined
using Tome v1.1 [48], viruses were determined as thermophilic if they were
associated with at least one bin with OGT ≥ 50 °C.

Viral auxiliary metabolic gene identification and classification
Robustly identifying potential viral auxiliary metabolic genes (AMG) from
metagenomes remains a challenge for the field [22, 51]. A credible potential
AMG is required to have two following features [51, 63]: 1) the potential
AMGs must be located between viral genes, where both the start and end
regions have viral hallmark or viral-like genes; 2) the candidate AMG need to
be involved in a cellular metabolic pathway. Based above principles, we used
automated annotation tools DRAM-v (v 1.2.0, default parameters) to identify
candidate AMGs combined with manual curation [67]. The AMG annotation
file of DRAM-v was further refined using the following parameters: AMGs
score of 1–3 and AMG flag of -M and -F [67]. The functional annotation of
AMGs was done using three databases: the gene orthology database by
eggNOG 5.0 [68], the carbohydrate-active enzyme database (CAZy) [46]
(dbCAN2 HMMdb release 10.0) and KEGG database [69]. We also performed
manual curation to improve the confidence of AMG identification as
described previously [51, 63, 70, 71] by removing all potential illegitimate
AMGs that were assigned to gene categories of DNA-related reactions,
nucleotide metabolism, viral invasion (i.e., lysozymes/endolysins), modifica-
tion of viral components (i.e., glycosyl transferases, adenylyltransferases and
methyltransferases that putatively involved in viral DNA, RNA and structural
proteins modification). This pipeline resulted in 194 high-confidence
candidate AMGs from 1297 vOTUs. To further study AMG-mediated carbon
metabolism, protein sequences from the retained glycoside hydrolases (GHs)
were structurally modeled using Phyre2 in expert batch submission mode
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) to confirm
and resolve their functional predictions [72]. Of these GHs, ones with
predicted secondary structure with 100% confidence score were considered
in further analyses.

Metatranscriptomics analysis of MAGs, vOTUs, and gene
expression
Metatranscriptomic reads were quality filtered via Trimmomatic (v 0.39) as
described previously [4]. Moreover, SortMeRNA (v4.3.4) [73] was used to
remove non-coding RNA sequences (tRNA, tmRNA, 5S, 16S, 18S, 23S, and
28S rRNA sequences) from the metatranscriptomic reads. The remaining
total mRNA reads in 12 compost metatranscriptomes (four sampling time
points with three replicates each) were mapped back to 228 MAG or 1297
vOTU contigs to identify active bacterial and viral taxa based on the
average coverage of transcripts per genome using minimap2 [74] of the
CoverM pipeline (https://github.com/wwood/CoverM). Briefly, metatran-
scriptomic datasets were used as input reads, using the same mapping
parameters as with the metagenomic read mapping, except for choosing
“tpm” calculation method (Transcripts Per Kilobase Per Million Mapped
Reads, TPM). All activity was quantified at the level of vOTUs and MAGs and
viruses and bacteria were deemed as active when the TPM values were
larger than 0 for both duplicates of two out of three biological replicates
(TPM values for each MAG and vOTU is provided in Supplementary
Table 4). As viruses contained only one contig (one vOTU), they were
deemed as active even if one viral gene showed TPM values larger than 0.
To determine the expression of annotated genes in assembled MAGs and
vOTUs, mRNA reads were mapped to a concatenated Fasta file including all
genes of MAG bin or vOTU using Hisat2 with default parameters [75].
Quantification of mapped reads per identified gene was performed with
the function featureCounts of the R Subread package [76]. The transcript
abundance of each gene or contig was converted to transcript per million
(TPM, Eq. (1)) for each sampled depth.

TPM ¼ A � 1=
X

A � 106 (1)

where A= reads mapped to gene/gene length (kbp).

Metatranscriptomics analysis of RNA viruses
As recent studies have suggested that RNA viruses could also be important
but overlooked players underlying the ecosystem functioning [77–80], we
studied changes in their diversity and composition during composting

following methods reported in previous studies [78, 79, 81]. Briefly, we
used the RNA-dependent RNA polymerase (RdRp) hallmark gene as the
target gene to study RNA viruses during composting (a total of 12
metatranscriptome samples, including four time points and three
replicates). All assembled contigs (>1000 bp, composting phase-specific
assemblies) were compared against the database containing all available
viral RdRp gene sequences in NCBI/GenBank (37, 441 genes, downloaded
on February 2023) and previous published studies [77, 78] using Diamond
BLASTx (coverage ≥ 70%, E-value≤1e-10 and score ≥ 70). Sequences that
had hits in the RdRp database with the RdRp core domain were considered
as the potential RNA viruses [80]. This analysis identified 109 contigs with
RdRp gene. These potential RNA virus contigs were clustered with CD-HIT
using 95% average nucleotide identity across 85% alignment fraction,
resulting in a total of 83 potential RNA viruses.
We also analyzed the presence of ssDNA phages in assembled

metatranscriptomic contigs using the same methods as with other viruses
(except for VIBRANT tool). A total of 68 putative dsDNA phage contigs
(with sizes >5 kb) were obtained from the metatranscriptomic assemblies.
After clustering (95% nucleotide similarity and over 85% coverage), a total
of 41 dsDNA viral operational taxonomic units (dsvOTUs) were retained. By
comparing the viruses’ contigs derived from transcriptomic data and
metagenomic data, only 7 of 68 dsvOTUs could be assembled from the
metagenomic data. This is not surprising as the DNA was removed during
RNA library preparation and very few DNA sequences was retained in
transcriptome.

Statistical analyses
Data were statistically analyzed using the R platform v 3.6.1(https://www.r-
project.org/) [82]. The microbial alpha and beta diversity analyses
(including alpha index and PCoA), were conducted using vegan and
ggplot2 packages in R. The overall mean differences across sampling time
were analyzed using one-way ANOVA followed by multiple comparisons
using Tukey HSD test using the p-value smaller than 0.05 as significance
threshold. Nonparametric PERMANOVA (Adonis function) was used to
determine the significance of sampling time points on the microbiome
composition. In case of non-parametric Wilcoxon signed-rank and Adonis
tests, statistical significance was determined based on 999 permutations.
Differential gene expression between metatranscriptomes was analyzed
using DESeq2 with FDR correction at p= 0.05.

MAG and vOTU diversity analyses. To evaluate the diversity of each
sample, the alpha-diversity (richness, Shannon’s index) was assessed using
the package “vegan” (https://cran.r-project.org/web/packages/vegan).
Beta-diversity was quantified using the two first axes of Bray–Curtis
dissimilarity matrix. Statistical significances between sample groups were
tested using a PERMANOVA with 999 permutations.

Analyzing MAG and vOTU community composition using partial Mantel
tests. A partial Mantel test was performed to assess the correlation
between two multivariate matrices while controlling for the potential
effects of nutrients turnover (carbon and nitrogen) using the R package
“vegan”. Distances for vOTU and MAG abundances and nutrient turnover
during composting were calculated using the Bray–Curtis dissimilarity
matrices. Partial Mantel correlations were computed between all pairs of
distance matrices for MAGs and vOTUs with 999 permutations for each
comparison. The false discovery rate was computed using the
Benjamini–Hochberg method.

Random Forest modeling regression analysis for predicting nutrient cycling
during composting. To identify the major predictors explaining the
nutrient cycling during composting, we compared the contribution of
bacterial and viral community composition (based on Bray–Curtis
dissimilarities) at the DNA and RNA level using default parameters of the
Random Forest (RF) analysis [83]. In these RF models, the importance of
each microbial predictor (bacterial and viral community composition at
DNA and RNA level) was determined for the compost nutrient turnover
(Euclidean distance dissimilarity based on all physicochemical composting
properties). To assess the relative importance of different predictor
variables, we compared the percentage increases in MSE (mean squared
error), where high MSE percentage values denote for relatively more
important contribution by given predictor variables [84]. Significance of
the models and cross-validated R2 values were assessed with 1000
permutations of the response variable using the “A3” package in R. The
analysis was conducted using the “rfPermute” package in R.

H. Liao et al.

919

The ISME Journal (2023) 17:916 – 930

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
https://github.com/wwood/CoverM
https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/web/packages/vegan


Partial least squares path modeling analysis for predicting nutrient cycling
during composting. Partial least squares path modeling (PLS-PM) was
employed to explore the direct and indirect effects of different types
bacterial (Bray–Curtis dissimilarity of mesophilic (OGT < 50 °C) and
thermophilic MAGs (OGT ≥ 50 °C) and mesophilic and thermophilic viral
community composition (Bray–Curtis dissimilarity of vOTUs) and catabolic
activity (metatranscriptomics of MAGs and vOTUs) in relation to carbon
and nitrogen cycling during composting [85]. The carbon cycling index
was determined as temporal change in dissimilarity matrix (based on
Euclidean distance) for TC, OM, IC, WSC, and TOC, while nitrogen cycling
index was based on temporal change in dissimilarity matrix (based on
Euclidean distance) for TN, C/N, WSN, NH4

+, and NO3
-. The final PLS-PM

model was chosen based on the Goodness of Fit (GoF) statistic—a
measure of the model’s overall predictive power. PLS-PM was analyzed
using R v3.6.1 via the package “plspm” (v 0.4.7).

RESULTS
Characterization of composting properties and decomposition
of organic matter during HTC
Changes in composting properties were quantified during a 45-
day full-scale HTC experiment focusing on temperature, organic
matter decomposition, and carbon and nitrogen content. The
temperature rapidly increased to around 90 °C after 2 days of
fermentation and remained >80 °C for 9 days (“hyperthermophilic
phase”), after gradually declining to 55 °C (“thermophilic phase”)
and ambient temperature by day 27 (“maturation phase”, Fig. 1a).
The organic matter (OM) decomposition, carbon, and nitrogen
turnover followed closely different phases of HTC (Fig. 1a).
Compared to the initial composting raw materials, total carbon
(TC, F3,23= 33.6, p < 0.0001) and nitrogen (TN, F3,23= 19.8,
p < 0.0001) contents significantly decreased by 32% and 28% by
the end of HTC, respectively (Fig. S1a). Similarly, the OM content
that showed the highest degradation rate at the hyperthermo-
philic phase declined from 51.3% to 38.7% (F3,23= 68.3,
p < 0.0001), while the concentration of water-soluble carbon
(WSC, F3,23= 19.8, p < 0.0001) and water-soluble nitrogen (WSN,
F3,23= 26.4, p < 0.0001) increased during HCT, reaching peak
concentrations at the hyperthermophilic phase (Fig. 1a). The
degradation rate of OM correlated positively with temperature,
WSC, and WSN (Fig. S1b), indicative of efficient nutrient cycling
during HTC.

Bacteria-virus community dynamics are coupled with different
phases of HTC
To link changes in nutrient turnover with microbial community
dynamics, we characterized bacterial and virus community
diversity and composition during HTC using metagenomic and
amplicon sequencing. Of all the metagenomic reads, bacterial
sequences accounted between 50 and 60%, while less than 1%
could be assigned to the archaea and eukaryotes (fungi, protozoa,
and algae) and less than 0.1% to viruses. Based on 16S rRNA gene
sequencing, more than 11 bacterial phyla (Acidobacteriota,
Actinobacteriota, Armatimonadota, Bacteroidota, Chloroflexota,
Deinococcota, Gemmatimonadota, Firmicutes, Nitrospirota, Plancto-
mycetota, and Proteobacteria) were detected during the HTC, with
Firmicutes, Acidobacteriota, Bacteroidota, Deinococcota, and Pro-
teobacteria being the most dominant phyla by accounting for
92.5% of all taxa (Fig. S2a). While these phyla were consistently
present at all stages of HTC, they showed substantial changes in
their abundances (Fig. S2a). Bacterial communities were further
analyzed based on the metagenomic dataset. Composting
temperature had significant effects on bacterial richness
(F3,8= 44.1, p < 0.001) and composition (R2= 0.89, p < 0.001,
PERMANOVA test, Fig. 1b, c). Proteobacteria (51.4%) and Bacter-
oidota (12.0%) were the most dominant phyla at the initial phase
of composting, while thermophilic Thermus and Planifilum genera
belonging to Firmicutes and Deinococcota significantly increased
in relative abundances from 5.3% at D0 to 91.4% by D15

(F3,8= 25.8, p < 0.001, Fig. 1d). Maturation phase (D27) of HTC
was associated with high relative abundances of Actinobacteriota,
including Actinomadura and Streptomyces genera (F3,8= 72.6,
p < 0.0001). Both bacterial taxa abundances (based on phylum
level) and community richness clearly followed the different
phases of HTC composting (Fig. 1b, c; qualitatively similar changes
observed based on 16S rRNA gene amplicon sequencing, Fig. S2).
The bacterial community assembly (based on βNTI index from
amplicon sequencing) correlated with cycling of carbon and
nitrogen and composting temperature (all p < 0.0001, Fig. S3),
indicative of temperature-dependent, deterministic compost
community assembly.
We first focused on analyzing changes in DNA viral commu-

nities during composting. A total of 1507 putative viral contigs
(with sizes >5 kb) were obtained from the metagenomic
assemblies. After clustering (95% nucleotide similarity and over
85% coverage), a total of 1297 viral operational taxonomic units
(vOTUs) were retained (Table S1), which mainly belonged to
double-stranded DNA viruses (97%) and were predicted to be
mostly lytic (66.2%). The genome quality of vOTUs consisted of
0.7% of high-quality, 2.4% of medium-quality, and 85.6% low-
quality vOTUs, while the quality of remaining 11.3% of vOTUs
could not be determined. Overall, 78.6% of vOTUs were detected
during non-thermophilic phases (D0 and D27), while 21.3%
occurred during thermophilic phases (D4 and D15, Table S1).
Only 7.7% of vOTUs could be clustered with taxonomically known
viruses in RefSeq database (v216, released in February 2023), while
only 35 vOTUs (2.6%) clustered with known viruses in IMG/VR (v3)
database, suggesting that most of the composting viruses were
novel. Primarily, they belonged to Dividoviricota (88%) and
Uroviricota (2%) phyla and Mesyanzhinovviridae (27.2%), Here-
lleviridae (18.2%), Salasmaviridae (16.4%), Autographiviridae (5.4%),
Vilmaviridae (5.4%) andMatshushitaviridae (3.6%) families (Table S1
and Fig. S4). Similar to bacteria, the richness (F3.8= 4.7, p= 0.0359)
and composition (R2= 0.78, p < 0.001, PERMANOVA test) of viral
communities followed different phases of HTC (Fig. 1d). While
Vilmaviridae (37.8%) and Autographiviridae (14.5%) were dominant
viruses in the composting raw material (D0), Vilmaviridae
abundances significantly decreased to 1.5% by the maturation
phase (D27; F3,8= 9.7, p= 0.0047, Fig. S4). In contrast, relative
abundance of Matshushitaviridae family under Dividoviricota
phylum (consisting mainly of thermophile-associated Thermus
phages) increased from 1.4% at D0 to 66.3% at D15 (F3,8= 5.7,
p= 0.0245, Fig. S4). As most of viruses could not be classified, viral
abundances were also investigated based on their predicted host
taxonomy (see Methods). The viral taxa abundances followed
bacterial taxa abundances (Fig. 1d), and for example, the
abundance of viruses infecting Deinococcota clearly increased
with rising composting temperature by D15. Moreover, Matshush-
itaviridae viral abundances correlated positively with their
Firmicute (R2= 0.34, p= 0.028) and Deinococcota (R2= 0.53,
p= 0.0042, Fig. S5) host abundances. Overall, changes in viral
community richness (R2= 0.50, p= 0.0058) and composition
(beta-dissimilarity, R2= 0.71, p < 0.0001) correlated positively with
changes in bacterial community richness and composition
(Fig. 2a, b).
To study virus-host dynamics in more detail, we reconstructed

prokaryotic metagenome-assembled genomes (MAGs) for bacteria
by binning shotgun metagenomic contigs. In total, 515 medium to
high-quality MAGs could be assembled (with estimated complete-
ness of ≥50% and contamination ≤10%) across all samples, which
included 513 bacteria and 2 archaea. De-replication within each
time point reduced the total number of bacterial MAGs to 227 (17
phyla, Fig. 2c), including 180 mesophilic (OGT < 50 °C) and 47
thermophilic (OGT ≥ 50 °C) MAGs based on their predicted optimal
growth temperatures (OGT, Table S2). The taxonomic composition
and abundances of MAGs at phylum level were similar to the
results based on 16 S rRNA gene sequencing data (Fig. S6), which
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suggests that MAGs were representative of the total bacterial
diversity. To associate bacterial MAGs with viruses, three different
in silico approaches were used: sequence similarity matching,
CRISPR spacer linkages, and tRNA matching between MAGs and
vOTUs (see Methods). We found that 21.3% of compost vOTUs
were associated with putative MAG hosts based on above three
methods (Table S3). Of these viruses, only 6.8% vOTUs were
taxonomically assigned to Mesyanzhinovviridae (24.0%) and Here-
lleviridae (22.0.6%) families. Commonly predicted hosts included
Actinobacteriota (18.4% of virus-host pairs), Firmicutes (18.05%),
Bacteroidota (17.3%), Patescibacteria (13.3%), Chloroflexota (11.2%),
Proteobacteria (7.2%) and Deinococcota (2.5%), which also were
the most abundant bacteria during HTC (Fig. 2c–f). The viral hosts
also included thermophilic bacteria with predicted OGT higher
than 50 °C: Thermus thermophilus (T_bin.227, OGT= 69.8 °C),
Planifilum fulgidum (T_bin.201, OGT= 58.9 °C) and Limnochordales

(D15-1-bin.18, OGT= 70.1 °C). Viruses with predicted hosts
accounted for 15–33% of the total viral community, and 45%
putative hosts were associated with more than one virus,
indicative of polyvalence (Table S3). Viral and bacterial abun-
dances (linear regression, R2= 0.74, p < 0.001) and community
composition (Mantel statistic r: 0.71, p < 0.001) correlated posi-
tively with each other (Fig. 2d), while the number of active MAGs
and vOTUs correlated negatively with each other (Fig. 2e).
Together, these results suggest that bacterial and viral community
dynamics were tightly coupled during HTC.

Bacterial and viral activity are associated with carbon and
nitrogen cycling during HTC
To link changes in bacteria-virus dynamics with total microbial
community functioning during the HTC, we annotated all the
genes we could detect using unigenes approach (2,485,700 genes)

Fig. 1 The overview of composting properties, bacterial and viral diversity, and composition during HTC. a Changes in composting
properties during different phases of HTC. S0: initial phase (D0); S1: hyperthermophilic phase (D4 to D9); S2: thermophilic phase (D15 to D21);
S3: maturation phase (D27 to D45). Temp: composting temperature; OMDR: organic matter degradation rate; WSC: water-soluble carbon; WSN:
water-soluble nitrogen. b Changes in bacterial (upper panel) and viral (lower panel) community composition during different phases of HTC
based on D0, D4, D15, and D27 sampling time points. c Changes in bacterial (upper panel) and viral (lower panel) species richness during HTC.
d Changes in the relative bacterial (upper panel; phyla level) and predicted viral host taxa abundances during HTC (lower panel; based on
metagenome read mapping; n= 12). In (a) and (c), data show mean ± SD with three biological replicates per treatment (n= 3); different
lowercase between treatments denotes significant differences at p < 0.05. All datasets are based on metagenomics.
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[86] and assigned them to different functional categories based on
KEGG Orthology database. A total of 38.2% of all genes (950,304)
could be annotated, whose abundances followed different phases
of HTC. Especially, genes linked to microbial metabolism
(carbohydrate metabolism, lipid metabolism, amino acid metabo-
lism and metabolism of cofactors and vitamins) were significantly
(p < 0.05) enriched by 17% at thermophilic phases of HTC (Fig. S7a).
In contrast, the relative abundance of genes associated with

nitrogen metabolism, quorum sensing, and two-component
regulatory systems was significantly reduced by 19% (p < 0.05)
during the thermophilic phase of HTC (D15, Fig. S7b).
To explore which bacteria and viruses were active during HTC,

we mapped metatranscriptomic reads against metagenomic
contigs, including assembled MAGs and vOTUs. Approximately,
74% of quality filtered mRNA reads could be mapped back to
metagenomic assemblies. The transcriptional activity of bacterial

Fig. 2 Bacteria-virus linkages and coupling of metagenome-assembled genome (MAG) and vOTU dynamics during different phases of
HTC. The relationship between viral and bacterial communities based on richness (a) and beta-diversity indexes (b). c Phylogenetic tree of
MAGs (phylum level) recovered from metagenomes based on a concatenated set of 120 conserved bacterial single-copy marker genes. The
orange circles denote for MAG lineages that were predicted to be infected by viruses, with the numbers of identified vOTUs shown inside the
circles. The tree scale shows nucleotide substitutions per site. d Positive correlation between viral and predicted host bacterial abundances
across all composting samples. e Negative correlation between the detected number of active viruses and active host bacteria across all
composting samples. (f ) Predicted virus-host links between viral taxonomy (at family level) and bacterial MAGs during HTC. The left two
panels represent host taxonomy colored by phylum and genus, and the right two panels show viral clusters associated with sampling days.
Gray connecting lines show associations between bacterial host (at phylum and family level) and viruses associated with given sampling time
points on the right. In (a–e), shaded area shows 95% confidence interval around the fitted mean line.
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MAGs followed closely different phases of HTC (Fig. 3a). Specifi-
cally, mesophilic bacteria were relatively more active at the initial
phase, including MAGs belonging to Armatimonadota (34.2%) and
Actinobacteriota (22.5%), while thermophilic bacteria became
active during the hyperthermophilic phase (D15), including
Deinococcota (74.0%) and Firmicutes (22.8%) (Fig. 3a and Fig. S8).
Changes in bacterial community activity (based on RNA abun-
dance matrix of MAGs) were positively correlated with several

composting properties (Fig. S9). For example, the activity of
mesophilic bacteria was highly correlated with carbon cycling
(total carbon and inorganic carbon content) and OM degradation
(Mantel’s r= 0.25–0.80, p < 0.05), while the activity of thermo-
philes was associated with composting temperature and nitrogen
cycling (Mantel’s r= 0.25–0.60, p < 0.05).
In case of viruses, 98.5% of vOTUs were active closely following

the composting temperature during HTC (Fig. 3b and Table S4). Of
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the taxonomically assigned vOTUs, Autographiviridae (45.5%) and
Vilmaviridae (20.6%) were the most active viruses at the beginning
of composting (D0, Fig. S10). While the activity of Autographivir-
idae reduced to 1.3%, the activity of Matshushitaviridae
significantly increased to 90.2% during the hyperthermophilic
phase (Fig. S10). Overall, mesophilic viruses were relatively more
active at the beginning of composting and especially unknown
virus NODE_4560_length_5650_cov_2.431093 had high transcrip-
tional activity (3.5%) (Fig. 3b, Table S4). In contrast, thermophilic
viruses were more active during hyperthermophilic (D15)
and maturation (D27) phases, with unclassified virus
NODE_636_length_12113_cov_2.763359 showing high transcrip-
tional activity during the hyperthermophilic phase (Fig. 3b,
Table S4). Similar patterns of activity were observed with viruses
that could be classified only based on their predicted host taxa
(Fig. S10). The activity of mesophilic viruses was only correlated
with carbon cycling (TC and IC) and OM degradation (Mantel’s
r= 0.5–0.8, p < 0.05, Fig. S9), while the activity of thermophilic
viruses was significantly associated with composting temperature
and carbon and nitrogen cycling (Mantel’s r= 0.25–0.50, p < 0.05,
Fig. S9). Together, these results show that both bacterial and viral
activity were associated with nutrient cycling during HTC.

Viruses drive nutrient cycling via expression of auxiliary
metabolic genes and through top-down regulation of
bacterial abundances and activity
To understand the effects of viruses and bacteria on nutrient
cycling at the functional level, we explored the expression
dynamics of catabolic genes carried by both bacteria and viruses.
All bacterial MAGs (227) encoded essential metabolism genes
(Table S5). Specifically, carbohydrate-active enzymes (CAZymes;
117 and 89 genes per MAG on average for mesophiles and
thermophiles, respectively), including glycoside hydrolases (GHs),
glycosyl transferases (GTs), polysaccharide lyases (PLs), carbohy-
drate esterases (CEs), carbohydrate-binding modules (CBMs) and
auxiliary activities (AAs), indicative of their importance in the
decomposition of polysaccharides. Also, proteinase genes were
detected in all MAGs (on average 52.1 and 46.3 genes per each
mesophilic and thermophilic MAG, respectively), while 70.6% of
MAGs (2.6 and 0.89 genes per each mesophilic and thermophilic
MAG, respectively) harbored genes linked with denitrification
(53.7%), dissimilatory nitrate reduction (44.4%) and nitrogen
fixation (3.5%). The expression of most of these genes followed
different phases of HTC (Fig. 3c–e). Specifically, carbohydrate
metabolism genes (CAZymes, F3.8= 37.7, p < 0.0001) were
expressed by thermophiles during the thermophilic phases of
HTC (D4 and D15, Fig. 3c), while nitrogen metabolism genes
(F3.8= 26.1, p= 0.00017) were expressed by mesophilic bacteria at
the initial phase of composting (Fig. 3d). The transcriptional
activity of CAZymes and nitrogen metabolic genes by thermo-
philic and mesophilic MAGs was positively associated with

nutrient turnover during the HTC (Mantel test, p < 0.05,
respectively).
We also compared the abundance and activity of virus-encoded

auxiliary metabolic genes (AMGs) for the nutrient cycling. Around
4% of annotated viral ORFs were linked with carbohydrate transport
and metabolism and amino acid transport and metabolism
(Fig. S11). Viral AMGs identification was further examined using
DRAM-v and manual curation. A total of 90 putative AMGs were
found in 75 mesophilic phages (linked to mesophilic hosts),
representing carbohydrate metabolism, amino acid metabolism
and phosphorus metabolism KEGG categories (Table S6). A total of
34 putative AMGs belonged to 10 CAZyme families involved in
breakdown of polysaccharide compounds, such as hemicellulose
and chitin (Fig. 3e and Table S6). In addition, 14 AMGs were
associated with peptidase and amino acid metabolism and
these AMGs were present on 14 viral contigs. In addition, two
putative AMGs involved in phosphorus metabolism (e.g., phosphate
starvation-inducible protein PhoH, alkaline phosphatase D phoD)
were detected on 10 viral contigs (Table S6). In support with
previous analyses, no AMGs associated with inorganic nitrogen
metabolism was found in any of the viral contigs. Almost all
identified AMGs were expressed during the composting (99.5%),
indicative of their importance in degradation of carbohydrates and
exopolysaccharides (Fig. S12). While the expression level of total
AMGs significantly decreased during the thermophilic phase
(Fig. S13a, F3,8= 7.7, p= 0.009), the activity of CAZyme significantly
decreased (Fig. 3e, F3,8= 9.4, p= 0.0053). As a result, viral CAZyme
activity correlated positively with carbon cycling during HTC
(R2= 0.55, p < 0.0001), while no significant relationship with
nitrogen cycling was observed (R2= 0.14, p= 0.15, Fig. S13b).
Together, these results suggest that AMGs encoded by mesophilic
viruses contributed to degradation of complex carbohydrates
during the non-thermophilic phase of composting.
We investigated if viruses could have affected bacterial catabolic

activity via top-down density regulation of their hosts based on the
lineage-specific virus-host ratios (VHR; estimated using MAG and
vOTU data). Overall, viral abundances clearly surpassed bacterial
abundances, and the mean VHR of all virus-host lineages showed a
clear increase at thermophilic phases (ranging from 73.6 to 190.1;
F3,8= 9.0, p= 0.006, Fig. S14a). The highest VHRs were observed
with Deinococcota at D15, followed by Firmicutes at D27, and the
dynamics of VHRs followed changes in the composting temperature
(Fig. 4a). Twelve most dominant mesophilic and thermophilic MAGs
(six each), whose abundances accounted for 9.1–69.7% of all MAGs
during HTC, were chosen to study the top-down regulation of
bacterial densities by their viruses (Fig. 4b). The relative bacterial
and viral abundances were tightly coupled (R2= 0.79 and R2= 0.87,
p < 0.001) during HTC (Fig. 4c), while both the activity (R2= 0.93 and
R2= 0.96, p < 0.001) and abundances (R2= 0.79 and R2= 0.87,
p < 0.001) of thermophilic and mesophilic MAGs correlated
positively with their viral abundances and activities (Fig. 4e).

Fig. 3 Comparison of metabolic activity of mesophilic and thermophilic bacteria (MAGs) and viruses (vOTUs) during HTC based on
transcriptional activity of functional genes. a Box plots and heatmap representing changes in transcriptional activity of mesophilic
(OGT < 50 °C) and thermophilic (OGT > 50 °C) bacteria (upper panel) and 180 mesophilic and 47 thermophilic MAGs (lower panel) during HTC.
b Box plots and heatmap representing changes in the transcriptional activity of viruses associated with mesophilic and thermophilic bacteria
(upper panel) and individual vOTUs (lower panel) during HTC. Box plots and heatmaps representing changes in the transcriptional activity of
mesophilic (OGT < 50 °C) and thermophilic (OGT > 50 °C) bacteria during HTC based on mean (upper panel) and individual (lower panel) MAGs
(including 180 mesophilic and 47 thermophilic MAGs) in association to carbon (CAZyme) (c) and nitrogen metabolism genes (d). e Box plot
and heatmap representing changes in the transcriptional activity of virus-associated carbon (CAZyme) metabolism genes linked with
mesophilic MAGs (OGT < 50 °C). In all (a–e), the mean transcriptional activity (MAGs and vOTUs) shown in boxplots is based on transcript
abundances (transcripts per million, TPM) normalized by MAG and vOTU abundances. Box plots encompass 25–75th percentiles, whiskers
show the minimum and maximum values, and the midline shows the median (dots present the biologically independent samples, asterisks
denote for significant differences (*p < 0.05, **p < 0.01. n.s, no significant differences). Heatmaps show the transcriptional activity (MAGs or
vOTUs) based on non-normalized transcripts abundances (transcripts per million, TPM). In (c and d), selected CAZymes include GHs, GTs, PLs,
CEs, CBMs, and AAs. Nitrogen metabolic pathways include assimilatory nitrate reduction, dissimilatory nitrate reduction, nitrification, and
nitrogen fixation pathways. More detail about the functional genes included can be found in Supplementary Data 6 and 7, respectively.
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However, the relative abundances and activity of mesophilic and
thermophilic bacteria and viruses correlated negatively with each
other, showing a clear microbial succession during HTC (Fig. 4d–f).
As a result, the mean VHR of thermophilic MAGs increased with
composting temperature (specifically for the Thermus thermophilus,
T_bin.227, D15; F3,8= 5.7, p= 0.022), while the VHRs of mesophilic
MAGs were clearly the highest during non-thermophilic phases (D0
and D27; F3,8= 5.5, p= 0.023, Fig. S14b). Moreover, changes in VHRs
correlated positively with composting temperature (R2= 0.63,
p= 0.0012), WSC (R2= 0.31, p= 0.034), WSN (R2= 0.41, p= 0.015)
and OM degradation rate (R2= 0.56, p= 0.0056, Fig. 4g), suggesting
that viruses boosted nutrient cycling via top-down density
regulation of host bacteria during HTC.
Multiple regression models were constructed to explain

changes in nutrient cycling (comparison of dissimilarity matrices
based on all composting properties in time) with relative bacterial
and viral community activity (changes in dissimilarity matrices in
time based on metatranscriptomes). The activity of bacterial and
viral communities (based on MAGs and vOTUs) explained 45.3% of
the total variance in nutrient turnover. Viruses showed a relatively

greater contribution compared to bacteria (Fig. 5a), which was
especially clear with carbon cycling, while bacterial activity was
more strongly associated with nitrogen cycling (Fig. S15). The
activity of MAGs (R2= 0.21, p < 0.001) and vOTUs (R2= 0.52,
p < 0.001) correlated positively with changes in nutrient cycling
(Fig. 5b), suggesting that nutrient turnover and bacterial and viral
activities were coupled during HTC. To further disentangle the
relative importance of mesophilic and thermophilic bacteria and
viruses on carbon and nitrogen cycling, partial least-squares path
models (PLS-PM) were constructed. We found that bacterial
community composition was positively associated with both
bacterial and viral activity (Fig. 5c), while thermophilic bacteria had
negative association with mesophilic bacteria as predicted by the
observed microbial community succession during HTC. Moreover,
both mesophilic and thermophilic viruses were positively asso-
ciated with their host bacteria, indicative of tight coupling of virus-
bacteria dynamics during HTC (Fig. 5c). In line with previous
analyses, mesophilic and thermophilic bacteria were positively
associated with both carbon and nitrogen cycling, with meso-
philes showing relatively stronger effects with nitrogen and

Fig. 4 Lineage-specific virus–host abundances and activity are coupled during HTC. a Heatmap showing changes in the mean virus-host
abundance ratios (VHRs) based on all MAGs and vOTUs grouped by predicted host bacterial taxonomy over four sampling time points (D0, D4,
D15, D27) during HTC. b Changes in the relative abundance of dominant mesophilic (left panel) and thermophilic (right panel) MAGs (upper
panel) and their associated viruses (lower panels; vOTUs) during HTC. Linked MAGs and vOTUs are shown with same colors. c Positive
relationships between dominant mesophilic and thermophilic MAGs and their viruses based on relative abundances. d Negative relationships
between the relative abundances of dominant mesophilic and thermophilic viruses with mesophilic and thermophilic MAGs, respectively.
e Positive relationships between dominant mesophilic and thermophilic MAGs and their viruses based on metatranscriptomics data
(transcriptional activity based on non-normalized transcripts per million reads (TPM)). f Negative relationships between the relative activity of
dominant mesophilic and thermophilic viruses with mesophilic and thermophilic MAGs, respectively. g Significant positive correlations
between total VHRs and changes in composting properties during HTC. Shaded area shows 95% confidence interval around the fitted mean
line. In all panels (except for a and b), data shows mean values of three biological replicates per treatment (n= 3).
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thermophiles stronger effects with carbon (Fig. 5c). In contrast,
only mesophilic viruses were associated with carbon cycling, while
thermophilic viruses had no significant associations with nutrient
turnover. Together, these findings demonstrate that both
mesophilic and thermophilic viruses drove nutrient cycling by
regulating bacterial biomass and activity during HTC.

RNA viruses were not associated with nutrient cycling during
HTC
As recent studies have suggested that RNA viruses could also be
important but overlooked players underlying the ecosystem

functioning [77–80], we used the RNA-dependent RNA polymer-
ase (RdRP) hallmark gene as the target gene to study of the
diversity and composition of RNA viruses during composting.
Approximately, 0.23% of quality filtered mRNA reads could be
mapped back to these RNA viral contigs (Fig. S16a), suggesting
that RNA viruses had a very low frequency in the metatran-
scriptome. Of these 86 potential RNA viruses, 26 could be
clustered with taxonomically known viruses in viral RefSeq
database (v216). Primarily, they belonged to four phyla: Kitrinovir-
icota (69.2%), Negarnaviricota (11.5%), Pisuviricota (11.5%), and
Lenarviricota (7.6%) (Fig. S16b). More than 50% of viruses

Fig. 5 Comparison of the relative importance of viral and bacterial communities for the nutrient cycling during HTC. a Percentage
increases in the MSE (mean squared error) estimating the importance of viral (vOTU) and bacterial (MAG) communities in explaining variation
in nutrient cycling during HTC (higher MSE% values imply increased importance of a given predictor). Random forest mean predictor
importance measure was computed for each tree and averaged over the forest (5000 trees). b Significant non-linear correlations between
bacterial (black line) and viral (blue line) community activity with nutrient turnover (based on all biogeochemical parameters) during HTC
based on metatranscriptomic datasets. c Partial least-squares path model (PLS-PM) comparing the relative importance of different factors
explaining nutrient cycling during HTC. PLS-PM describes the relationships between viral and bacterial communities (beta-dissimilarity based
on mesophilic and thermophilic MAGs or vOTU), viral and MAG catabolic activity. Strengths of path coefficients are shown as arrow width and
numbers beside them, while blue, red and gray colors indicate negative, positive, and non-significant effects, respectively. Path coefficients
and coefficients of determination (R2) were calculated after 999 bootstraps and significance levels are indicated when p < 0.05. In (b), gray
cloud represents a 95% confidence interval around the predicted values. d Schematic illustration describing the relationships between
mesophilic and thermophilic bacteria and their viruses in relation to nutrient cycling during HTC.
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belonged to Virgaviridae family that mainly consists of plant
viruses, and only two viruses belonged to Fiersviridae family, which
have been associated with bacteria (Fig. S16c) [87]. Most of these
RNA viruses (83%) were present at the initial and maturation
phases of composting, and only a few RNA phages (17%) were
detected in samples collected during thermophilic phase (D4 and
D15). This may be due to sensitivity of RNA viruses to heat [88]. In
support of this, abundances of RNA viruses (based on mapping
RNA sequencing reads back to RdRP-bearing contigs using coverM
(v0.61, https://github.com/wwood/CoverM) followed closely dif-
ferent phases of composting (Fig. S16d, e), with most RNA viruses
having high abundances at initial and maturation phases of
composting, while almost vanishing during thermophilic phase.
We also analyzed the presence of dsDNA phages in metatran-
scriptomic dataset using the same methods as with metage-
nomics (except for VIBRANT tool). A total of 68 putative dsDNA
phage contigs (with sizes >5 kb) were obtained from the
metatranscriptomic assemblies. After clustering (95% nucleotide
similarity and over 85% coverage), a total of 41 dsDNA viruses
were retained. By comparing the dsDNA viruses contigs derived
from transcriptomic data and metagenomic data, 89% viruses (61
of 68) could be assembled from both transcriptomic and
metagenomic data, suggesting that very few dsDNA viruses
exclusively exist in metatranscriptomic dataset. As a result, the
RNA viral community abundance (based on beta-dissimilarity of
abundance matrix) did not correlate with changes in composting
properties (Mantel statistic r= 0.0173, p= 0.35), which suggests
that they did not contribute to the nutrient cycling during
composting.

DISCUSSION
Here we studied the role of viruses in nutrient cycling during
hyperthermophilic composting using replicated and temporally
sampled metagenomics and metatranscriptomics datasets. We
found that bacterial and viral community dynamics were tightly
coupled and followed different phases of HTC and degradation of
organic matter. Specifically, while mesophilic viruses participated
in nutrient cycling by encoding AMGs linked with carbon cycling,
thermophilic viruses played only an indirect role via top-down
regulation of thermophilic bacterial densities. Nutrient turnover
correlated positively with virus–host ratio, which suggest that
relative viral abundances could be used as an indicator of
ecosystem functioning (Fig. 5d). These effects were driven by DNA
viruses as RNA viruses were mainly associated with eukaryotes and
were not correlated with nutrient cycling during composting. Our
results are in line with previous studies linking DNA viruses to
nutrient turnover in terrestrial ecosystems [4, 10, 89], highlighting
the role of viral diversity and activity for terrestrial biogeochemical
cycles.
Both bacterial and viral communities followed closely different

phases of composting, with mesophiles and thermophiles
dominating non-thermophilic and thermophilic phases, respec-
tively. Moreover, viruses showed high activity even during the
hyperthermophilic phase (>90 °C) and consistently surpassed
bacterial abundances in terms of virus-host abundance ratio.
Mesophilic and thermophilic bacteria and their viruses showed
clear microbial community succession, where the initial phase of
composting was dominated by mesophiles, which were subse-
quently replaced by thermophiles and subsequently by meso-
philes towards the end of the HTC. Although similar compositional
succession of bacterial and fungal communities have been
observed in previous composting experiments [19, 90], this is
the first evidence demonstrating that viruses can also drive
ecological succession in microbial communities during HTC. These
findings are also indicative of “Kill-the-Winner” hypothesis, where
viruses target and regulate the most abundant group of host
bacteria, reducing the dominance effects and evening out

competition between different bacterial taxa [4, 89]. Such
dynamics could explain the observed community shift between
thermophilic and maturation phases of HTC, where thermophilic
viruses likely drove down the abundances of thermophilic
bacteria, giving rise to mesophilic bacteria and their phages. For
example, Thermus and Planifilum bacterial genera play important
role in heat production during HTC [17] and several lytic phages
that infected Thermus thermophilus (T_bin.227) and Planifilum
fulgidum (T_bin.201) were identified, including five potentially
novel Thermus viruses that had genome sizes about 5 kbp similar
to hyperthermophilic phage φOH3 isolated from Obama hot
spring [91]. While 61% of detected phages were predicted to be
lytic, it is possible that some of the correlations between bacterial
and viral taxa were also driven by lysogenic phages or prophages
because unfiltered DNA samples were used for metagenomics. As
a result, our dataset likely underestimates phage diversity, and
phage enrichment [92] should be used in future studies. More-
over, future work should also consider the potential role of RNA
viruses for HTC, which we did not explore in detail as compost-
associated bacteria are most often associated with DNA viruses
[19]. Nevertheless, our results suggest that a small portion of
thermophilic viruses played a key role in microbial activity during
the thermophilic phase of HTC, indicating that compost ecosys-
tem functioning was at least temporally driven by low-diversity
microbial communities. Terrestrial phages could hence be
important drivers of biogeochemical cycling in soil ecosystems
via “viral shunt” akin to marine phages [11, 93].
Viral and bacterial activities were also positively correlated with

each other, and virus–host ratio correlated positively with changes
in both carbon and nitrogen cycling. While both mesophilic and
thermophilic bacteria actively expressed genes linked with carbon
and nitrogen cycling, only mesophilic viruses encoded carbon
metabolism-related AMGs, while no metabolism-related AMGs
were found in thermophilic viruses. These findings are in line with
previous studies conducted in marine and soil ecosystems, which
have identified a variety of AMGs linked to nitrogen metabolism
[94], carbon metabolism [95], phosphate metabolism [96], and the
sulfur cycle [97] in mesophilic viruses. However, while carbon-
linked viral AMGs are frequently detected in various environments
[4, 14, 27], viral AMGs associated with nitrogen cycling have been
observed less often [94] and were not either found in our study.
All carbon-associated viral AMGs were carbohydrate-active
enzymes (CAZymes) and their transcriptional activity was sig-
nificantly correlated with carbon turnover during HTC. One
potential explanation for the relatively higher prevalence of
carbon-associated viral AMGs is that they might provide more
benefits for the host bacteria as composting matrix contains lots
of organic carbon [16, 98]. No CAZymes were encoded by
thermophilic viruses. One reason for this could be that thermo-
philic viruses have adapted to encode non-metabolism-related
AMGs to improve bacterial and their own survival in stressful
environments [3, 14]. In support of this, many thermophilic AMGs
were associated with amino acid and nucleotide metabolism, and
their transcriptional activity was significantly increased during the
thermophilic phase. Despite disparate effects on metabolism, both
types of viruses played indirect role in nutrient cycling by
regulating bacterial abundances and catabolic activity through
top-down density control. However, more work is required to
directly validate the functioning of discovered viral AMGs in the
future. Also, as only a very small fraction of vOTUs were of high
quality, our analysis likely underestimated the functional diversity
and gene content of viruses. Finally, we used our metatranscrip-
tomics dataset to explore the potential role of RNA viruses in
composting. Most of the detected RNA viruses (82%) were
associated with eukaryotic hosts and had low relative abundances
during hyperthermophilic phase of composting. This is in line with
previous studies suggesting that RNA viruses have mainly
eukaryotic hosts [77] and that nutrient cycling during composting
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is mainly driven by prokaryotic organisms [19, 21]. RNA viruses
therefore likely played a small role in nutrient cycling during HTC.
In conclusion, this study provides evidence for the importance of

viruses in terrestrial biochemical cycles and nutrient turnover,
especially in thermophilic extreme environments. Much of the
discovered viral diversity was absent in reference sequence
databases, highlighting the continued discovery of novel viral
diversity and its role in microbial ecosystems. One reason for this
could be that HTC environment is highly specific to bacterial and viral
taxa that are not found in other terrestrial or aquatic ecosystems. In
addition to exerting strong top-down regulation and driving
microbial community succession between mesophilic and thermo-
philic bacteria, viral AMGs were associated with carbon cycling during
themesophilic phases of composting. Further, viral abundances often
surpassed bacterial abundances and high virus-host ratio peaks were
associated with efficient degradation of organic matter. Relative viral
abundances could hence potentially be used as an indicator of
efficient nutrient cycling and microbial ecosystem functioning to
optimize productivity of biotechnological and agricultural systems.
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